Skip to main content

The Ozone Hole

Part of the SpringerBriefs in Environmental Science book series (BRIEFSENVIRONMENTAL)

Abstract

In popular perception ‘ozone hole’ is something similar to a hole in a cloth wherein the hole represents a total absence of the surrounding material. But ‘ozone hole’ doesn’t represent a region of zero ozone concentration in the atmosphere. Rather it represents a region of atmosphere where there is a significant degree of decrease in the concentration of ozone. ‘Thinning of the ozone column’ is a more correct description of the ‘ozone hole’ phenomenon. The word ‘ozone hole’ owes its origin to the satellite images which were taken in the 1970s and 1980s depicting ozone concentration over the Antarctic. Those images were colour-coded to depict regions of low ozone in bright colour. On paper those coloured regions looked like depicting holes (Fig. 2.1). Hence the word ‘ozone hole’. The best example of an ‘ozone hole’ is the ozonosphere over the Antarctic which now has only about 50 % of ozone that was present before the ozone depletion started. As mentioned in the previous chapter, a similarly ‘deep and wide’ hole has been seen in recent years over Arctic as well [1–6].

Keywords

  • Ozone Concentration
  • Ozone Depletion
  • Ozone Layer
  • Stratospheric Ozone
  • Methyl Bromide

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This chapter introduces the ozone hole. It recounts the story of the discovery of ozone hole and explains how the ‘thickness’ of the ozone layer is quantified.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bernhard, G., Dahlback, A., Fioletov, V., Heikkilä, A., Johnsen, B., Koskela, T., et al. (2013). High levels of ultraviolet radiation observed by ground-based instruments below the 2011 Arctic ozone hole. Atmospheric Chemistry and Physics, 13(21), 10573–10590.

    CrossRef  Google Scholar 

  2. Calvo, N., Polvani, L. M., & Soloman, S. (2015). On the surface impact of Arctic stratospheric ozone extremes. Environmental Research Letters, 10(9), 094003.

    CrossRef  Google Scholar 

  3. Manney, G. L., Lawrence, Z. D., Santee, M. L., Livesey, N. J., Lambert, A., & Pitts, M. C. (2015). Polar processing in a split vortex: Arctic ozone loss in early winter 2012/2013. Atmospheric Chemistry and Physics, 15(10), 5381–5403.

    CrossRef  CAS  Google Scholar 

  4. Manney, G. L., Santee, M. L., Rex, M., Livesey, N. J., Pitts, M. C., Veefkind, P., et al. (2011). Unprecedented Arctic ozone loss in. Nature, 478(7370), 469–475.

    CrossRef  CAS  Google Scholar 

  5. Pommereau, J. P., Goutail, F., Lefèvre, F., Pazmino, A., Adams, C., Dorokhov, V., et al. (2013). Why unprecedented ozone loss in the Arctic in 2011? Is it related to climate change? Atmospheric Chemistry and Physics, 13(10), 5299–5308.

    CrossRef  Google Scholar 

  6. Varotsos, C. A., Cracknell, A. P., & Tzanis, C. (2012). The exceptional ozone depletion over the Arctic in January–March 2011. Remote Sensing Letters, 3(4), 343–352.

    CrossRef  Google Scholar 

  7. Hegglin, M. I., Fahey, D. W., McFarland, M., Montzka, S. A., & Nash, E. R. (2014). Twenty questions and answers about the ozone layer: 2014 update (79 pp.). World Meteorological Organization, UNEP, NOAA, NASA, and European Commission.

    Google Scholar 

  8. Gribbin, J. (1988). The hole in the sky (viii+155 p.). Gorgi Books.

    Google Scholar 

  9. Sarma, K. M., & Andersen, S. O. (2002). Protecting the ozone layer. The United Nations History (xiii+544 p.). Routledge.

    Google Scholar 

  10. Christie, M. (2001). The ozone layer: A philosophy of science perspective. Cambridge University Press (xi+211 p.).

    Google Scholar 

  11. Parson, E. A. (2003). Protecting the ozone layer (xiii+369 p.). Oxford University Press.

    Google Scholar 

  12. Parson, E. A. (2003). Protecting the ozone layer (pp. 329). Oxford University Press.

    Google Scholar 

  13. Brune, W. H. (2015). The ozone story: A model for addressing climate change? Bulletin of the Atomic Scientists, 71(1), 75–84.

    CrossRef  Google Scholar 

  14. Dobson, G. M. B., & Harrison, D. N. (1926). Measurements of the amount of ozone in the earth’s atmosphere and its relation to other geophysical conditions. Proceedings of the Royal Society of London, 110(756), 660–693.

    CrossRef  CAS  Google Scholar 

  15. Champman, S. (1930). A theory of upper atmospheric ozone. Memoirs of the Royal Meteorological Society, 3(26), 103–125.

    Google Scholar 

  16. Crutzen, P. J. (1970). The influence of nitrogen oxides on the atmospheric ozone content. Quarterly Journal of the Royal Meteorological Society, 96(408), 320–325.

    CrossRef  Google Scholar 

  17. Lovelock, J. E., Maggs, R., & Wads, R. J. (1973). Halogenated hydrocarbons in and over the Atlantic. Nature, 241, 194–196.

    CrossRef  CAS  Google Scholar 

  18. Stolarski, R., & Cicerone, R. (1974). Stratospheric chlorine: A possible sink for ozone. Canadian Journal of Chemistry, 52, 1610–1615.

    CrossRef  CAS  Google Scholar 

  19. Molina, M. J., & Rowland, F. S. (1974). Stratospheric sink for chlorofluoromethanes: Chlorine atom catalysed destruction of ozone. Nature, 249(5460), 810–812.

    CrossRef  CAS  Google Scholar 

  20. Wofsy, S. C., McElroy, M. B., & Sze, N. D. (1975). Freon consumption: Implications for atmospheric ozone. Science, 187(4176), 22–24.

    CrossRef  Google Scholar 

  21. Nebel, B. J., & Wright, R. T. (1993). Environmental science: The way the world works. Englewood Cliffs, NJ: Prentice Hall.

    Google Scholar 

  22. Kutterolf, S., Jegen, M., Mitrovica, J. X., Kwasnitschka, T., Freundt, A., & Huybers, P. (2013). A detection of Milankovitch frequencies in global volcanic activity. Geology, 41(2), 227–230.

    CrossRef  Google Scholar 

  23. Forman, J. C., Gardiner, B. G., & Shanklin, J. D. (1985). Large losses of total ozone in Antarctica reveal seasonal ClO x/NOx interaction. Nature, 315(6016), 207–210.

    CrossRef  Google Scholar 

  24. Shanklin, J. (2010). Reflections on the ozone hole. Nature, 465(7294), 34–35.

    CrossRef  CAS  Google Scholar 

  25. Saltus, R. (1989). Returning to the world of sound. Boston Globe, 10, 27–29.

    Google Scholar 

  26. Crutzen, P., Lax, G., & Reinhardt, C. (2013). Paul Crutzen on the ozone hole, nitrogen oxides, and the Noble Prize. Angewandte Chemie International Edition, 52, 48–50.

    CrossRef  CAS  Google Scholar 

  27. Godin-Beekmann, S. (2010). Spatial observation of the ozone layer. Comptes Rendus—Geoscience, 342(4–5), 339–348.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

Copyright information

© 2017 The Author(s)

About this chapter

Cite this chapter

Abbasi, S.A., Abbasi, T. (2017). The Ozone Hole. In: Ozone Hole. SpringerBriefs in Environmental Science. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-6710-0_2

Download citation