Skip to main content

Increased Bone Fracture After SCI: Can Exercise Reduce Risk?

  • Chapter
  • First Online:
The Physiology of Exercise in Spinal Cord Injury

Part of the book series: Physiology in Health and Disease ((PIHD))

Abstract

Bone density decreases rapidly in spinal cord injured (SCI) individuals to approximately 60 % of normal bone mass within the first 3 years after injury. The loss of bone mass, called disuse osteoporosis, results in low energy fractures, which are prevalent and extremely debilitating in this population. Bones are sensitive to their mechanical environment, promoting formation under high loads and resorption under low loads. In the SCI population, bone becomes osteoporotic solely due to the lack of mechanical stimulus. The bone loss after injury is site specific, occurring particularly at sites rich in trabecular bone, such as proximal tibia and distal femur. Harnessing the mechanosensitivity of human bone has been the central idea of therapeutic interventions to maintain bone mass and ensure bone strength in the SCI population. Numerous studies have investigated activities based training exercises such as passive weight bearing, gait training, isometric functional electrical stimulation (FES), cycling loading, FES-cycling, and FES-rowing. Only a few of these interventions have been effective in maintaining bone health and none of them have led to promoting bone formation. The most promising results in mechanical loading therapies for maintaining bone health are in acute patients. Mechanical interventions in the early stages post-injury might take advantage of the bone’s ability in young, acute SCI individuals to adapt to mechanical load.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Amin S (2010) Mechanical factors and bone health: effects of weightlessness and neurologic injury. Curr Rheumatol Rep 12(3):170–176

    Article  PubMed  PubMed Central  Google Scholar 

  • Aminmansour B, Asnaashari A, Rezvani M, Ghaffarpasand F, Noorian SMA, Saboori M, Abdollahzadeh P (2015) Effects of progesterone and vitamin D on outcome of patients with acute traumatic spinal cord injury; a randomized, double-blind, placebo controlled study. J Spinal Cord Med 0(0):1–15

    Google Scholar 

  • Arija-Blázquez A, Ceruelo-Abajo S, Díaz-Merino MS, Godino-Durán JA, Martínez-Dhier L, Martin JLR, Florensa-Vila J (2014) Effects of electromyostimulation on muscle and bone in men with acute traumatic spinal cord injury: a randomized clinical trial. J Spinal Cord Med 37(3):299–309

    Article  PubMed  PubMed Central  Google Scholar 

  • Asselin P, Spungen AM, Muir JW, Rubin CT, Bauman WA (2011) Transmission of low-intensity vibration through the axial skeleton of persons with spinal cord injury as a potential intervention for preservation of bone quantity and quality. J Spinal Cord Med 34(1):52–59

    Article  PubMed  PubMed Central  Google Scholar 

  • Astorino TA, Harness ET, Witzke KA (2013) Effect of chronic activity-based therapy on bone mineral density and bone turnover in persons with spinal cord injury. Eur J Appl Physiol 113(12):3027–3037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barbonetti A, Sperandio A, Micillo A, D’Andrea S, Pacca F, Felzani G, Francavilla S, Francavilla F (2016) Independent association of vitamin D with physical function in people with chronic spinal cord injury. Arch Phys Med Rehabil 97:726–732

    Article  PubMed  Google Scholar 

  • Bauman WA, Wecht JM, Kirshblum S, Spungen AM, Morrison N, Cirnigliaro C, Schwartz E (2005a) Effect of pamidronate administration on bone in patients with acute spinal cord injury. J Rehabil Res Dev 42(3):305–313

    Article  PubMed  Google Scholar 

  • Bauman WA, Spungen AM, Morrison N, Zhang R-L, Schwartz E (2005b) Effect of a vitamin D analog on leg bone mineral density in patients with chronic spinal cord injury. J Rehabil Res Dev 42(5):625–634

    Article  PubMed  Google Scholar 

  • BeDell KK, Scremin AM, Perell KL, Kunkel CF (1996) Effects of functional electrical stimulation-induced lower extremity cycling on bone density of spinal cord-injured patients. Am J Phys Med Rehabil 75(1):29–34

    Article  CAS  PubMed  Google Scholar 

  • Benlidayi IC, Basaran S, Seydaoglu G, Guzel R (2016) Vitamin D profile of patients with spinal cord injury and post-stroke hemiplegia: all in the same boat. J Back Musculoskelet Rehabil 29(2):205–210

    Article  Google Scholar 

  • Bousson V, Le Bras A, Roqueplan F, Kang Y, Mitton D, Kolta S, Bergot C, Skalli W, Vicaut E, Kalender W, Engelke K, Laredo J-D (2006) Volumetric quantitative computed tomography of the proximal femur: relationships linking geometric and densitometric variables to bone strength. Role for compact bone. Osteoporos Int 17(6):855–864

    Article  CAS  PubMed  Google Scholar 

  • Bramlett HM, Dietrich WD, Marcillo A, Mawhinney LJ, Furones-Alonso O, Bregy A, Peng Y, Wu Y, Pan J, Wang J, Guo XE, Bauman WA, Cardozo C, Qin W (2014) Effects of low intensity vibration on bone and muscle in rats with spinal cord injury. Osteoporos Int 25(9):2209–2219

    Article  CAS  PubMed  Google Scholar 

  • Bubbear JS, Gall A, Middleton FRI, Ferguson-Pell M, Swaminathan R, Keen RW (2011) Early treatment with zoledronic acid prevents bone loss at the hip following acute spinal cord injury. Osteoporos Int 22(1):271–279

    Article  CAS  PubMed  Google Scholar 

  • Burger EH, Klein-Nulend J (1999) Mechanotransduction in bone—role of the lacuno-canalicular network. FASEB J 13(Suppl):S101–S112

    CAS  PubMed  Google Scholar 

  • Burghardt AJ, Link TM, Majumdar S (2011) High-resolution computed tomography for clinical imaging of bone microarchitecture. Clin Orthop 469(8):2179–2193

    Article  PubMed  PubMed Central  Google Scholar 

  • Carbone LD, Chin AS, Burns SP, Svircev JN, Hoenig H, Heggeness M, Bailey L, Weaver F (2014) Mortality after lower extremity fractures in men with spinal cord injury. J Bone Miner Res 29(2):432–439

    Article  PubMed  Google Scholar 

  • Carter DR, Bouxsein ML, Marcus R (1992) New approaches for interpreting projected bone densitometry data. J Bone Miner Res 7(2):137–145

    Article  CAS  PubMed  Google Scholar 

  • Cheung AM, Adachi JD, Hanley DA, Kendler DL, Davison KS, Josse R, Brown JP, Ste-Marie L-G, Kremer R, Erlandson MC, Dian L, Burghardt AJ, Boyd SK (2013) High-resolution peripheral quantitative computed tomography for the assessment of bone strength and structure: a review by the Canadian Bone Strength Working Group. Curr Osteoporos Rep 11(2):136–146

    Article  PubMed  PubMed Central  Google Scholar 

  • Clark JM, Jelbart M, Rischbieth H, Strayer J, Chatterton B, Schultz C, Marshall R (2007) Physiological effects of lower extremity functional electrical stimulation in early spinal cord injury: lack of efficacy to prevent bone loss. Spinal Cord 45(1):78–85

    Article  CAS  PubMed  Google Scholar 

  • Comarr AE, Hutchinson RH, Bors E (1962) Extremity fractures of patients with spinal cord injuries. Am J Surg 103:732–739

    Article  CAS  PubMed  Google Scholar 

  • Dauty M, Perrouin Verbe B, Maugars Y, Dubois C, Mathe JF (2000) Supralesional and sublesional bone mineral density in spinal cord-injured patients. Bone 27(2):305–309

    Article  CAS  PubMed  Google Scholar 

  • Davis R, Sanborn C, Nichols D, Bazett-Jones DM, Dugan EL (2010) The effects of whole body vibration on bone mineral density for a person with a spinal cord injury: a case study. Adapt Phys Activ Q 27(1):60–72

    Article  PubMed  Google Scholar 

  • de Bruin ED, Frey-Rindova P, Herzog RE, Dietz V, Dambacher MA, Stüssi E (1999) Changes of tibia bone properties after spinal cord injury: effects of early intervention. Arch Phys Med Rehabil 80(2):214–220

    Article  PubMed  Google Scholar 

  • de Bruin ED, Herzog R, Rozendal RH, Michel D, Stüssi E (2000a) Estimation of geometric properties of cortical bone in spinal cord injury. Arch Phys Med Rehabil 81(2):150–156

    Article  PubMed  Google Scholar 

  • de Bruin ED, Dietz V, Dambacher MA, Stüssi E (2000b) Longitudinal changes in bone in men with spinal cord injury. Clin Rehabil 14(2):145–152

    Article  PubMed  Google Scholar 

  • Dudley-Javoroski S, Shields RK (2012) Regional cortical and trabecular bone loss after spinal cord injury. J Rehabil Res Dev 49(9):1365–1376

    Article  PubMed  PubMed Central  Google Scholar 

  • Dudley-Javoroski S, Saha PK, Liang G, Li C, Gao Z, Shields RK (2012) High dose compressive loads attenuate bone mineral loss in humans with spinal cord injury. Osteoporos Int 23(9):2335–2346

    Article  CAS  PubMed  Google Scholar 

  • Dudley-Javoroski S, Petrie MA, McHenry CL, Amelon RE, Saha PK, Shields RK (2015) Bone architecture adaptations after spinal cord injury: impact of long-term vibration of a constrained lower limb. Osteoporos Int 27:1149–1160

    Article  PubMed  PubMed Central  Google Scholar 

  • Edwards WB, Schnitzer TJ, Troy KL (2014a) Bone mineral and stiffness loss at the distal femur and proximal tibia in acute spinal cord injury. Osteoporos Int 25(3):1005–1015

    Article  CAS  PubMed  Google Scholar 

  • Edwards WB, Schnitzer TJ, Troy KL (2014b) Reduction in proximal femoral strength in patients with acute spinal cord injury. J Bone Miner Res 29(9):2074–2079

    Article  PubMed  Google Scholar 

  • Edwards WB, Schnitzer TJ, Troy KL (2014c) The mechanical consequence of actual bone loss and simulated bone recovery in acute spinal cord injury. Bone 60:141–147

    Article  PubMed  Google Scholar 

  • Engelke K, Lang T, Khosla S, Qin L, Zysset P, Leslie WD, Shepherd JA, Schousboe JT (2015) Clinical use of quantitative computed tomography (QCT) of the hip in the management of osteoporosis in adults: the 2015 ISCD official positions-part I. J Clin Densitom 18(3):338–358

    Article  PubMed  Google Scholar 

  • Eser P, de Bruin ED, Telley I, Lechner HE, Knecht H, Stüssi E (2003) Effect of electrical stimulation-induced cycling on bone mineral density in spinal cord-injured patients. Eur J Clin Invest 33(5):412–419

    Article  CAS  PubMed  Google Scholar 

  • Eser P, Frotzler A, Zehnder Y, Wick L, Knecht H, Denoth J, Schiessl H (2004) Relationship between the duration of paralysis and bone structure: a pQCT study of spinal cord injured individuals. Bone 34(5):869–880

    Article  CAS  PubMed  Google Scholar 

  • Eser P, Frotzler A, Zehnder Y, Denoth J (2005) Fracture threshold in the femur and tibia of people with spinal cord injury as determined by peripheral quantitative computed tomography. Arch Phys Med Rehabil 86(3):498–504

    Article  PubMed  Google Scholar 

  • Fournier A, Goldberg M, Green B, Brucker B, Petrofsky J, Eismont F, Quencer R, Sosenko J, Pina I, Shebert R, Kessler K, MacDonald A, Fiore P, Burnett B (1984) A medical evaluation of the effects of computer assisted muscle stimulation in paraplegic patients. Orthopedics 7(7):1129–1133

    CAS  PubMed  Google Scholar 

  • Frey-Rindova P, de Bruin ED, Stüssi E, Dambacher MA, Dietz V (2000) Bone mineral density in upper and lower extremities during 12 months after spinal cord injury measured by peripheral quantitative computed tomography. Spinal Cord 38(1):26–32

    Article  CAS  PubMed  Google Scholar 

  • Fritton SP, McLeod KJ, Rubin CT (2000) Quantifying the strain history of bone: spatial uniformity and self-similarity of low-magnitude strains. J Biomech 33(3):317–325

    Article  CAS  PubMed  Google Scholar 

  • Frotzler A, Coupaud S, Perret C, Kakebeeke TH, Hunt KJ, Donaldson NN, Eser P (2008) High-volume FES-cycling partially reverses bone loss in people with chronic spinal cord injury. Bone 43(1):169–176

    Article  PubMed  Google Scholar 

  • Garland D, Adkins R, Stewart C (2005) Fracture threshold and risk for osteoporosis and pathologic fractures in individuals with spinal cord injury. Top Spinal Cord Inj Rehabil 11(1):61–69

    Article  Google Scholar 

  • Garman R, Rubin C, Judex S (2007) Small oscillatory accelerations, independent of matrix deformations, increase osteoblast activity and enhance bone morphology. PLoS One 2(7):e653

    Article  PubMed  PubMed Central  Google Scholar 

  • Giangregorio LM, Hicks AL, Webber CE, Phillips SM, Craven BC, Bugaresti JM, McCartney N (2005) Body weight supported treadmill training in acute spinal cord injury: impact on muscle and bone. Spinal Cord 43(11):649–657

    Article  CAS  PubMed  Google Scholar 

  • Gibbons RS, McCarthy ID, Gall A, Stock CG, Shippen J, Andrews BJ (2014) Can FES-rowing mediate bone mineral density in SCI: a pilot study. Spinal Cord 52(Suppl 3):S4–S5

    Article  PubMed  Google Scholar 

  • Gifre L, Vidal J, Carrasco J, Portell E, Puig J, Monegal A, Guañabens N, Peris P (2014) Incidence of skeletal fractures after traumatic spinal cord injury: a 10-year follow-up study. Clin Rehabil 28(4):361–369

    Article  PubMed  Google Scholar 

  • Goemaere S, Van Laere M, De Neve P, Kaufman JM (1994) Bone mineral status in paraplegic patients who do or do not perform standing. Osteoporos Int 4(3):138–143

    Article  CAS  PubMed  Google Scholar 

  • Goktepe AS, Tugcu I, Yilmaz B, Alaca R, Gunduz S (2008) Does standing protect bone density in patients with chronic spinal cord injury? J Spinal Cord Med 31(2):197–201

    Article  PubMed  PubMed Central  Google Scholar 

  • Gordon KE, Wald MJ, Schnitzer TJ (2013) Effect of parathyroid hormone combined with gait training on bone density and bone architecture in people with chronic spinal cord injury. PM R 5(8):663–671

    Article  PubMed  Google Scholar 

  • Hangartner TN, Rodgers MM, Glaser RM, Barre PS (1994) Tibial bone density loss in spinal cord injured patients: effects of FES exercise. J Rehabil Res Dev 31(1):50–61

    CAS  PubMed  Google Scholar 

  • Hartkopp A, Murphy RJ, Mohr T, Kjaer M, Biering-Sørensen F (1998) Bone fracture during electrical stimulation of the quadriceps in a spinal cord injured subject. Arch Phys Med Rehabil 79(9):1133–1136

    Article  CAS  PubMed  Google Scholar 

  • Jiang S-D, Jiang L-S, Dai L-Y (2006a) Mechanisms of osteoporosis in spinal cord injury. Clin Endocrinol (Oxf) 65(5):555–565

    Article  CAS  Google Scholar 

  • Jiang S-D, Dai L-Y, Jiang L-S (2006b) Osteoporosis after spinal cord injury. Osteoporos Int 17(2):180–192

    Article  PubMed  Google Scholar 

  • Johnston TE, Marino RJ, Oleson CV, Schmidt-Read M, Leiby BE, Sendecki J, Singh H, Modlesky CM (2016) Musculoskeletal effects of 2 functional electrical stimulation cycling paradigms conducted at different cadences for people with spinal cord injury: a pilot study. Arch Phys Med Rehabil 97:1413–1422

    Article  PubMed  Google Scholar 

  • Judex S, Carlson KJ (2009) Is bone’s response to mechanical signals dominated by gravitational loading? Med Sci Sports Exerc 41(11):2037–2043

    Article  PubMed  Google Scholar 

  • Kanis JA (1994) Assessment of fracture risk and its application to screening for postmenopausal osteoporosis: synopsis of a WHO report. WHO Study Group. Osteoporos Int 4(6):368–381

    Article  CAS  PubMed  Google Scholar 

  • Kaya K, Aybay C, Ozel S, Kutay N, Gokkaya O (2006) Evaluation of bone mineral density in patients with spinal cord injury. J Spinal Cord Med 29(4):396–401

    Article  PubMed  PubMed Central  Google Scholar 

  • Keaveny TM, Hoffmann PF, Singh M, Palermo L, Bilezikian JP, Greenspan SL, Black DM (2008) Femoral bone strength and its relation to cortical and trabecular changes after treatment with PTH, alendronate, and their combination as assessed by finite element analysis of quantitative CT scans. J Bone Miner Res 23(12):1974–1982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keaveny TM, McClung MR, Wan X, Kopperdahl DL, Mitlak BH, Krohn K (2012) Femoral strength in osteoporotic women treated with teriparatide or alendronate. Bone 50(1):165–170

    Article  CAS  PubMed  Google Scholar 

  • Kiratli BJ, Smith AE, Nauenberg T, Kallfelz CF, Perkash I (2000) Bone mineral and geometric changes through the femur with immobilization due to spinal cord injury. J Rehabil Res Dev 37(2):225–233

    CAS  PubMed  Google Scholar 

  • Kunkel CF, Scremin AM, Eisenberg B, Garcia JF, Roberts S, Martinez S (1993) Effect of ‘standing’ on spasticity, contracture, and osteoporosis in paralyzed males. Arch Phys Med Rehabil 74(1):73–78

    CAS  PubMed  Google Scholar 

  • Lai C, Chang W, Chan W, Peng C, Shen L, Chen J, Chen S (2010) Effects of functional electrical stimulation cycling exercise on bone mineral density loss in the early stages of spinal cord injury. J Rehabil Med 42(2):150–154

    Article  PubMed  Google Scholar 

  • Lala D, Craven BC, Thabane L, Papaioannou A, Adachi JD, Popovic MR, Giangregorio LM (2014) Exploring the determinants of fracture risk among individuals with spinal cord injury. Osteoporos Int 25(1):177–185

    Article  CAS  PubMed  Google Scholar 

  • Lanyon LE (1996) Using functional loading to influence bone mass and architecture: objectives, mechanisms, and relationship with estrogen of the mechanically adaptive process in bone. Bone 18(1 Suppl):37S–43S

    Article  CAS  PubMed  Google Scholar 

  • Lazo MG, Shirazi P, Sam M, Giobbie-Hurder A, Blacconiere MJ, Muppidi M (2001) Osteoporosis and risk of fracture in men with spinal cord injury. Spinal Cord 39(4):208–214

    Article  CAS  PubMed  Google Scholar 

  • Logan WC, Sloane R, Lyles KW, Goldstein B, Hoenig HM (2008) Incidence of fractures in a cohort of veterans with chronic multiple sclerosis or traumatic spinal cord injury. Arch Phys Med Rehabil 89(2):237–243

    Article  PubMed  Google Scholar 

  • Manske SL, Liu-Ambrose T, Cooper DML, Kontulainen S, Guy P, Forster BB, McKay HA (2009) Cortical and trabecular bone in the femoral neck both contribute to proximal femur failure load prediction. Osteoporos Int 20(3):445–453

    Article  CAS  PubMed  Google Scholar 

  • Messina C, Bandirali M, Sconfienza LM, D’Alonzo NK, Di Leo G, Papini GDE, Ulivieri FM, Sardanelli F (2015) Prevalence and type of errors in dual-energy x-ray absorptiometry. Eur Radiol 25(5):1504–1511

    Article  PubMed  Google Scholar 

  • Modlesky CM, Majumdar S, Narasimhan A, Dudley GA (2004) Trabecular bone microarchitecture is deteriorated in men with spinal cord injury. J Bone Miner Res 19(1):48–55

    Article  PubMed  Google Scholar 

  • Moran de Brito CM, Battistella LR, Saito ET, Sakamoto H (2005) Effect of alendronate on bone mineral density in spinal cord injury patients: a pilot study. Spinal Cord 43(6):341–348

    Article  CAS  PubMed  Google Scholar 

  • Morse LR, Battaglino RA, Stolzmann KL, Hallett LD, Waddimba A, Gagnon D, Lazzari AA, Garshick E (2009a) Osteoporotic fractures and hospitalization risk in chronic spinal cord injury. Osteoporos Int 20(3):385–392

    Article  CAS  PubMed  Google Scholar 

  • Morse LR, Giangregorio L, Battaglino RA, Holland R, Craven BC, Stolzmann KL, Lazzari AA, Sabharwal S, Garshick E (2009b) VA-based survey of osteoporosis management in spinal cord injury. PM R 1(3):240–244

    Article  PubMed  PubMed Central  Google Scholar 

  • Needham-Shropshire BM, Broton JG, Klose KJ, Lebwohl N, Guest RS, Jacobs PL (1997) Evaluation of a training program for persons with SCI paraplegia using the Parastep 1 ambulation system: part 3. Lack of effect on bone mineral density. Arch Phys Med Rehabil 78(8):799–803

    Article  CAS  PubMed  Google Scholar 

  • Nottage WM (1981) A review of long-bone fractures in patients with spinal cord injuries. Clin Orthop 155:65–70

    Google Scholar 

  • Rodgers MM, Glaser RM, Figoni SF, Hooker SP, Ezenwa BN, Collins SR, Mathews T, Suryaprasad AG, Gupta SC (1991) Musculoskeletal responses of spinal cord injured individuals to functional neuromuscular stimulation-induced knee extension exercise training. J Rehabil Res Dev 28(4):19–26

    Article  CAS  PubMed  Google Scholar 

  • Rubin C, Turner AS, Bain S, Mallinckrodt C, McLeod K (2001) Anabolism. Low mechanical signals strengthen long bones. Nature 412(6847):603–604

    Article  CAS  PubMed  Google Scholar 

  • Rubin C, Turner AS, Mallinckrodt C, Jerome C, McLeod K, Bain S (2002) Mechanical strain, induced noninvasively in the high-frequency domain, is anabolic to cancellous bone, but not cortical bone. Bone 30(3):445–452

    Article  CAS  PubMed  Google Scholar 

  • Sabour H, Norouzi Javidan A, Latifi S, Larijani B, Shidfar F, Vafa MR, Heshmat R, Emami Razavi H (2014) Bone biomarkers in patients with chronic traumatic spinal cord injury. Spine J 14(7):1132–1138

    Article  PubMed  Google Scholar 

  • Sato Y, Maruoka H, Oizumi K (1997) Amelioration of hemiplegia-associated osteopenia more than 4 years after stroke by 1 alpha-hydroxyvitamin D3 and calcium supplementation. Stroke J Cereb Circ 28(4):736–739

    Article  CAS  Google Scholar 

  • Schultheis L (1991) The mechanical control system of bone in weightless spaceflight and in aging. Exp Gerontol 26(2–3):203–214

    Article  CAS  PubMed  Google Scholar 

  • Shields RK, Dudley-Javoroski S (2006) Musculoskeletal plasticity after acute spinal cord injury: effects of long-term neuromuscular electrical stimulation training. J Neurophysiol 95(4):2380–2390

    Article  PubMed  PubMed Central  Google Scholar 

  • Shields RK, Dudley-Javoroski S, Law LAF (2006) Electrically induced muscle contractions influence bone density decline after spinal cord injury. Spine 31(5):548–553

    Article  PubMed  PubMed Central  Google Scholar 

  • Slade JM, Bickel CS, Modlesky CM, Majumdar S, Dudley GA (2005) Trabecular bone is more deteriorated in spinal cord injured versus estrogen-free postmenopausal women. Osteoporos Int 16(3):263–272

    Article  PubMed  Google Scholar 

  • Szollar SM, Martin EM, Sartoris DJ, Parthemore JG, Deftos LJ (1998) Bone mineral density and indexes of bone metabolism in spinal cord injury. Am J Phys Med Rehabil 77(1):28–35

    Article  CAS  PubMed  Google Scholar 

  • Thoumie P, Le Claire G, Beillot J, Dassonville J, Chevalier T, Perrouin-Verbe B, Bedoiseau M, Busnel M, Cormerais A, Courtillon A (1995) Restoration of functional gait in paraplegic patients with the RGO-II hybrid orthosis. A multicenter controlled study. II: Physiological evaluation. Paraplegia 33(11):654–659

    Article  CAS  PubMed  Google Scholar 

  • Uebelhart D, Demiaux-Domenech B, Roth M, Chantraine A (1995) Bone metabolism in spinal cord injured individuals and in others who have prolonged immobilisation. A review. Paraplegia 33(11):669–673

    Article  CAS  PubMed  Google Scholar 

  • Vanleene M, Shefelbine SJ (2013) Therapeutic impact of low amplitude high frequency whole body vibrations on the osteogenesis imperfecta mouse bone. Bone 53(2):507–514

    Article  PubMed  PubMed Central  Google Scholar 

  • Vasikaran S, Eastell R, Bruyère O, Foldes AJ, Garnero P, Griesmacher A, McClung M, Morris HA, Silverman S, Trenti T, Wahl DA, Cooper C, Kanis JA, IOF-IFCC Bone Marker Standards Working Group (2011) Markers of bone turnover for the prediction of fracture risk and monitoring of osteoporosis treatment: a need for international reference standards. Osteoporos Int 22(2):391–420

    Article  CAS  PubMed  Google Scholar 

  • Vestergaard P, Krogh K, Rejnmark L, Mosekilde L (1998) Fracture rates and risk factors for fractures in patients with spinal cord injury. Spinal Cord 36(11):790–796

    Article  CAS  PubMed  Google Scholar 

  • Wang CM, Chen Y, DeVivo MJ, Huang CT (2001) Epidemiology of extraspinal fractures associated with acute spinal cord injury. Spinal Cord 39(11):589–594

    Article  CAS  PubMed  Google Scholar 

  • Wilmet E, Ismail AA, Heilporn A, Welraeds D, Bergmann P (1995) Longitudinal study of the bone mineral content and of soft tissue composition after spinal cord section. Paraplegia 33(11):674–677

    Article  CAS  PubMed  Google Scholar 

  • Wolff J (1986) The law of bone remodeling. Springer, Berlin

    Book  Google Scholar 

  • Wuermser L-A, Beck LA, Lamb JL, Atkinson EJ, Amin S (2015) The effect of low-magnitude whole body vibration on bone density and microstructure in men and women with chronic motor complete paraplegia. J Spinal Cord Med 38(2):178–186

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandra J. Shefelbine .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The American Physiological Society

About this chapter

Cite this chapter

Draghici, A.E., Shefelbine, S.J. (2016). Increased Bone Fracture After SCI: Can Exercise Reduce Risk?. In: Taylor, J. (eds) The Physiology of Exercise in Spinal Cord Injury. Physiology in Health and Disease. Springer, Boston, MA. https://doi.org/10.1007/978-1-4939-6664-6_8

Download citation

Publish with us

Policies and ethics