Skip to main content

DNA Fingerprinting of Mycobacterium TB: A Rich Source of Fundamental and Daily Applicable Knowledge

  • Chapter
  • First Online:
Handbook of Global Tuberculosis Control

Abstract

This chapter describes the applications of DNA fingerprinting techniques in the molecular epidemiology of TB and the phylogenetic studies on the Mycobacterium tuberculosis complex. The most widely used techniques in the 1990s were IS 6110 restriction fragment length polymorphism (RFLP) and spoligotyping. Currently, the 24 locus Variable Number of Tandem Repeats (VNTP) method has become the international gold standard used for DNA fingerprinting.

These techniques are used to trace the contacts of recently infected individuals to determine the initial source of the TB infection. They are also used to determine if recent cases are the result of reactivation of latent infection, the result of new infection or due to cross-contamination by medical instruments or diagnostic mishaps. Typing techniques also can determine which gene mutations in M. tuberculosis can lead to resistance. Phylogenetic studies can shed light on the evolutionary development of M. tuberculosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anh, D. D., Borgdorff, M. W., Van, L. N., Lan, N. T., van Gorkom, T., Kremer, K., et al. (2000). Mycobacterium tuberculosis Beijing genotype emerging in Vietnam. Emerging Infectious Diseases, 6, 302–305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borgdorff, M. W., Nagelkerke, N. J., de Haas, P. E., & van Soolingen, D. (2001). Transmission of Mycobacterium tuberculosis depending on the age and sex of source cases. American Journal of Epidemiology, 154, 934–943.

    Article  CAS  PubMed  Google Scholar 

  • Borgdorff, M. W., van den Hof, S., Kremer, K., Verhagen, L., Kalisvaart, N., Erkens, C., et al. (2010). Progress towards tuberculosis elimination: Secular trend, immigration and transmission. European Respiratory Journal, 36, 339–347.

    Article  CAS  PubMed  Google Scholar 

  • Borrell, S., & Gagneux, S. (2009). Infectiousness, reproductive fitness and evolution of drug-resistant Mycobacterium tuberculosis. The International Journal of Tuberculosis and Lung Diseases, 13, 1456–1466.

    CAS  Google Scholar 

  • Brosch, R., Gordon, S. V., Marmiesse, M., Brodin, P., Buchrieser, C., Eiglmeier, K., et al. (2002). A new evolutionary scenario for the Mycobacterium tuberculosis complex. Proceedings of the National Academy of Sciences U.S.A., 99, 3684–3689.

    Article  CAS  Google Scholar 

  • Brudey, K., Driscoll, J. R., Rigouts, L., Prodinger, W. M., Gori, A., Al-Hajoj, S. A., et al. (2006). Mycobacterium tuberculosis complex genetic diversity: Mining the fourth international spoligotyping database (SpolDB4) for classification, population genetics and epidemiology. BMC Microbiology, 6, 23.

    Article  PubMed  PubMed Central  Google Scholar 

  • Buu, T. N., Huyen, M. N., Lan, N. T., Quy, H. T., Hen, N. V., Zignol, M., et al. (2009). The Beijing genotype is associated with young age and multidrug-resistant tuberculosis in rural Vietnam. The International Journal of Tuberculosis and Lung Diseases, 13, 900–906.

    CAS  Google Scholar 

  • Collins, D. M., & De Lisle, G. W. (1985). DNA restriction endonuclease analysis of Mycobacterium bovis and other members of the tuberculosis complex. Journal of Clinical Microbiology, 21, 562–564.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Crawford, J. T. (2003). Genotyping in contact investigations: A CDC perspective. The International Journal of Tuberculosis and Lung Diseases, 7, S453–S457.

    CAS  Google Scholar 

  • de Boer, A. S., Borgdorff, M. W., de Haas, P. E., Nagelkerke, N. J., van Embden, J. D., & van Soolingen, D. (1999). Analysis of rate of change of IS6110 RFLP patterns of Mycobacterium tuberculosis based on serial patient isolates. Journal of Infectious Diseases, 180, 1238–1244.

    Article  PubMed  Google Scholar 

  • de Vries, G., van Hest, R. A., Burdo, C. C., van Soolingen, D., & Richardus, J. H. (2009). A Mycobacterium tuberculosis cluster demonstrating the use of genotyping in urban tuberculosis control. BMC Infectious Diseases, 9, 151.

    Article  PubMed  PubMed Central  Google Scholar 

  • Devaux, I., Kremer, K., Heersma, H., & van Soolingen, D. (2009). Clusters of multidrug-resistant Mycobacterium tuberculosis cases, Europe. Emerging Infectious Diseases, 15, 1052–1060.

    Article  PubMed  PubMed Central  Google Scholar 

  • Devaux, I., Manissero, D., Fernandez de la Hoz, K., Kremer, K., & van Soolingen, D. (2010). Surveillance of extensively drug-resistant tuberculosis in Europe, 2003–2007. Eurosurveillance, 15(11).

    Google Scholar 

  • Fabre, M., Hauck, Y., Soler, C., Koeck, J. L., van Ingen, J., van Soolingen, D., et al. (2010). Molecular characteristics of “Mycobacterium canettii” the smooth Mycobacterium tuberculosis bacilli. Infection Genetics Evolution, 10, 1165–1173.

    Article  CAS  Google Scholar 

  • Gagneux, S., Long, C. D., Small, P. M., Van, T., Schoolnik, G. K., & Bohannan, B. J. (2006). The competitive cost of antibiotic resistance in Mycobacterium tuberculosis. Science, 312, 1944–1946.

    Article  CAS  PubMed  Google Scholar 

  • Gardy, J. L., Johnston, J. C., Ho Sui, S. J., Cook, V. J., Shah, L., Brodkin, E., et al. (2011). Whole-genome sequencing and social-network analysis of a tuberculosis outbreak. New England Journal of Medicine, 364, 730–739.

    Article  CAS  PubMed  Google Scholar 

  • Glynn, J. R., Whiteley, J., Bifani, P. J., Kremer, K., & van Soolingen, D. (2002). Worldwide occurrence of Beijing/W strains of Mycobacterium tuberculosis: A systematic review. Emerging Infectious Diseases, 8, 843–849.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gruft, H., Johnson, R., Claflin, R., & Loder, A. (1984). Phage-typing and drug-resistance patterns as tools in mycobacterial epidemiology. American Review of Respiratory Disease, 130, 96–97.

    CAS  PubMed  Google Scholar 

  • Hershberg, R., Lipatov, M., Small, P. M., Sheffer, H., Niemann, S., Homolka, S., et al. (2008). High functional diversity in Mycobacterium tuberculosis driven by genetic drift and human demography. Public Library of Science Biology, 6, e311.

    Google Scholar 

  • Hu, Y., Hoffner, S., Jiang, W., Wang, W., & Xu, B. (2010). Extensive transmission of isoniazid resistant M. tuberculosis and its association with increased multidrug-resistant TB in two rural counties of eastern China: A molecular epidemiological study. BMC Infectious Diseases, 10, 43.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kamerbeek, J., Schouls, L., Kolk, A., van Agterveld, M., van Soolingen, D., Kuijper, S., et al. (1997). Simultaneous detection and strain differentiation of Mycobacterium tuberculosis for diagnosis and epidemiology. Journal of Clinical Microbiology, 35, 907–914.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kik, S. V., Verver, S., van Soolingen, D., de Haas, P. E., Cobelens, F. G., Kremer, K., et al. (2008). Tuberculosis outbreaks predicted by characteristics of first patients in a DNA fingerprint cluster. American Journal of Respiratory and Critical Care Medicine, 178, 96–104.

    Article  PubMed  Google Scholar 

  • Kremer, K., Arnold, C., Cataldi, A., Gutierrez, M. C., Haas, W. H., Panaiotov, S., et al. (2005). Discriminatory power and reproducibility of novel DNA typing methods for Mycobacterium tuberculosis complex strains. Journal of Clinical Microbiology, 43, 5628–5638.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lambregts-van Weezenbeek, C. S., Sebek, M. M., van Gerven, P. J., de Vries, G., Verver, S., Kalisvaart, N. A., et al. (2003). Tuberculosis contact investigation and DNA fingerprint surveillance in The Netherlands: 6 years’ experience with nation-wide cluster feedback and cluster monitoring. International Journal of Tuberculosis and Lung Diseases, 7, S463–S470.

    CAS  Google Scholar 

  • Lefebvre, N., & Falzon, D. (2008). Risk factors for death among tuberculosis cases: Analysis of European surveillance data. European Respiratory Journal, 31, 1256–1260.

    Article  CAS  PubMed  Google Scholar 

  • Martin, A., Herranz, M., Lirola, M. M., Fernandez, R. F., Bouza, E., & Garcia de Viedma, D. (2008). Optimized molecular resolution of cross-contamination alerts in clinical mycobacteriology laboratories. BMC Microbiology, 8, 30.

    Article  PubMed  PubMed Central  Google Scholar 

  • Martin, A., Inigo, J., Chaves, F., Herranz, M., Ruiz-Serrano, M. J., Palenque, E., et al. (2009). Re-analysis of epidemiologically linked tuberculosis cases not supported by IS6110-RFLP-based genotyping. Clinical Microbiology and Infection, 15, 763–769.

    Article  CAS  PubMed  Google Scholar 

  • Martinez, M., Garcia de Viedma, D., Alonso, M., Andres, S., Bouza, E., Cabezas, T., et al. (2006). Impact of laboratory cross-contamination on molecular epidemiology studies of tuberculosis. Journal of Clinical Microbiology, 44, 2967–2969.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McNabb, S. J., Braden, C. R., & Navin, T. R. (2002). DNA fngerprinting of Mycobacterium tuberculosis: Lessons learned and implications for the future. Emerging Infectious Diseases, 8, 1314–1319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prodinger, W. M. (2007). Molecular epidemiology of tuberculosis: Toy or tool? A review of the literature and examples from Central Europe. Wiener Klinische Wochenschrift, 119, 80–89.

    Article  CAS  PubMed  Google Scholar 

  • Schurch, A. C., Kremer, K., Daviena, O., Kiers, A., Boeree, M. J., Siezen, R. J., et al. (2010). High-resolution typing by integration of genome sequencing data in a large tuberculosis cluster. Journal of Clinical Microbiology, 48, 3403–3406.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sintchenko, V., & Gilbert, G. L. (2007). Utility of genotyping of Mycobacterium tuberculosis in the contact investigation: A decision analysis. Tuberculosis (Edinburgh, Scotland), 87, 176–184.

    Article  Google Scholar 

  • Small, P. M., Hopewell, P. C., Singh, S. P., Paz, A., Parsonnet, J., Ruston, D. C., et al. (1994). The epidemiology of tuberculosis in San Francisco. A population-based study using conventional and molecular methods. New England Journal of Medicine, 330, 1703–1709.

    Article  CAS  PubMed  Google Scholar 

  • Streicher, E. M., Warren, R. M., Kewley, C., Simpson, J., Rastogi, N., Sola, C., et al. (2004). Genotypic and phenotypic characterization of drug-resistant Mycobacterium tuberculosis isolates from rural districts of the Western Cape Province of South Africa. Journal of Clinical Microbiology, 42, 891–894.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Supply, P., Magdalena, J., Himpens, S., & Locht, C. (1997). Identification of novel intergenic repetitive units in a mycobacterial two-component system operon. Molecular Microbiology, 26, 991–1003.

    Article  CAS  PubMed  Google Scholar 

  • Supply, P., Allix, C., Lesjean, S., Cardoso-Oelemann, M., Rusch-Gerdes, S., Willery, E., et al. (2006). Proposal for standardization of optimized mycobacterial interspersed repetitive unit-variable-number tandem repeat typing of Mycobacterium tuberculosis. Journal of Clinical Microbiology, 44, 4498–4510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • ten Asbroek, A. H., Borgdorff, M. W., Nagelkerke, N. J., Sebek, M. M., Deville, W., van Embden, J. D., et al. (1999). Estimation of serial interval and incubation period of tuberculosis using DNA fingerprinting. The International Journal of Tuberculosis and Lung Diseases, 3, 414–420.

    Google Scholar 

  • van der Zanden, A. G., Kremer, K., Schouls, L. M., Caimi, K., Cataldi, A., Hulleman, A., et al. (2002). Improvement of differentiation and interpretability of spoligotyping for Mycobacterium tuberculosis complex isolates by introduction of new spacer oligonucleotides. Journal of Clinical Microbiology, 40, 4628–4639.

    Article  PubMed  PubMed Central  Google Scholar 

  • van Doorn, H. R., de Haas, P. E., Kremer, K., Vandenbroucke-Grauls, C. M., Borgdorff, M. W., & van Soolingen, D. (2006). Public health impact of isoniazid-resistant Mycobacterium tuberculosis strains with a mutation at amino-acid position 315 of katG: A decade of experience in The Netherlands. Clinical Microbiology and Infection, 12, 769–775.

    Article  PubMed  Google Scholar 

  • van Embden, J. D., Cave, M. D., Crawford, J. T., Dale, J. W., Eisenach, K. D., Gicquel, B., et al. (1993). Strain identification of Mycobacterium tuberculosis by DNA fingerprinting: Recommendations for a standardized methodology. Journal of Clinical Microbiology, 31, 406–409.

    PubMed  PubMed Central  Google Scholar 

  • van Soolingen, D. (2001). Molecular epidemiology of tuberculosis and other mycobacterial infections: Main methodologies and achievements. Journal of Internal Medicine, 249, 1–26.

    Article  PubMed  Google Scholar 

  • van Soolingen, D., Borgdorff, M. W., de Haas, P. E., Sebek, M. M., Veen, J., Dessens, M., et al. (1999). Molecular epidemiology of tuberculosis in the Netherlands: A nationwide study from 1993 through 1997. Journal of Infectious Diseases, 180, 726–736.

    Article  PubMed  Google Scholar 

  • van Soolingen, D., de Haas, P. E., van Doorn, H. R., Kuijper, E., Rinder, H., & Borgdorff, M. W. (2000). Mutations at amino acid position 315 of the katG gene are associated with high-level resistance to isoniazid, other drug resistance, and successful transmission of Mycobacterium tuberculosis in the Netherlands. Journal of Infectious Diseases, 182, 1788–1790.

    Article  PubMed  Google Scholar 

  • Veen, J. (1992). Microepidemics of tuberculosis: The stone-in-the-pond principle. Tubercle and Lung Disease, 73, 73–76.

    Article  CAS  PubMed  Google Scholar 

  • Verhagen, L. M., van den Hof, S., van Deutekom, H., Hermans, P. W., Kremer, K., Borgdorff, M. W., et al. (2011). Mycobacterial factors relevant for transmission of tuberculosis. Journal of Infectious Diseases, 203, 1249–1255.

    Article  PubMed  Google Scholar 

  • Verver, S., Warren, R. M., Beyers, N., Richardson, M., van der Spuy, G. D., Borgdorff, M. W., et al. (2005). Rate of reinfection tuberculosis after successful treatment is higher than rate of new tuberculosis. American Journal of Respiratory Critical Care Medicine, 171, 1430–1435.

    Article  PubMed  Google Scholar 

  • Vynnycky, E., & Fine, P. E. (1997). The natural history of tuberculosis: The implications of age-dependent risks of disease and the role of reinfection. Epidemiology and Infection, 119, 183–201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang, Z. H., de Haas, P. E., Wachmann, C. H., van Soolingen, D., van Embden, J. D., & Andersen, A. B. (1995). Molecular epidemiology of tuberculosis in Denmark in 1992. Journal of Clinical Microbiology, 33, 2077–2081.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jessica L. de Beer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this chapter

Cite this chapter

de Beer, J.L., van Soolingen, D. (2017). DNA Fingerprinting of Mycobacterium TB: A Rich Source of Fundamental and Daily Applicable Knowledge. In: Lu, Y., Wang, L., Duanmu, H., Chanyasulkit, C., Strong, A., Zhang, H. (eds) Handbook of Global Tuberculosis Control. Springer, Boston, MA. https://doi.org/10.1007/978-1-4939-6667-7_30

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6667-7_30

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4939-6665-3

  • Online ISBN: 978-1-4939-6667-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics