Advertisement

Drug-Resistant TB

  • Heping Xiao
  • Shenjie Tang
  • Wei Sha
  • Qing Zhang
  • Jin Zhao
Chapter

Abstract

The situation of drug-resistant tuberculosis (TB) worldwide remains very serious, especially for multidrug-resistant and extensively drug-resistant TB epidemics. These diseases have much longer infectious periods than drug-sensitive TB, making them much more harmful to both patients and public health. The measures required to treat drug-resistant TB successfully include early detection of drug-resistant patients with proper techniques and methods, an effective chemotherapy regimen, and management with Directly Observed Therapy (DOT) and the World Health Organization’s “Stop TB Strategy.”

Keywords

Drug-resistant TB (DR-TB) Multidrug-resistant TB (MDR-TB) Extensively drug-resistant TB (XDR-TB) DR patients discovery strategy Drug susceptibility test Chemotherapy regimen The Stop TB Strategy Pansensitive tuberculosis DOTS-Plus 

References

  1. Andini, N., & Nash, K. A. (2006). Intrinsic macrolide resistance of the Mycobacterium tuberculosis complex is inducible. Antimicrobial Agents and Chemotherapy, 50, 2560–2562.Google Scholar
  2. Blower, S. M., & Chou, T. (2004). Modeling the emergence of the “hot zones”: Tuberculosis and the amplification dynamics of drug resistance. Nature Medicine, 10(10), 1111–1116.CrossRefPubMedGoogle Scholar
  3. Brossier, F., Veziris, N., Aubry, A., Jarlier, V., & Sougakoff, W. (2010). Detection by GenoType MTBDRsl test of complex mechanisms of resistance to second-line drugs and ethambutol in multidrug-resistant Mycobacterium tuberculosis complex isolates. Journal of Clinical Microbiology, 48(5), 1683–1689.Google Scholar
  4. Canetti, G., & Grosset, J. (1961). Percentage of isoniazid-resistant and streptomycin-resistant variants in wild strains of Mycobacterium tuberculosis on Loewenstein-Jensen medium. Annales de l’Institut Pasteur (Paris), 101, 28–46.Google Scholar
  5. Centers for Disease Control and Prevention. (2007). Extensively drug-resistant tuberculosis in the United States 1993-2006. MMWR. Morbidity and Mortality Weekly Report, 56, 250–253.Google Scholar
  6. Chang, W. C., Leung, C. C., Yew, W. W., Ho, S. C., & Tam, C. M. (2004). A nested case-control study on treatment-related risk factors for early relapse of tuberculosis. American Journal of Respiratory and Critical Care Medicine, 170, 1124–1130.Google Scholar
  7. David, H. L. (1980). Drug-resistance in M. tuberculosis and other mycobacteria. Clinics in Chest Medicine, 1(2), 227–230.Google Scholar
  8. Dye, C. (2009). Doomsday postponed? Preventing and reversing epidemics of drug-resistant tuberculosis. Nature Reviews Microbiology, 7(1), 81–87.CrossRefPubMedGoogle Scholar
  9. Dye, C., & Espinal, M. A. (2001). Will tuberculosis become resistant to all antibiotics? Proceedings of the Biological Sciences, 268(1462), 45–52.CrossRefGoogle Scholar
  10. Dye, C., Williams, B. G., Espinal, M. A., & Raviglione, M. C. (2002). Erasing the world’s slow stain: Strategies to beat multidrug-resistant tuberculosis. Science, 295(5562), 2042–2046.Google Scholar
  11. Ejigu, G. S., Woldeamanuel, Y., Shah, N. S., Gebyehu, M., Selassie, A., & Lemma, E. (2008). Microscopic-observation drug susceptibility assay provides rapid and reliable identification of MDR-TB. The International Journal of Tuberculosis and Lung Disease, 12(3), 332–337.Google Scholar
  12. Ena, J., & Valls, V. (2005). Short-course therapy with rifampin plus isoniazid, compared with standard therapy with isoniazid, for latent tuberculosis infection: A meta-analysis. Clinical Infectious Diseases, 40, 670–676.CrossRefPubMedGoogle Scholar
  13. Gandhi, N. R., Moll, A., Sturm, A. W., Pawinski, R., Govender, T., Lalloo, U., et al. (2006). Extensively drug-resistant tuberculosis as a cause of death in patients co-infected with tuberculosis and HIV in a rural area of South Africa. Lancet, 368(9547), 1575–1580.Google Scholar
  14. Hillemann, D., Rüsch-Gerdes, S., & Richter, E. (2009). Feasibility of the GenoType MTBDRsl assay for fluoroquinolone, amikacin-capreomycin, and ethambutol resistance testing of Mycobacterium tuberculosis strains and clinical specimens. Journal of Clinical Microbiology, 47, 1767–1772.Google Scholar
  15. Khachi, H., O’Connell, R., Ladenheim, D., & Orkin, C. (2009). Pharmacokinetic interactions between rifabutin and lopinavir/ritonavir in HIV-infected patients with mycobacterial co-infection. Journal of Antimicrobial Chemotherapy, 64, 871–873.Google Scholar
  16. L’homme, R. F., Nijland, H. M., Gras, L., Aarnoutse, R. E., van Crevel, R., Boeree, M., et al. (2009). Clinical experience with the combined use of lopinavir/ritonavir and rifampicin. AIDS, 27, 863–865.Google Scholar
  17. Langei, C., & Mori, T. (2010). Advances in the diagnosis of tubercolosis. Respirology, 15(2), 220–240.CrossRefGoogle Scholar
  18. Ling, D. I., Zwerling, A. A., & Pai, M. (2008). Genotype MTBDR assays for the diagnosis of multidrug-resistant tuberculosis: A meta-analysis. European Respiratory Journal, 32, 1165–1174.CrossRefPubMedGoogle Scholar
  19. Mak, A., Thomas, A., del Granada, M., Zaleskis, R., Mouzafarova, N., & Menzies, D. (2008). Influence of multidrug resistance on tuberculosis treatment outcomes with standardized regimens. American Journal of Respiratory and Critical Care Medicine, 178, 306–312.Google Scholar
  20. Manosuthi, W., Sungkanuparph, S., Tantanathip, P., Lueangniyomkul, A., Mankatitham, W., Prasithsirskul, W., et al. (2009). A randomized trial comparing plasma drug concentrations and efficacies between two nonnucleoside reverse-transcriptase inhibitor-based regimens in HIV-infected patients receiving rifampicin: The N2R Study. Clinical Infectious Diseases, 48, 1752–1759.Google Scholar
  21. Marais, B. J., Gie, R. P., Schaaf, H. S., Hesseling, A. C., Obihara, C. C., Starke, J. J., et al. (2004). The natural history of childhood intra-thoracic tuberculosis: A critical review of literature from the pre-chemotherapy era. The International Journal of Tuberculosis and Lung Disease, 8, 392–402.Google Scholar
  22. Marais, B. J., Gie, R. P., Schaaf, H. S., Hesseling, A. C., Enarson, D. A., & Beyers, N. (2006). The spectrum of disease in children treated for tuberculosis in a highly endemic area. The International Journal of Tuberculosis and Lung Disease, 10, 732–738.Google Scholar
  23. Martin, A., Fissette, K., Varaine, F., Portaels, F., & Palomino, J. C. (2009). Thin layer agar compared to BACTEC MGIT 960 for early detection of Mycobacterium tuberculosis. Journal of Microbiological Methods, 78(1), 107–108.Google Scholar
  24. McIlleron, H., Willemse, M., Werely, C. J., Hussey, G. D., Schaaf, H. S., Smith, P. J., et al. (2009). Isoniazid plasma concentrations in a cohort of South African children with tuberculosis: Implications for international pediatric dosing guidelines. Clinical Infectious Diseases, 48, 1547–1553.Google Scholar
  25. Morris, R. F., Nguyen, L., Gatfield, J., Visconti, K., Nguyen, K., Schnappinger, D., et al. (2005). Ancestral antibiotic resistance in Mycobacterium tuberculosis. Proceedings of the National Academy of Sciences USA, 102, 12200–12205.Google Scholar
  26. Nijland, H. M., L’homme, R. F., Rongen, G. A., van Uden, P., van Crevel, R., Boeree, M. J., et al. (2008). High incidence of adverse events in healthy volunteers receiving rifampicin and adjusted doses of lopinavir/ritonavir tablets. AIDS, 22, 931–935.Google Scholar
  27. Palomino, J. C. (2009). Molecular detection, identification and drug resistance detection in Mycobacterium tuberculosis. FEMS Immunology And Medical Microbiology, 56(2), 103–111.Google Scholar
  28. Rajalingam, R., Mehra, N. K., Jain, R. C., Myneedu, V. P., & Pande, J. N. (1996). Polymerase chain reaction-based sequence-specific oligonucleotide hybridization analysis of HLA class II antigens in pulmonary tuberculosis: Relevance to chemotherapy and disease severity. Journal of Infectious Diseases, 173(3), 669–676.Google Scholar
  29. Richter, E., Rüsch-Gerdes, S., & Hillemann, D. (2009). Drug-susceptibility testing in TB: Current status and future prospects. Expert Review of Respiratory Medicine, 3(5), 497–510.CrossRefPubMedGoogle Scholar
  30. Rishi, S., Sinha, P., Malhotra, B., & Pal, N. (2007). A comparative study for the detection of Mycobacteria by BACTEC MGIT 960, Lowenstein Jensen media and direct AFB smear examination. Indian Journal of Medical Microbiology, 25(4), 383–386.Google Scholar
  31. Spyridis, N. P., Spyridis, P. G., Gelesme, A., Sypsa, V., Valianatou, M., Metsou, F., et al. (2007). The effectiveness of a 9-month regimen of isoniazid alone versus 3- and 4-month regimens of isoniazid plus rifampin for treatment of latent tuberculosis infection in children: Results of an 11-year randomized study. Clinical Infectious Diseases, 45, 715–722.Google Scholar
  32. Takahashi, K., Hasegawa, Y., Abe, T., Yamamoto, T., Nakashima, K., Imaizumi, K., et al. (2008). SLC11A1 (formerly NRAMP1) polymorphisms associated with multidrug-resistant tuberculosis. Tuberculosis, 88, 52–57.Google Scholar
  33. Tang, S. (2009). The handbook of drug-resistance TB control (pp. 44–150). Beijing: People’s Health Publishing House.Google Scholar
  34. Tu, D. (2007). On the occurrence of drug-resistant TB. Journal of Tuberculosis and Respiratory Diseases, 30, 403–405.Google Scholar
  35. van Deun, A., Martin, A., & Palomino, J. C. (2010). Diagnosis of drug-resistant tuberculosis: Reliability and rapidity of detection. The International Journal of Tuberculosis and Lung Disease, 14(2), 131–140.Google Scholar
  36. van Doorn, H. R., An, D. D., de Jong, M. D., Lan, N. T. N., Hoa, D. V., Quy, H. T., et al. (2008). Fluoroquinolone resistance detection in Mycobacterium tuberculosis with locked nuclei acid probe real-time PCR. The International Journal of Tuberculosis and Lung Disease, 12, 736–742.Google Scholar
  37. van Soolingen, D., Borgdorff, M. W., de Haas, P. E., Sebek, M. M., Veen, J., Dessens, M., et al. (1999). Molecular epidemiology of tuberculosis in the Netherlands: A nationwide study from 1993 through 1997. Journal of Infectious Diseases, 180(3), 726–736.Google Scholar
  38. Verma, J. S., Rawat, D., Hasan, A., Capoor, M. R., Gupta, K., Deb, M., et al. (2010). The use of E-test for the drug susceptibility testing of Mycobacterium tuberculosis—A solution or an illusion? Indian Journal of Medical Microbiology, 28(1), 30–33.Google Scholar
  39. Woldehanna, S., & Volmink, J. (2006). Treatment of latent tuberculosis infection in HIV infected persons. Cochrane Database Syst Rev, (3), CD000171.Google Scholar
  40. WHO. (2008a). Antituberculosis drug resistance in the world: Fourth global report. The WHO/IUATLD Global Project on Anti-Tuberculosis Drug Resistance Surveillance 2002-2007, Geneva: World Health Organization. (WHO/HTM/TB/2008.394).Google Scholar
  41. WHO. (2008b). Drug susceptibility testing of second-line anti-tuberculosis drugs: WHO policy guidance. Geneva: World Health Organization.Google Scholar
  42. WHO. (2008c). Guidelines for the programmatic management of drug-resistant tuberculosis: Emergency update 2008. Geneva: World Health Organization. (WHO/HTM/TB/2008.402).Google Scholar
  43. WHO. (2009a). A guide to monitoring and evaluation for collaborative TB/HIV activities—2009 revision. Geneva: World Health Organization. (WHO/HTM/TB/2009.414.WHO/HTM/HIV/09.01).Google Scholar
  44. WHO. (2009b). Global tuberculosis control—Epidemiology, strategy, financing, WHO report 2009. Geneva: World Health Organization. (WHO/HTM/TB/2009.411).Google Scholar
  45. WHO. (2009c). Guidelines for surveillance of drug resistance in tuberculosis (4th ed.). Geneva: World Health Organization. (WHO/HTM/TB/2009.22).Google Scholar
  46. WHO. (2009d). Preventing and managing M/XDR-TB: A global health imperative, opening remarks at a ministerial meeting of high M/XDR-TB burden countries. Geneva: World Health Organization. WHO/SPEECHES/2009.Google Scholar
  47. WHO. (2010a). Multidrug and extensively drug-resistant TB (M/XDR-TB): 2010 global report on surveillance and response. Geneva: World Health Organization. (WHO/HTM/TB/2010.3).Google Scholar
  48. WHO. (2010b). Priority research questions for tuberculosis/human immunodeficiency virus (TB/HIV) in HIV-prevalent and resource-limited settings. Geneva: World Health Organization. (WHO/HTM/TB/ 2010.8.WHO/HTM/HIV/2010.10).Google Scholar
  49. WHO. (2011a). Guidelines for intensified tuberculosis case-fining and isoniazid preventive therapy for people living with HIV in resource-constrained settings. Geneva: World Health Organization.Google Scholar
  50. WHO. (2011b). MDR-TB & XDR-TB 2011 progress report. Geneva: World Health Organization.Google Scholar
  51. WHO. (2011c). Towards universal access to diagnosis and treatment of multidrug-resistant and extensively drug-resistant tuberculosis by 2015: WHO progress report 2011. Geneva: World Health Organization. (WHO/HTM/TB/2011.3).Google Scholar
  52. WHO and Stop TB Partnership. (2006). Stop TB strategy. Geneva: World Health Organization. (WHO/HTM/TB/2006.368).Google Scholar
  53. Wright, A., Zignol, M., van Deun, A., Falzon, D., Gerdes, S. R., Feldman, K., et al. (2009). Epidemiology of antituberculosis drug resistance 2002-07: An updated analysis of the global project on anti-tuberculosis drug resistance surveillance. Lancet, 373(9678), 1861–1873.Google Scholar
  54. Xiao, H. (2010a). The guidelines of chemical treatment DR-TB. Beijing: People’s Health Publishing House.Google Scholar
  55. Xiao, H. (2010b). The prevalence of drug-resistance tuberculosis in China and the chemotherapy strategies. Chinese Journal of Tuberculosis and Respiratory Diseases, 33(7), 481–482.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2017

Authors and Affiliations

  • Heping Xiao
    • 1
  • Shenjie Tang
    • 2
  • Wei Sha
    • 1
  • Qing Zhang
    • 1
  • Jin Zhao
    • 3
  1. 1.Clinic and Research Center of Tuberculosis, Shanghai Key Lab of TuberculosisShanghai Pulmonary Hospital, Tongji University School of MedicineShanghaiChina
  2. 2.Tuberculosis Multidisciplinary Center for Diagnosis and TreatmentBeijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research InstituteBeijingChina
  3. 3.National Center for Tuberculosis Control and PreventionChinese Center for Disease Control and PreventionBeijingChina

Personalised recommendations