Skip to main content

Drug-Resistant TB

  • Chapter
  • First Online:
Handbook of Global Tuberculosis Control

Abstract

The situation of drug-resistant tuberculosis (TB) worldwide remains very serious, especially for multidrug-resistant and extensively drug-resistant TB epidemics. These diseases have much longer infectious periods than drug-sensitive TB, making them much more harmful to both patients and public health. The measures required to treat drug-resistant TB successfully include early detection of drug-resistant patients with proper techniques and methods, an effective chemotherapy regimen, and management with Directly Observed Therapy (DOT) and the World Health Organization’s “Stop TB Strategy.”

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Andini, N., & Nash, K. A. (2006). Intrinsic macrolide resistance of the Mycobacterium tuberculosis complex is inducible. Antimicrobial Agents and Chemotherapy, 50, 2560–2562.

    Google Scholar 

  • Blower, S. M., & Chou, T. (2004). Modeling the emergence of the “hot zones”: Tuberculosis and the amplification dynamics of drug resistance. Nature Medicine, 10(10), 1111–1116.

    Article  CAS  PubMed  Google Scholar 

  • Brossier, F., Veziris, N., Aubry, A., Jarlier, V., & Sougakoff, W. (2010). Detection by GenoType MTBDRsl test of complex mechanisms of resistance to second-line drugs and ethambutol in multidrug-resistant Mycobacterium tuberculosis complex isolates. Journal of Clinical Microbiology, 48(5), 1683–1689.

    Google Scholar 

  • Canetti, G., & Grosset, J. (1961). Percentage of isoniazid-resistant and streptomycin-resistant variants in wild strains of Mycobacterium tuberculosis on Loewenstein-Jensen medium. Annales de l’Institut Pasteur (Paris), 101, 28–46.

    Google Scholar 

  • Centers for Disease Control and Prevention. (2007). Extensively drug-resistant tuberculosis in the United States 1993-2006. MMWR. Morbidity and Mortality Weekly Report, 56, 250–253.

    Google Scholar 

  • Chang, W. C., Leung, C. C., Yew, W. W., Ho, S. C., & Tam, C. M. (2004). A nested case-control study on treatment-related risk factors for early relapse of tuberculosis. American Journal of Respiratory and Critical Care Medicine, 170, 1124–1130.

    Google Scholar 

  • David, H. L. (1980). Drug-resistance in M. tuberculosis and other mycobacteria. Clinics in Chest Medicine, 1(2), 227–230.

    Google Scholar 

  • Dye, C. (2009). Doomsday postponed? Preventing and reversing epidemics of drug-resistant tuberculosis. Nature Reviews Microbiology, 7(1), 81–87.

    Article  CAS  PubMed  Google Scholar 

  • Dye, C., & Espinal, M. A. (2001). Will tuberculosis become resistant to all antibiotics? Proceedings of the Biological Sciences, 268(1462), 45–52.

    Article  CAS  Google Scholar 

  • Dye, C., Williams, B. G., Espinal, M. A., & Raviglione, M. C. (2002). Erasing the world’s slow stain: Strategies to beat multidrug-resistant tuberculosis. Science, 295(5562), 2042–2046.

    Google Scholar 

  • Ejigu, G. S., Woldeamanuel, Y., Shah, N. S., Gebyehu, M., Selassie, A., & Lemma, E. (2008). Microscopic-observation drug susceptibility assay provides rapid and reliable identification of MDR-TB. The International Journal of Tuberculosis and Lung Disease, 12(3), 332–337.

    Google Scholar 

  • Ena, J., & Valls, V. (2005). Short-course therapy with rifampin plus isoniazid, compared with standard therapy with isoniazid, for latent tuberculosis infection: A meta-analysis. Clinical Infectious Diseases, 40, 670–676.

    Article  CAS  PubMed  Google Scholar 

  • Gandhi, N. R., Moll, A., Sturm, A. W., Pawinski, R., Govender, T., Lalloo, U., et al. (2006). Extensively drug-resistant tuberculosis as a cause of death in patients co-infected with tuberculosis and HIV in a rural area of South Africa. Lancet, 368(9547), 1575–1580.

    Google Scholar 

  • Hillemann, D., Rüsch-Gerdes, S., & Richter, E. (2009). Feasibility of the GenoType MTBDRsl assay for fluoroquinolone, amikacin-capreomycin, and ethambutol resistance testing of Mycobacterium tuberculosis strains and clinical specimens. Journal of Clinical Microbiology, 47, 1767–1772.

    Google Scholar 

  • Khachi, H., O’Connell, R., Ladenheim, D., & Orkin, C. (2009). Pharmacokinetic interactions between rifabutin and lopinavir/ritonavir in HIV-infected patients with mycobacterial co-infection. Journal of Antimicrobial Chemotherapy, 64, 871–873.

    Google Scholar 

  • L’homme, R. F., Nijland, H. M., Gras, L., Aarnoutse, R. E., van Crevel, R., Boeree, M., et al. (2009). Clinical experience with the combined use of lopinavir/ritonavir and rifampicin. AIDS, 27, 863–865.

    Google Scholar 

  • Langei, C., & Mori, T. (2010). Advances in the diagnosis of tubercolosis. Respirology, 15(2), 220–240.

    Article  Google Scholar 

  • Ling, D. I., Zwerling, A. A., & Pai, M. (2008). Genotype MTBDR assays for the diagnosis of multidrug-resistant tuberculosis: A meta-analysis. European Respiratory Journal, 32, 1165–1174.

    Article  CAS  PubMed  Google Scholar 

  • Mak, A., Thomas, A., del Granada, M., Zaleskis, R., Mouzafarova, N., & Menzies, D. (2008). Influence of multidrug resistance on tuberculosis treatment outcomes with standardized regimens. American Journal of Respiratory and Critical Care Medicine, 178, 306–312.

    Google Scholar 

  • Manosuthi, W., Sungkanuparph, S., Tantanathip, P., Lueangniyomkul, A., Mankatitham, W., Prasithsirskul, W., et al. (2009). A randomized trial comparing plasma drug concentrations and efficacies between two nonnucleoside reverse-transcriptase inhibitor-based regimens in HIV-infected patients receiving rifampicin: The N2R Study. Clinical Infectious Diseases, 48, 1752–1759.

    Google Scholar 

  • Marais, B. J., Gie, R. P., Schaaf, H. S., Hesseling, A. C., Obihara, C. C., Starke, J. J., et al. (2004). The natural history of childhood intra-thoracic tuberculosis: A critical review of literature from the pre-chemotherapy era. The International Journal of Tuberculosis and Lung Disease, 8, 392–402.

    Google Scholar 

  • Marais, B. J., Gie, R. P., Schaaf, H. S., Hesseling, A. C., Enarson, D. A., & Beyers, N. (2006). The spectrum of disease in children treated for tuberculosis in a highly endemic area. The International Journal of Tuberculosis and Lung Disease, 10, 732–738.

    Google Scholar 

  • Martin, A., Fissette, K., Varaine, F., Portaels, F., & Palomino, J. C. (2009). Thin layer agar compared to BACTEC MGIT 960 for early detection of Mycobacterium tuberculosis. Journal of Microbiological Methods, 78(1), 107–108.

    Google Scholar 

  • McIlleron, H., Willemse, M., Werely, C. J., Hussey, G. D., Schaaf, H. S., Smith, P. J., et al. (2009). Isoniazid plasma concentrations in a cohort of South African children with tuberculosis: Implications for international pediatric dosing guidelines. Clinical Infectious Diseases, 48, 1547–1553.

    Google Scholar 

  • Morris, R. F., Nguyen, L., Gatfield, J., Visconti, K., Nguyen, K., Schnappinger, D., et al. (2005). Ancestral antibiotic resistance in Mycobacterium tuberculosis. Proceedings of the National Academy of Sciences USA, 102, 12200–12205.

    Google Scholar 

  • Nijland, H. M., L’homme, R. F., Rongen, G. A., van Uden, P., van Crevel, R., Boeree, M. J., et al. (2008). High incidence of adverse events in healthy volunteers receiving rifampicin and adjusted doses of lopinavir/ritonavir tablets. AIDS, 22, 931–935.

    Google Scholar 

  • Palomino, J. C. (2009). Molecular detection, identification and drug resistance detection in Mycobacterium tuberculosis. FEMS Immunology And Medical Microbiology, 56(2), 103–111.

    Google Scholar 

  • Rajalingam, R., Mehra, N. K., Jain, R. C., Myneedu, V. P., & Pande, J. N. (1996). Polymerase chain reaction-based sequence-specific oligonucleotide hybridization analysis of HLA class II antigens in pulmonary tuberculosis: Relevance to chemotherapy and disease severity. Journal of Infectious Diseases, 173(3), 669–676.

    Google Scholar 

  • Richter, E., Rüsch-Gerdes, S., & Hillemann, D. (2009). Drug-susceptibility testing in TB: Current status and future prospects. Expert Review of Respiratory Medicine, 3(5), 497–510.

    Article  CAS  PubMed  Google Scholar 

  • Rishi, S., Sinha, P., Malhotra, B., & Pal, N. (2007). A comparative study for the detection of Mycobacteria by BACTEC MGIT 960, Lowenstein Jensen media and direct AFB smear examination. Indian Journal of Medical Microbiology, 25(4), 383–386.

    Google Scholar 

  • Spyridis, N. P., Spyridis, P. G., Gelesme, A., Sypsa, V., Valianatou, M., Metsou, F., et al. (2007). The effectiveness of a 9-month regimen of isoniazid alone versus 3- and 4-month regimens of isoniazid plus rifampin for treatment of latent tuberculosis infection in children: Results of an 11-year randomized study. Clinical Infectious Diseases, 45, 715–722.

    Google Scholar 

  • Takahashi, K., Hasegawa, Y., Abe, T., Yamamoto, T., Nakashima, K., Imaizumi, K., et al. (2008). SLC11A1 (formerly NRAMP1) polymorphisms associated with multidrug-resistant tuberculosis. Tuberculosis, 88, 52–57.

    Google Scholar 

  • Tang, S. (2009). The handbook of drug-resistance TB control (pp. 44–150). Beijing: People’s Health Publishing House.

    Google Scholar 

  • Tu, D. (2007). On the occurrence of drug-resistant TB. Journal of Tuberculosis and Respiratory Diseases, 30, 403–405.

    Google Scholar 

  • van Deun, A., Martin, A., & Palomino, J. C. (2010). Diagnosis of drug-resistant tuberculosis: Reliability and rapidity of detection. The International Journal of Tuberculosis and Lung Disease, 14(2), 131–140.

    Google Scholar 

  • van Doorn, H. R., An, D. D., de Jong, M. D., Lan, N. T. N., Hoa, D. V., Quy, H. T., et al. (2008). Fluoroquinolone resistance detection in Mycobacterium tuberculosis with locked nuclei acid probe real-time PCR. The International Journal of Tuberculosis and Lung Disease, 12, 736–742.

    Google Scholar 

  • van Soolingen, D., Borgdorff, M. W., de Haas, P. E., Sebek, M. M., Veen, J., Dessens, M., et al. (1999). Molecular epidemiology of tuberculosis in the Netherlands: A nationwide study from 1993 through 1997. Journal of Infectious Diseases, 180(3), 726–736.

    Google Scholar 

  • Verma, J. S., Rawat, D., Hasan, A., Capoor, M. R., Gupta, K., Deb, M., et al. (2010). The use of E-test for the drug susceptibility testing of Mycobacterium tuberculosis—A solution or an illusion? Indian Journal of Medical Microbiology, 28(1), 30–33.

    Google Scholar 

  • Woldehanna, S., & Volmink, J. (2006). Treatment of latent tuberculosis infection in HIV infected persons. Cochrane Database Syst Rev, (3), CD000171.

    Google Scholar 

  • WHO. (2008a). Antituberculosis drug resistance in the world: Fourth global report. The WHO/IUATLD Global Project on Anti-Tuberculosis Drug Resistance Surveillance 2002-2007, Geneva: World Health Organization. (WHO/HTM/TB/2008.394).

    Google Scholar 

  • WHO. (2008b). Drug susceptibility testing of second-line anti-tuberculosis drugs: WHO policy guidance. Geneva: World Health Organization.

    Google Scholar 

  • WHO. (2008c). Guidelines for the programmatic management of drug-resistant tuberculosis: Emergency update 2008. Geneva: World Health Organization. (WHO/HTM/TB/2008.402).

    Google Scholar 

  • WHO. (2009a). A guide to monitoring and evaluation for collaborative TB/HIV activities—2009 revision. Geneva: World Health Organization. (WHO/HTM/TB/2009.414.WHO/HTM/HIV/09.01).

    Google Scholar 

  • WHO. (2009b). Global tuberculosis control—Epidemiology, strategy, financing, WHO report 2009. Geneva: World Health Organization. (WHO/HTM/TB/2009.411).

    Google Scholar 

  • WHO. (2009c). Guidelines for surveillance of drug resistance in tuberculosis (4th ed.). Geneva: World Health Organization. (WHO/HTM/TB/2009.22).

    Google Scholar 

  • WHO. (2009d). Preventing and managing M/XDR-TB: A global health imperative, opening remarks at a ministerial meeting of high M/XDR-TB burden countries. Geneva: World Health Organization. WHO/SPEECHES/2009.

    Google Scholar 

  • WHO. (2010a). Multidrug and extensively drug-resistant TB (M/XDR-TB): 2010 global report on surveillance and response. Geneva: World Health Organization. (WHO/HTM/TB/2010.3).

    Google Scholar 

  • WHO. (2010b). Priority research questions for tuberculosis/human immunodeficiency virus (TB/HIV) in HIV-prevalent and resource-limited settings. Geneva: World Health Organization. (WHO/HTM/TB/ 2010.8.WHO/HTM/HIV/2010.10).

    Google Scholar 

  • WHO. (2011a). Guidelines for intensified tuberculosis case-fining and isoniazid preventive therapy for people living with HIV in resource-constrained settings. Geneva: World Health Organization.

    Google Scholar 

  • WHO. (2011b). MDR-TB & XDR-TB 2011 progress report. Geneva: World Health Organization.

    Google Scholar 

  • WHO. (2011c). Towards universal access to diagnosis and treatment of multidrug-resistant and extensively drug-resistant tuberculosis by 2015: WHO progress report 2011. Geneva: World Health Organization. (WHO/HTM/TB/2011.3).

    Google Scholar 

  • WHO and Stop TB Partnership. (2006). Stop TB strategy. Geneva: World Health Organization. (WHO/HTM/TB/2006.368).

    Google Scholar 

  • Wright, A., Zignol, M., van Deun, A., Falzon, D., Gerdes, S. R., Feldman, K., et al. (2009). Epidemiology of antituberculosis drug resistance 2002-07: An updated analysis of the global project on anti-tuberculosis drug resistance surveillance. Lancet, 373(9678), 1861–1873.

    Google Scholar 

  • Xiao, H. (2010a). The guidelines of chemical treatment DR-TB. Beijing: People’s Health Publishing House.

    Google Scholar 

  • Xiao, H. (2010b). The prevalence of drug-resistance tuberculosis in China and the chemotherapy strategies. Chinese Journal of Tuberculosis and Respiratory Diseases, 33(7), 481–482.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heping Xiao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media LLC

About this chapter

Cite this chapter

Xiao, H., Tang, S., Sha, W., Zhang, Q., Zhao, J. (2017). Drug-Resistant TB. In: Lu, Y., Wang, L., Duanmu, H., Chanyasulkit, C., Strong, A., Zhang, H. (eds) Handbook of Global Tuberculosis Control. Springer, Boston, MA. https://doi.org/10.1007/978-1-4939-6667-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6667-7_10

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4939-6665-3

  • Online ISBN: 978-1-4939-6667-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics