Skip to main content

Hemoglobin and Myoglobin Contribution to the NIRS Signal in Skeletal Muscle

  • Chapter
  • First Online:

Part of the book series: Handbook of Modern Biophysics ((HBBT,volume 5))

Abstract

Oxidative ATP generation plays a central role in muscle contraction and implicates an essential role for oxygen supply and flux during exercise. Of the different methods to track the oxygen balance in skeletal muscle, optical methods present a noninvasive and simple approach. In 1937, Millikan introduced an optical method to assess oxygen levels in cat soleus muscle at rest and in response to electrical stimulation [Proc R Soc Lond B: Biol Sci 123:218–241, 1937]. He used a point light source (a pointolite lamp) to introduce a beam of visible light through a heat filter and a condensing lens onto a muscle holder, where it made a right-angle reflection from a totally reflecting prism. The beam then passed through the muscle and onto a photocell colorimeter, which recorded the characteristic absorbance signals of oxygenated hemoglobin (Hb) and myoglobin (Mb). Given the in vitro binding constants of O2 to Mb and Hb, a calculation leads to values for the partial pressure of O2. In contrast to the standard gas-exchange technique at that time, which suffered from time delays, the optical method could follow in real time Mb and Hb saturation [Proc R Soc Lond B: Biol Sci 123:218–241, 1937].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Millikan, G.A.: Experiments on muscle haemoglobin in vivo; the instantaneous measurement of muscle metabolism. Proc. R. Soc. Lond. B: Biol. Sci. 123(831), 218–241 (1937)

    Article  CAS  Google Scholar 

  2. Jobsis, F.F.: Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters. Science 198(4323), 1264–1267 (1977)

    Article  CAS  PubMed  Google Scholar 

  3. Klungsoyr, L., Stoa, K.F.: Spectrophotometric determination of hemoglobin oxygen saturation: the method of Drabkin & Schmidt as modified for its use in clinical routine analysis. Scand. J. Clin. Lab. Invest. 6(4), 270–276 (1954)

    Article  CAS  PubMed  Google Scholar 

  4. Refsum, H.E.: Spectrophotometric determination of hemoglobin oxygen saturation in hemolyzed whole blood by means of various wavelength combinations. Scand. J. Clin. Lab. Invest. 9(2), 190–193 (1957)

    Article  CAS  PubMed  Google Scholar 

  5. van Staveren, H.J., et al.: Light scattering in Intralipid-10% in the wavelength range of 400-1100 nm. Appl. Opt. 30(31), 4507–4514 (1991)

    Article  PubMed  Google Scholar 

  6. Mourant, J.R., et al.: Predictions and measurements of scattering and absorption over broad wavelength ranges in tissue phantoms. Appl. Opt. 36(4), 949–957 (1997)

    Article  CAS  PubMed  Google Scholar 

  7. Pogue, B.W., Patterson, M.S.: Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry. J. Biomed. Opt. 11(4), 041102 (2006)

    Article  PubMed  Google Scholar 

  8. Strangman, G., Boas, D.A., Sutton, J.P.: Non-invasive neuroimaging using near-infrared light. Biol. Psychiatry 52(7), 679–693 (2002)

    Article  PubMed  Google Scholar 

  9. Chung, Y., Jue, T.: Noninvasive NMR and NIRS measurement of vascular and intracellular oxygenation in vivo. In: Jue, T., Masuda, K. (eds.) Application of Near Infrared Spectroscopy in Biomedicine, pp. 123–137. Springer, Boston (2013)

    Chapter  Google Scholar 

  10. Colier, W.N.J.M.: Near infrared spectroscopy: toy or tool? An investigation on the clinical applicability of near infrared spectroscopy. 1995

    Google Scholar 

  11. Ferrari, M., Muthalib, M., Quaresima, V.: The use of near-infrared spectroscopy in understanding skeletal muscle physiology: recent developments. Philos. Trans. A Math. Phys. Eng. Sci. 369(1955), 4577–4590 (2011)

    Article  CAS  PubMed  Google Scholar 

  12. Ferrari, M., Binzoni, T., Quaresima, V.: Oxidative metabolism in muscle. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci 352(1354), 677–683 (1997)

    Article  CAS  Google Scholar 

  13. Nielsen, H.B.: Systematic review of near-infrared spectroscopy determined cerebral oxygenation during non-cardiac surgery. Front. Physiol. 5, 93 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  14. Davis, M.L., Barstow, T.J.: Estimated contribution of hemoglobin and myoglobin to near infrared spectroscopy. Respir. Physiol. Neurobiol. 186(2), 180–187 (2013)

    Article  CAS  PubMed  Google Scholar 

  15. Molinari, F., et al.: Empirical mode decomposition analysis of near-infrared spectroscopy muscular signals to assess the effect of physical activity in type 2 diabetic patients. Comput. Biol. Med. 59, 1–9 (2015)

    Article  PubMed  Google Scholar 

  16. Allart, E., et al.: Evaluation of muscle oxygenation by near-infrared spectroscopy in patients with Becker muscular dystrophy. Neuromuscul. Disord. 22(8), 720–727 (2012)

    Article  CAS  PubMed  Google Scholar 

  17. Obrig, H.: NIRS in clinical neurology—a ‘promising’ tool? Neuroimage 85(Pt 1), 535–546 (2014)

    Article  PubMed  Google Scholar 

  18. Cope, M., Delpy, D.T.: System for long-term measurement of cerebral blood and tissue oxygenation on newborn infants by near infra-red transillumination. Med. Biol. Eng. Comput. 26(3), 289–294 (1988)

    Article  CAS  PubMed  Google Scholar 

  19. De Blasi, R.A., et al.: Noninvasive measurement of forearm blood flow and oxygen consumption by near-infrared spectroscopy. J. Appl. Physiol. 76(3), 1388–1393 (1994)

    PubMed  Google Scholar 

  20. De Blasi, R.A., et al.: Noninvasive measurement of human forearm oxygen consumption by near infrared spectroscopy. Eur. J. Appl. Physiol. Occup. Physiol. 67(1), 20–25 (1993)

    Article  PubMed  Google Scholar 

  21. Praagman, M., et al.: Muscle oxygen consumption, determined by NIRS, in relation to external force and EMG. J. Biomech. 36(7), 905–912 (2003)

    Article  CAS  PubMed  Google Scholar 

  22. Van Beekvelt, M.C., et al.: Performance of near-infrared spectroscopy in measuring local O(2) consumption and blood flow in skeletal muscle. J. Appl. Physiol. 90(2), 511–519 (2001)

    PubMed  Google Scholar 

  23. Costes, F., et al.: Comparison of muscle near-infrared spectroscopy and femoral blood gases during steady-state exercise in humans. J. Appl. Physiol. (1985). 80(4), 1345–1350 (1996)

    Google Scholar 

  24. Wilson, J.R., et al.: Noninvasive detection of skeletal muscle underperfusion with near-infrared spectroscopy in patients with heart failure. Circulation 80(6), 1668–1674 (1989)

    Article  CAS  PubMed  Google Scholar 

  25. Chung, Y., et al.: Control of respiration and bioenergetics during muscle contraction. Am. J. Physiol. Cell Physiol. 288(3), C730–C738 (2005)

    Article  CAS  PubMed  Google Scholar 

  26. Mole, P.A., et al.: Myoglobin desaturation with exercise intensity in human gastrocnemius muscle. Am. J. Physiol. 277(1 Pt 2), R173–R180 (1999)

    CAS  PubMed  Google Scholar 

  27. Seiyama, A., Hazeki, O., Tamura, M.: Noninvasive quantitative analysis of blood oxygenation in rat skeletal muscle. J. Biochem. 103(3), 419–424 (1988)

    Article  CAS  PubMed  Google Scholar 

  28. Bank, W., Chance, B.: An oxidative defect in metabolic myopathies: diagnosis by noninvasive tissue oximetry. Ann. Neurol. 36(6), 830–837 (1994)

    Article  CAS  PubMed  Google Scholar 

  29. Harper, A.J., et al.: Human femoral artery and estimated muscle capillary blood flow kinetics following the onset of exercise. Exp. Physiol. 91(4), 661–671 (2006)

    Article  PubMed  Google Scholar 

  30. Kindig, C.A., Richardson, T.E., Poole, D.C. Skeletal muscle capillary hemodynamics from rest to contractions: implications for oxygen transfer. J. Appl. Physiol. (1985). 92(6):2513–2520 (2002).

    Google Scholar 

  31. McCully, K.K., Hamaoka, T.: Near-infrared spectroscopy: what can it tell us about oxygen saturation in skeletal muscle? Exerc. Sport Sci. Rev. 28(3), 123–127 (2000)

    CAS  PubMed  Google Scholar 

  32. Hickson, R.C.: Skeletal muscle cytochrome c and myoglobin, endurance, and frequency of training. J. Appl. Physiol. Respir. Environ. Exerc. Physiol. 51(3), 746–749 (1981)

    CAS  PubMed  Google Scholar 

  33. Kagen, L.J.: Myoglobin; Biochemical, Physiological, and Clinical Aspects. Columbia University Press, New York (1973)

    Google Scholar 

  34. Marcinek, D.J., et al.: Wavelength shift analysis: a simple method to determine the contribution of hemoglobin and myoglobin to in vivo optical spectra. Appl. Spectrosc. 61(6), 665–669 (2007)

    Article  CAS  PubMed  Google Scholar 

  35. van Beek-Harmsen, B.J., et al.: Determination of myoglobin concentration and oxidative capacity in cryostat sections of human and rat skeletal muscle fibres and rat cardiomyocytes. Histochem. Cell Biol. 121(4), 335–342 (2004)

    Article  PubMed  Google Scholar 

  36. Richardson, R.S., et al.: Red blood cell transit time in man: theoretical effects of capillary density. Adv. Exp. Med. Biol. 361, 521–532 (1994)

    Article  CAS  PubMed  Google Scholar 

  37. Nioka, S., et al.: Simulation of Mb/Hb in NIRS and oxygen gradient in the human and canine skeletal muscles using H-NMR and NIRS. Adv. Exp. Med. Biol. 578, 223–228 (2006)

    Article  CAS  PubMed  Google Scholar 

  38. Nighswander-Rempel, S.P., Kupriyanov, V.V., Shaw, R.A.: Relative contributions of hemoglobin and myoglobin to near-infrared spectroscopic images of cardiac tissue. Appl. Spectrosc. 59(2), 190–193 (2005)

    Article  CAS  PubMed  Google Scholar 

  39. Mancini, D.M., et al.: Validation of near-infrared spectroscopy in humans. J. Appl. Physiol. 77(6), 2740–2747 (1994)

    CAS  PubMed  Google Scholar 

  40. Jue, T., et al.: Myoglobin and O2 consumption in exercising human gastrocnemius muscle. Adv. Exp. Med. Biol. 471, 289–294 (1999)

    Article  CAS  PubMed  Google Scholar 

  41. Tran, T.K., et al.: Comparative analysis of NMR and NIRS measurements of intracellular PO2 in human skeletal muscle. Am. J. Physiol. 276(6 Pt 2), R1682–R1690 (1999)

    CAS  PubMed  Google Scholar 

  42. Richardson, R.S., et al.: Myoglobin O2 desaturation during exercise. Evidence of limited O2 transport. J. Clin. Invest. 96(4), 1916–1926 (1995)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bendahan, D., Chatel, B., Jue, T.: Myoglobin contribution to the near infrared signal in exercising skeletal muscle. In: Proceedings of the International Society of Magnetic Resonance in Medicine, vol. 23, p. 4234 (2015).

    Google Scholar 

  44. Brooks, G.A.: Lactate production under fully aerobic conditions: the lactate shuttle during rest and exercise. Fed. Proc. 45(13), 2924–2929 (1986)

    CAS  PubMed  Google Scholar 

  45. Brooks, G.A.: Intra- and extra-cellular lactate shuttles. Med. Sci. Sports Exerc. 32(4), 790–799 (2000)

    Article  CAS  PubMed  Google Scholar 

  46. Brooks, G.A.: Cell-cell and intracellular lactate shuttles. J. Physiol. 587(Pt 23), 5591–5600 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge support from France Berkeley Fund (D.B., T.J.), BWF Collaborative Research Travel Grant (D.B., T.J.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Jue Ph.D. .

Editor information

Editors and Affiliations

Appendices

Problems

  1. 6.1.

    Mild muscle activity has been associated with pH changes, which reflects an increase in lactate concentration, suggesting that muscle produces lactate even during low-intensity exercises and under well-oxygenated condition. Discuss the underlying mechanisms and the implications in associating lactate production with a hypoxia or ischemia threshold.

  2. 6.2.

    If Mb has a dominant contribution to the NIRS signal, the sudden deoxygenation of Mb (as observed by NIRS) at the initiation of muscle contraction implies a rapid rise in oxygen demand or consumption. What then is the role of glycogenolysis? Does compartmentalizing rigidly energy metabolism into an independent nonoxidative vs. oxidative pathway have any physiological validity?

Solutions

  1. 6.1.

    Brooks, G.A.: Lactate production under fully aerobic conditions: the lactate shuttle during rest and exercise. Fed. Proc. 45(13), 2924–2929 (1986).

    Brooks, G.A.: Intra- and extra-cellular lactate shuttles. Med. Sci. Sports Exerc. 32(4), 790–799 (2000)

    Brooks, G.A.: Cell-cell and intracellular lactate shuttles. J. Physiol. 587(Pt 23), 5591–5600 (2009)

  2. 6.2.

    Chung, Y., et al.: Control of respiration and bioenergetics during muscle contraction. Am. J. Physiol. Cell. Physiol. 288(3), C730–C738 (2005)

Further Study

  • Ferrari, M., Muthalib, M., Quaresima, V.: The use of near-infrared spectroscopy in understanding skeletal muscle physiology: recent developments. Philos. Trans. R. Soc. A 369, 1–14 (2011)

  • Gros, G., Wittenberg, B.A., Jue, T.: Myogloblin’s old and new clothes: from molecular structure to function in living cells. J. Exp. Biol. 213, 2713–2725 (2010)

  • Masuda, K., Jue, T.: Application of near infrared spectroscopy in biomedicine. In: Jue, T. (series editor) Handbook of Modern Biophysics, vol. 4. Humana Press, New York (2013)

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this chapter

Cite this chapter

Chatel, B., Bendahan, D., Jue, T. (2017). Hemoglobin and Myoglobin Contribution to the NIRS Signal in Skeletal Muscle. In: Jue, T. (eds) Modern Tools of Biophysics. Handbook of Modern Biophysics, vol 5. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-6713-1_6

Download citation

Publish with us

Policies and ethics