Skip to main content
Book cover

Ozone Hole pp 121–131Cite as

Monitoring Ozone Loss and Its Consequences: Past, Present, and Future

  • Chapter
  • First Online:

Part of the book series: SpringerBriefs in Environmental Science ((BRIEFSENVIRONMENTAL))

Abstract

Two major changes observed in atmospheric ozone from 1980 onwards are (1) the strong downward trend of spring time Antarctic ozone since 1980 and (2) the widespread decrease in total ozone in subtropical and middle latitudes since 1982, associated with the eruptions of EL Chichon in March–April 1982 and which has recurred in succeeding years. Figure 7.1 depicts the variation of total ozone with latitude. The altitude of greatest change is in the lower stratosphere, below 20 km at both middle latitudes and the polar regions. The ozone levels appear to remain unchanged in the tropics. The likely causes are either influences of atmospheric chemistry such as injection of CFCs, nuclear tests, and volcanic eruption or the natural variations due to large-scale atmospheric dynamics [1–3].

A number of stations and networks across the world are busy monitoring the extent of the ozone loss and the enhancement in the UB-A, UV-B, and UV-C radiation that is occurring as a result. These are supported by increasingly versatile, precise, and accurate instruments. This chapter presents an overview of these initiatives.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Kodera, K., & Kuroda, Y. (2002). Dynamical response to the solar cycle. Journal of Geophysical Research, 107, D24.

    Article  Google Scholar 

  2. Simpson, I., Blake, D. R., Rowland, F. S., & Chen, T.-Y. (2002). Implications of the recent fluctuations in the growth rate of tropospheric methane. Geophysical Research Letters, 29, 117-1–117-4. Plus supplementary data.

    Google Scholar 

  3. Troshichev, C., & Gabis, I. (2005). Effects of solar UV irradiation on dynamics of ozone hole in Antarctic. Journal of Atmospheric and Solar-Terrestrial Physics, 67, 93–104.

    Article  CAS  Google Scholar 

  4. Flemming, J., Inness, A., Jones, L., Eskes, H. J., Huijnen, V., Schultz, M. G., et al. (2010). Forecasts and assimilation experiments of the Antarctic Ozone Hole 2008. Atmospheric Chemistry and Physics Discussions, 10, 9173–9217.

    Article  Google Scholar 

  5. Manney, G. L., Santee, M. L., Rex, M., Livesey, N. J., Pitts, M. C., Veefkind, P., et al. (2011). Unprecedented Arctic ozone loss in. Nature, 478(7370), 469–475.

    Article  CAS  Google Scholar 

  6. Arndt, D. S., Baringer, M. O., Johnson, M. R., Alexander, L. V., Diamond, H. J., Fogt, R. L., et al. (2009). State of the climate in. Bulletin of the American Meteorological Society, 91(7), S1–S218.

    Article  Google Scholar 

  7. Rowland, F. S. (2006). Stratospheric ozone depletion. Philosophical Transactions of the Royal Society B, 361, 769–790.

    Article  CAS  Google Scholar 

  8. WMO (World Meteorological Organization). (2008). Operations handbook—ozone observations with a Dobson spectrophotometer. Research Department Atmospheric Research and Environment Branch, GAW Report No. 183, 110 pp.

    Google Scholar 

  9. WMO. (1990). Alternative fluorocarbon environmental acceptability study. Scientific assessment of stratospheric ozone: 1989, vol. II. Appendix, Global Ozone Research and Monitoring Project, Report 20. Geneva: World Meteorology Organization.

    Google Scholar 

  10. Arévalo-Martínez, D. L., Kock, A., et al. (2015). Massive nitrous oxide emissions from the tropical South Pacific Ocean. Nature Geoscience, 8(7), 530–533.

    Article  Google Scholar 

  11. Babbin, A. R., Bianchi, D., et al. (2015). Rapid nitrous oxide cycling in the suboxic ocean. Science, 348(6239), 1127–1129.

    Article  CAS  Google Scholar 

  12. Hickman, J. E., Tully, K. L., et al. (2015). A potential tipping point in tropical agriculture: Avoiding rapid increases in nitrous oxide fluxes from agricultural intensification in Kenya. Journal of Geophysical Research G: Biogeosciences, 120(5), 938–951.

    CAS  Google Scholar 

  13. Arblaster, J. M., Meehl, G. A., & Karoly, D. J. (2011). Future climate change in the Southern Hemisphere: Competing effects of ozone and greenhouse gases. Geophysical Research Letters, 38(2), 51–57.

    Google Scholar 

  14. Feldstein, P. (2011). Health care economics. Mason: Cengage Learning.

    Google Scholar 

  15. Zubov, A. S., Sargsyan, V. V., Adamian, G. G., & Antonenko, N. V. (2011). Population of ground-state rotational bands of superheavy nuclei produced in complete fusion reactions. Physical Review C, 84(4), 044320.

    Article  Google Scholar 

  16. Austin, D., McMillan, J. I., & Bowen, W. D. (2003). A three stage algorithm for filtering erroneous Argos satellite locations. Marine Mammal Science, 19, 371–383.

    Article  Google Scholar 

  17. Dameris, M., Grewe, V., Ponater, M., Deckert, R., Eyring, V., Mager, F., et al. (2005). Long-term changes and variability in a transient simulation with a chemistry-climate model employing realistic forcing. Atmospheric Chemistry and Physics, 5(8), 2121–2145.

    Article  CAS  Google Scholar 

  18. Grise, K. M., Polvani, L. M., et al. (2013). The ozone hole indirect effect: Cloud-radiative anomalies accompanying the poleward shift of the eddy-driven jet in the Southern Hemisphere. Geophysical Research Letters, 40(14), 3688–3692.

    Article  CAS  Google Scholar 

  19. Keeble, J., Braesicke, P., et al. (2014). The impact of polar stratospheric ozone loss on southern Hemisphere stratospheric circulation and climate. Atmospheric Chemistry and Physics, 14(24), 13705–13717.

    Article  Google Scholar 

  20. Bandoro, J., Solomon, S., et al. (2014). Influences of the antarctic ozone hole on southern hemispheric summer climate change. Journal of Climate, 27(16), 6245–6264.

    Article  Google Scholar 

  21. Ferreira, D., Marshall, J., et al. (2015). Antarctic ocean and sea ice response to ozone depletion: A two-time-scale problem. Journal of Climate, 28(3), 1206–1226.

    Article  Google Scholar 

  22. Hurwitz, M. M., Fleming, E. L., et al. (2015). Ozone depletion by hydrofluorocarbons. Geophysical Research Letters, 42(20), 8686–8692.

    Article  CAS  Google Scholar 

  23. Mayewski, P. A., Bracegirdle, T., et al. (2015). Potential for Southern Hemisphere climate surprises. Journal of Quaternary Science, 30(5), 391–395.

    Article  Google Scholar 

  24. Solomon, A., Polvani, L. M., et al. (2015). The impact of ozone depleting substances on the circulation, temperature, and salinity of the Southern Ocean: An attribution study with CESM1 (WACCM). Geophysical Research Letters, 42(13), 5547–5555.

    Article  Google Scholar 

  25. Bais, A. F., McKenzie, R. L., et al. (2015). Ozone depletion and climate change: Impacts on UV radiation. Photochemical and Photobiological Sciences, 14(1), 19–52.

    Article  CAS  Google Scholar 

  26. Barnes, E. A., Barnes, N. W., et al. (2014). Delayed southern hemisphere climate change induced by stratospheric ozone recovery, as projected by the CMIP5 models. Journal of Climate, 27(2), 852–867.

    Article  Google Scholar 

  27. Calvo, N., Polvani, L. M., & Solomon, S. (2015). On the surface impact of Arctic stratospheric ozone extremes. Environmental Research Letters, 10, 094003–094008.

    Article  Google Scholar 

  28. Manney, G. L., Lawrence, Z. D., Santee, M. L., Livesey, N. J., Lambert, A., & Pitts, M. C. (2015). Polar processing in a split vortex: Arctic ozone loss in early winter 2012/2013. Atmospheric Chemistry and Physics, 15, 5381–5403. doi:10.5194/acp-15-5381-2015, http://www.atmos-chem-phys.net/15/5381/2015/.

  29. Herman, P. K., et al. (1991). A genetic and structural analysis of the yeast Vps15 protein kinase: Evidence for a direct role of Vps15p in vacuolar protein delivery. EMBO Journal, 10(13), 4049–60.

    CAS  Google Scholar 

  30. Manatsa, D., et al. (2013). Link between Antarctic ozone depletion and summer warming over southern Africa. Nature Geoscience, 6, 934–939. doi:10.1038/ngeo1968.

    Article  CAS  Google Scholar 

  31. Hegglin, M. I., Fahey, D. W., McFarland, M., Montzka, S. A., & Nash, E. R. (2014). Twenty questions and answers about the ozone layer: 2014 update (79 pp.). World Meteorological Organization, UNEP, NOAA, NASA, and European Commission.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Author(s)

About this chapter

Cite this chapter

Abbasi, S.A., Abbasi, T. (2017). Monitoring Ozone Loss and Its Consequences: Past, Present, and Future. In: Ozone Hole. SpringerBriefs in Environmental Science. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-6710-0_7

Download citation

Publish with us

Policies and ethics