Skip to main content

The Effect of Acute and Chronic Exercise on Inflammatory Markers in SCI

  • Chapter
  • First Online:
The Physiology of Exercise in Spinal Cord Injury

Part of the book series: Physiology in Health and Disease ((PIHD))

Abstract

A spinal cord injury (SCI) is associated with an increased prevalence of physical inactivity and obesity, conditions linked to illnesses with inflammatory etiology, such as diabetes or cardiovascular disease. This may at least partly explain the elevated inflammatory risk marker profile and the higher occurrence of the associated diseases found in individuals with SCI. In able-bodied populations, exercise helps to improve this risk marker profile prompting the question whether exercise can mitigate some of the SCI related risk through acute disturbances of the inflammatory environment. Despite a smaller active muscle mass during upper body activities, a similar acute inflammatory response has been observed with this modality when compared with lower body exercise. This supports the use of upper body exercise interventions to combat disease linked to inflammation in individuals not able to participate in other exercise activities. However, more dramatic reductions in active muscle mass and/or sympathetic dysfunction found in those with cervical SCI can result in an absent or blunted acute inflammatory response. Nonetheless, intervention strategies like exercise, functional electrical stimulation or passive elevation of core temperature induce some modest positive acute responses even in individuals with high level SCI. The evidence base for chronic interventions is small but suggests that long term exercise can indeed improve the inflammatory risk marker profile in individuals with thoracic and, to a lesser extent, with cervical SCI. Future challenges include defining disability-specific minimal exercise or temperature stimuli required to induce meaningful chronic changes in inflammatory markers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arnold JM, Feng QP, Delaney GA et al (1995) Autonomic dysreflexia in tetraplegic patients: evidence for alpha-adrenoceptor hyper-responsiveness. Clin Auton Res 5(5):267–270

    Article  CAS  PubMed  Google Scholar 

  • Bakkum AJ, Paulson TA, Bishop NC et al (2015) Effects of hybrid cycle and handcycle exercise on cardiovascular disease risk factors in people with spinal cord injury: a randomized controlled trial. J Rehabil Med 47(6):523–530

    Article  PubMed  Google Scholar 

  • Banno M, Nakamura T, Furusawa K et al (2012) Wheelchair half-marathon race increases natural killer cell activity in persons with cervical spinal cord injury. Spinal Cord 50(7):533–537

    Article  CAS  PubMed  Google Scholar 

  • Bloomfield SA, Jackson RD, Mysiw WJ (1994) Catecholamine response to exercise and training in individuals with spinal cord injury. Med Sci Sports Exerc 26(10):1213–1219

    Article  CAS  PubMed  Google Scholar 

  • Borovikova LV, Ivanova S, Nardi D et al (2000) Role of vagus nerve signaling in CNI-1493-mediated suppression of acute inflammation. Auton Neurosci 85(1–3):141–147

    Article  CAS  PubMed  Google Scholar 

  • Buchholz AC, Martin Ginis KA, Bray SR et al (2009) Greater daily leisure time physical activity is associated with lower chronic disease risk in adults with spinal cord injury. Appl Physiol Nutr Metab 34(4):640–647

    Article  PubMed  Google Scholar 

  • Campagnolo DI, Keller SE, DeLisa JA et al (1994) Alteration of immune system function in tetraplegics. A pilot study. Am J Phys Med Rehabil 73(6):387–393

    Article  CAS  PubMed  Google Scholar 

  • Campagnolo DI, Bartlett JA, Chatterton R Jr et al (1999) Adrenal and pituitary hormone patterns after spinal cord injury. Am J Phys Med Rehabil 78(4):361–366

    Article  CAS  PubMed  Google Scholar 

  • Castellani JW, Armstrong LE, Kenefick RW et al (2001) Cortisol and testosterone concentrations in wheelchair athletes during submaximal wheelchair ergometry. Eur J Appl Physiol 84(1–2):42–47

    Article  CAS  PubMed  Google Scholar 

  • da Silva AE, de Aquino LV, da Silva RF et al (2013) Low-grade inflammation and spinal cord injury: exercise as therapy? Mediators Inflamm 2013:971841

    Google Scholar 

  • Davies AL, Hayes KC, Dekaban GA (2007) Clinical correlates of elevated serum concentrations of cytokines and autoantibodies in patients with spinal cord injury. Arch Phys Med Rehabil 88(11):1384–1393

    Article  PubMed  Google Scholar 

  • Downing JE, Miyan JA (2000) Neural immunoregulation: emerging roles for nerves in immune homeostasis and disease. Immunol Today 21(6):281–289

    Article  CAS  PubMed  Google Scholar 

  • Elenkov IJ, Wilder RL, Chrousos GP et al (2000) The sympathetic nerve–an integrative interface between two supersystems: the brain and the immune system. Pharmacol Rev 52(4):595–638

    CAS  PubMed  Google Scholar 

  • Frey G, McCubbin J, Dunn J et al (1997) Plasma catecholamine and lactate relationship during graded exercise in men with spinal cord injury. Med Sci Sports Exerc 29(4):451–456

    Article  CAS  PubMed  Google Scholar 

  • Frost RA, Nystrom GJ, Lang CH (2004) Epinephrine stimulates IL-6 expression in skeletal muscle and C2C12 myoblasts: role of c-Jun NH2-terminal kinase and histone deacetylase activity. Am J Physiol Endocrinol Metab 286(5):E809–E817

    Article  CAS  PubMed  Google Scholar 

  • Garstang SV, Miller-Smith SA (2007) Autonomic nervous system dysfunction after spinal cord injury. Phys Med Rehabil Clin N Am 18(2):275–296

    Article  PubMed  Google Scholar 

  • Gibson AE, Buchholz AC, Martin Ginis KA et al (2008) C-Reactive protein in adults with chronic spinal cord injury: increased chronic inflammation in tetraplegia vs paraplegia. Spinal Cord 46(9):616–621

    Article  CAS  PubMed  Google Scholar 

  • Gleeson M, Bishop NC, Stensel DJ et al (2011) The anti-inflammatory effects of exercise: mechanisms and implications for the prevention and treatment of disease. Nat Rev Immunol 11(9):607–615

    Article  CAS  PubMed  Google Scholar 

  • Griffin L, Decker MJ, Hwang JY et al (2009) Functional electrical stimulation cycling improves body composition, metabolic and neural factors in persons with spinal cord injury. J Electromyogr Kinesiol 19(4):614–622

    Article  CAS  PubMed  Google Scholar 

  • Huang TS, Wang YH, Lee SH et al (1998) Impaired hypothalamus-pituitary-adrenal axis in men with spinal cord injuries. Am J Phys Med Rehabil 77(2):108–112

    Article  CAS  PubMed  Google Scholar 

  • Kappel M, Stadeager C, Tvede N et al (1991) Effects of in vivo hyperthermia on natural killer cell activity, in vitro proliferative responses and blood mononuclear cell subpopulations. Clin Exp Immunol 84(1):175–180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karlsson AK, Elam M, Friberg P et al (1997) Peripheral afferent stimulation of decentralized sympathetic neurons activates lipolysis in spinal cord-injured subjects. Metabolism 46(12):1465–1469

    Article  CAS  PubMed  Google Scholar 

  • Kinoshita T, Nakamura T, Umemoto Y et al (2013) Increase in interleukin-6 immediately after wheelchair basketball games in persons with spinal cord injury: preliminary report. Spinal Cord 51(6):508–510

    Article  CAS  PubMed  Google Scholar 

  • Kjaer M, Secher NH, Bangsbo J et al (1996) Hormonal and metabolic responses to electrically induced cycling during epidural anesthesia in humans. J Appl Physiol 80(6):2156–2162

    CAS  PubMed  Google Scholar 

  • Klokker M, Secher NH, Madsen P et al (1997) Adrenergic beta 1- and beta 1 + 2-receptor blockade suppress the natural killer cell response to head-up tilt in humans. J Appl Physiol (1985) 83(5):1492–1498

    CAS  Google Scholar 

  • Klokker M, Mohr T, Kjaer M et al (1998) The natural killer cell response to exercise in spinal cord injured individuals. Eur J Appl Physiol Occup Physiol 79(1):106–109

    Article  CAS  PubMed  Google Scholar 

  • Kouda K, Furusawa K, Sugiyama H et al (2012) Does 20-min arm crank ergometer exercise increase plasma interleukin-6 in individuals with cervical spinal cord injury? Eur J Appl Physiol 112(2):597–604

    Article  PubMed  Google Scholar 

  • Koury JC, Passos MC, Figueiredo FA et al (2013) Time of physical exercise practice after injury in cervical spinal cord-injured men is related to the increase in insulin sensitivity. Spinal Cord 51(2):116–119

    Article  CAS  PubMed  Google Scholar 

  • Krassioukov A (2009) Autonomic function following cervical spinal cord injury. Respir Physiol Neurobiol 169(2):157–164

    Article  PubMed  Google Scholar 

  • Landmann RM, Muller FB, Perini C et al (1984) Changes of immunoregulatory cells induced by psychological and physical stress: relationship to plasma catecholamines. Clin Exp Immunol 58(1):127–135

    CAS  PubMed  PubMed Central  Google Scholar 

  • Leicht CA, Kouda K, Umemoto Y et al (2015) Hot water immersion induces an acute cytokine response in cervical spinal cord injury. Eur J Appl Physiol 115(11):2243–2252

    Article  CAS  PubMed  Google Scholar 

  • Leicht CA, Paulson TAW, Goosey-Tolfrey VL et al (2016) Arm and intensity-matched leg exercise induce similar inflammatory responses. Med Sci Sports 48(6):1161–1168

    Google Scholar 

  • Liang H, Mojtahedi MC, Chen D et al (2008) Elevated C-reactive protein associated with decreased high-density lipoprotein cholesterol in men with spinal cord injury. Arch Phys Med Rehabil 89(1):36–41

    Article  PubMed  Google Scholar 

  • Morse LR, Stolzmann K, Nguyen HP et al (2008) Association between mobility mode and C-reactive protein levels in men with chronic spinal cord injury. Arch Phys Med Rehabil 89(4):726–731

    Article  PubMed  PubMed Central  Google Scholar 

  • Myers J, Lee M, Kiratli J (2007) Cardiovascular disease in spinal cord injury: an overview of prevalence, risk, evaluation, and management. Am J Phys Med Rehabil 86(2):142–152

    Article  PubMed  Google Scholar 

  • Nash MS (2000) Known and plausible modulators of depressed immune functions following spinal cord injuries. J Spinal Cord Med 23(2):111–120

    Article  CAS  PubMed  Google Scholar 

  • Neefkes-Zonneveld CR, Bakkum AJ, Bishop NC et al (2015) Effect of long-term physical activity and acute exercise on markers of systemic inflammation in persons with chronic spinal cord injury: a systematic review. Arch Phys Med Rehabil 96(1):30–42

    Article  PubMed  Google Scholar 

  • Ogawa T, Nakamura T, Banno M et al (2014) Elevation of interleukin-6 and attenuation of tumor necrosis factor-alpha during wheelchair half marathon in athletes with cervical spinal cord injuries. Spinal Cord 52(8):601–605

    Article  CAS  PubMed  Google Scholar 

  • Paulson TAW, Goosey-Tolfrey VL, Lenton JP et al (2013) Spinal cord injury level and the circulating cytokine response to strenuous exercise. Med Sci Sports Exerc 45(9):1649–1655

    Article  CAS  PubMed  Google Scholar 

  • Paulson TA, Bishop NC, Smith BM et al (2014) Inflammation-mediating cytokine response to acute handcycling exercise with/without functional electrical stimulation-evoked lower-limb cycling. J Rehabil Res Dev 51(4):645–654

    Article  PubMed  Google Scholar 

  • Pavlov VA, Tracey KJ (2004) Neural regulators of innate immune responses and inflammation. Cell Mol Life Sci 61(18):2322–2331

    Article  CAS  PubMed  Google Scholar 

  • Paynter DE, Tipton CM, Tcheng TK (1977) Response of immunosympathectomized rats to training. J Appl Physiol 42(6):935–940

    CAS  PubMed  Google Scholar 

  • Pedersen BK, Febbraio MA (2008) Muscle as an endocrine organ: focus on muscle-derived interleukin-6. Physiol Rev 88(4):1379–1406

    Article  CAS  PubMed  Google Scholar 

  • Rosety-Rodriguez M, Camacho A, Rosety I et al (2014) Low-grade systemic inflammation and leptin levels were improved by arm cranking exercise in adults with chronic spinal cord injury. Arch Phys Med Rehabil 95(2):297–302

    Article  PubMed  Google Scholar 

  • Sasaki Y, Furusawa K, Tajima F et al (2014) Wheelchair marathon creates a systemic anti-inflammatory environment in persons with spinal cord injury. Clin J Sport Med 24(4):295–301

    Article  PubMed  Google Scholar 

  • Schmid A, Huonker M, Barturen JM et al (1998a) Catecholamines, heart rate, and oxygen uptake during exercise in persons with spinal cord injury. J Appl Physiol 85(2):635–641

    CAS  PubMed  Google Scholar 

  • Schmid A, Huonker M, Stahl F et al (1998b) Free plasma catecholamines in spinal cord injured persons with different injury levels at rest and during exercise. J Auton Nerv Syst 68(1–2):96–100

    Article  CAS  PubMed  Google Scholar 

  • Steensberg A, Toft AD, Schjerling P et al (2001) Plasma interleukin-6 during strenuous exercise: role of epinephrine. Am J Physiol Cell Physiol 281(3):C1001–C1004

    CAS  PubMed  Google Scholar 

  • Steensberg A, Fischer CP, Keller C et al (2003) IL-6 enhances plasma IL-1ra, IL-10, and cortisol in humans. Am J Physiol Endocrinol Metab 285(2):E433–E437

    Article  CAS  PubMed  Google Scholar 

  • Steinberg LL, Lauro FA, Sposito MM et al (2000) Catecholamine response to exercise in individuals with different levels of paraplegia. Braz J Med Biol Res 33(8):913–918

    Article  CAS  PubMed  Google Scholar 

  • Turiel M, Sitia S, Cicala S et al (2011) Robotic treadmill training improves cardiovascular function in spinal cord injury patients. Int J Cardiol 149(3):323–329

    Article  PubMed  Google Scholar 

  • Umemoto Y, Furusawa K, Kouda K et al (2011) Plasma IL-6 levels during arm exercise in persons with spinal cord injury. Spinal Cord 49(12):1182–1187

    Article  CAS  PubMed  Google Scholar 

  • Vissing J, Wilson LB, Mitchell JH et al (1991) Static muscle contraction reflexly increases adrenal sympathetic nerve activity in rats. Am J Physiol 261(5 Pt 2):R1307–R1312

    CAS  PubMed  Google Scholar 

  • Wang TD, Wang YH, Huang TS et al (2007) Circulating levels of markers of inflammation and endothelial activation are increased in men with chronic spinal cord injury. J Formos Med Assoc 106(11):919–928

    Article  CAS  PubMed  Google Scholar 

  • Welc SS, Phillips NA, Oca-Cossio J et al (2012) Hyperthermia increases interleukin-6 in mouse skeletal muscle. Am J Physiol Cell Physiol 303(4):C455–C466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • West CR, Romer LM, Krassioukov A (2013) Autonomic function and exercise performance in elite athletes with cervical spinal cord injury. Med Sci Sports Exerc 45(2):261–267

    Article  PubMed  Google Scholar 

  • Wheeler G, Cumming D, Burnham R et al (1994) Testosterone, cortisol and catecholamine responses to exercise stress and autonomic dysreflexia in elite quadriplegic athletes. Paraplegia 32(5):292–299

    Article  CAS  PubMed  Google Scholar 

  • Yamanaka M, Furusawa K, Sugiyama H et al (2010) Impaired immune response to voluntary arm-crank ergometer exercise in patients with cervical spinal cord injury. Spinal Cord 48(10):734–739

    Article  CAS  PubMed  Google Scholar 

  • Yu XN, Komaki G, Sudo N et al (2001) Central and peripheral catecholamines regulate the exercise-induced elevation of plasma interleukin 6 in rats. Life Sci 69(2):167–174

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christof A. Leicht .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The American Physiological Society

About this chapter

Cite this chapter

Leicht, C.A., Bishop, N.C. (2016). The Effect of Acute and Chronic Exercise on Inflammatory Markers in SCI. In: Taylor, J. (eds) The Physiology of Exercise in Spinal Cord Injury. Physiology in Health and Disease. Springer, Boston, MA. https://doi.org/10.1007/978-1-4939-6664-6_11

Download citation

Publish with us

Policies and ethics