Skip to main content

Cardiopulmonary System: Aeromedical Considerations

Abstract

This chapter describes the effects of microgravity on the cardiopulmonary systems during space flight and on return to Earth. The results of medical monitoring and research in the cardiovascular, pulmonary, and neurologic organs related to cardiovascular function and anatomy, as well as the countermeasures developed to address prevention or treatment of potential pathologic conditions will be reviewed. Long-duration space flights with 1 year stays have begun on the International Space Station and with new exploration missions being planned beyond low Earth orbit, as outlined in the Vision of Space Exploration, even longer stays are likely. There is not only a requirement to find out what anatomical and physiologic cardiopulmonary space flight-induced alterations occur (whether it occurs over hours, days, weeks, or months), and the time course for recovery, but also a need to develop more predictive pre-flight medical screening for crew members to minimize risk factors for diseases that cannot be effectively treated in-flight. Research findings to-date suggest that as soon as an astronaut experiences microgravity, and continuing throughout the space flight, the following occurs: (1) decreased total intravascular volume occurs over the first several days and is maintained at this new homeostatic level; (2) the heart becomes less elongated and lung volume is reduced because gravity is no longer providing a downward distending force; (3) without the distention caused by the Earth’s gravity vector, the distribution of both ventilation and blood flow in the lungs become more uniform; (4) the heart and muscular component of the blood vessels atrophy because less force is required to move blood when the astronaut is in microgravity; (5) eye anatomical and visual changes occur in long duration space crews that may be caused by an underlying cardiovascular mechanism; (6) although arrhythmias are not caused by microgravity per se, arrhythmias can occur; and (7) other established cardiopulmonary diseases, e.g., atherosclerosis or asthma, can occur and/or progress during space missions. Additionally research has demonstrated some cardiopulmonary positive finds as well; e.g., snoring goes away and therefore obstructive sleep apnea would not be expected, pulmonary edema does not occur with normal work or exercise activity. Cardiopulmonary medical consequences that have or could occur during or after space flight include: asthma, visual problems, and arrhythmias during flight, possible myocardial infarction during or after flight, cardiovascular and pulmonary problems from decompression sickness and orthostatic intolerance induced syncope on return to earth. However, in general, there has been no evidence of long-term cardiopulmonary health consequences to returning astronauts. In future exploration class space missions, cardiopulmonary medical care can no longer depend on a quick return to Earth for adequate care beyond the limits of the ISS first aid station, a well-developed and appropriate medical suite of diagnostic, therapeutic and rehabilitation equipment and supplies that (1) fit into the limited volume of the space craft; (2) will have a long enough shelf-life; and (3) can actually be used effectively by the crew must be developed.

Keywords

  • Arrhythmias
  • Echocardiography
  • Fluid shift
  • Orthostatic hypotension
  • Orthostatic intolerance
  • Vascular compliance
  • Cardiopulmonary cardiovascular
  • Pulmonary function
  • Vital capacity and residual volume
  • Visual disturbance

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4939-6652-3_8
  • Chapter length: 18 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-1-4939-6652-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   199.00
Price excludes VAT (USA)
Hardcover Book
USD   199.00
Price excludes VAT (USA)
Fig. 8.1
Fig. 8.2
Fig. 8.3
Fig. 8.4
Fig. 8.5
Fig. 8.6
Fig. 8.7
Fig. 8.8
Fig. 8.9
Fig. 8.10
Fig. 8.11

Notes

  1. 1.

    Superfocus™ Glasses. Since the average age of the spaceflyers in NASA’s astronaut corps today is 48, they may suffer from presbyopia. In this condition, the lenses of aging eyes become increasingly inflexible, making it tough to focus on things close up. Superfocus™ glasses use a set of front lenses to hold the wearer’s distance prescription, while inner lenses contain a clear fluid. Moving a slider on the glasses’ bridge adjusts this fluid, allowing people to focus on objects that are nearby or in the middle distance. The result is a sharp, distortion-free image at a variety of distances. There are six pairs of the glasses for astronauts on the ISS.

References

  1. Jennings RT, Murphy DMF, Ware DL, Aunon SM, Moon RE, Bogomolov VV, Morgun VV, Vorkonkov YI, Fife CE, Boyars MC, Ernst RD. Medical qualification of a commercial space flight participant: not your average astronaut. Aviat Space Environ Med. 2006;77(5):475–84.

    PubMed  Google Scholar 

  2. May C, Borowski A, Martin D, Popovic Z, Negishi K, Hussan JR, Gladding P, Hunter P, Iskovitz I, Kassemi M, Bungo M, Levine B, Thomas J. Affect of microgravity on cardiac shape comparison of pre- and in-flight data to mathematical modeling. J Am Coll Cardiol. 2014;63:12S.

    CrossRef  Google Scholar 

  3. Hamilton DR, Murray JD, Ball CG. Cardiac health for astronauts: coronary calcification scores and CRP as criteria for selection and retention. Aviat Space Environ Med. 2006;77(4):377–87.

    PubMed  Google Scholar 

  4. Prisk GK, Guy HJ, Elliott AR, Deutschman 3rd RA, West JB. Pulmonary diffusing capacity, capillary blood volume, and cardiac output during sustained microgravity. J Appl Physiol (1985). 1993;75(1):15–26.

    CAS  Google Scholar 

  5. Johnson RL, Driscoll TB, LeBlanc AD. Blood volume changes. In: Johnston RS, Dietlein LF, editors. Biomedical results from Skylab, NASA SP-377. Washington, DC: US Government Printing Office; 1977. p. 235–41.

    Google Scholar 

  6. Prisk GK, Fine JM, Elliott AR, West JB. Effect of 6 degree head-down tilt on cardiopulmonary function: comparison with microgravity. Aviat Space Environ Med. 2002;73(1):8–16.

    PubMed  Google Scholar 

  7. Norsk P, Asmar A, Damgaard M, Christensen NJ. Fluid shifts, vasodilatation and ambulatory blood pressure reduction during long duration spaceflight. J Physiol. 2015;593(3):573–84.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  8. Hoffler GW, Johnson RL. Apollo flight crew cardiovascular evaluations. In: Johnston RS, Dietlein LF, Berry CA, editors. Biomedical results of Apollo, NASA SP-368. Washington, DC: NASA; 1975. p. 227–64.

    Google Scholar 

  9. Fritsch-Yelle JM, Charles JB, Jones MM, Beightol LA, Eckberg DL. Space flight alters autonomic regulation of arterial pressure in humans. J Appl Physiol. 1994;77(4):1776–83.

    CAS  PubMed  Google Scholar 

  10. Fritsch-Yelle JM, Charles JB, Jones MM, Wood ML. Microgravity decreases heart rate and arterial pressure in humans. J Appl Physiol. 1996;80(3):910–4.

    CAS  PubMed  Google Scholar 

  11. Rossum AC, Wood ML, Bishop SL, Deblock H, Charles JB. Evaluation of cardiac rhythm disturbances during extravehicular activity. Am J Cardiol. 1997;79(8):1153–5.

    CAS  CrossRef  PubMed  Google Scholar 

  12. D'Aunno DS, Dougherty AH, DeBlock HF, Meck JV. Effect of short- and long-duration space flight on QTc intervals in healthy astronauts. Am J Cardiol. 2003;91(4):494–7.

    CrossRef  PubMed  Google Scholar 

  13. Meck JV, Reyes CJ, Perez SA, Goldberger AL, Ziegler MG. Marked exacerbation of orthostatic intolerance after long- vs. short-duration space flight in veteran astronauts. Psychosom Med. 2001;63(6):865–73.

    CAS  CrossRef  PubMed  Google Scholar 

  14. Lee SM, Feiveson AH, Stein S, Stenger MB, Platts SH. Orthostatic intolerance after ISS and space shuttle missions. Aerosp Med Hum Perform. 2015;86(Suppl 1(12)):54–67.

    CrossRef  Google Scholar 

  15. Carreau M. Astronaut faints twice at ceremony. Copyright 2006 Houston Chronicle, 23 Sep 2006. http://www.chron.com/news/houston-texas/article/Astronaut-faints-twice-at-ceremony-1912144.php

  16. Johnson Jr PC. Fluid volume changes induced by space flight. Acta Astronaut. 1979;6(10):1335–41.

    Google Scholar 

  17. Waters WW, Ziegler MG, Meck JV. Postspace flight orthostatic hypotension occurs mostly in women and is predicted by low vascular resistance. J Appl Physiol. 2002;92(2):586–94.

    CrossRef  PubMed  Google Scholar 

  18. Leach CS, Rambaut PC. Biochemical responses of the Skylab crewmen: an overview. In: Johnston RS, Dietlein LF, editors. Biomedical results from Skylab, NASA SP-377. Washington, DC: US Government Printing Office; 1977. p. 204–16.

    Google Scholar 

  19. Leach CS, Inners LD, Charles JB. Changes in total body water during space flight. J Clin Pharmacol. 1991;31(10):1001–6.

    CAS  CrossRef  PubMed  Google Scholar 

  20. Tuday EC, Meck JV, Nyhan D, Shoukas AA, Berkowitz DE. Microgravity-induced changes in aortic stiffness and their role in orthostatic intolerance. J Appl Physiol. 2007;102(3):853–8.

    CrossRef  PubMed  Google Scholar 

  21. Platts SH, Bairey Merz CN, Barr Y, Fu Q, Gulati M, Hughson R, Levine BD, Mehran R, Stachenfeld N, Wenger NK. Effects of sex and gender on adaptation to space: cardiovascular alterations. J Women’s Health. 2014;23(11):950–5.

    CrossRef  Google Scholar 

  22. Meck JV, Waters WW, Ziegler MG, deBlock HF, Mills PJ, Robertson D, Huang PL. Mechanisms of postspace flight orthostatic hypotension: low alpha1-adrenergic receptor responses before flight and central autonomic dysregulation post-flight. Am J Physiol Heart Circ Physiol. 2004;286(4):H1486–95.

    CAS  CrossRef  PubMed  Google Scholar 

  23. Eckberg DL, Halliwill JR, Beightol LA, Brown TE, Taylor JA, Goble R. Human vagal baroreflex mechanisms in space. J Physiol. 2010;588(Pt 7):1129–38.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  24. Fritsch-Yelle JM, Leuenberger UA, D’Aunno DS, et al. An episode of ventricular tachycardia during long-duration space flight. Am J Cardiol. 1998;81:1391–2.

    CAS  CrossRef  PubMed  Google Scholar 

  25. Gisolf J, Immink RV, Van Lieshout JJ, Stok WJ, Karemaker JM. Orthostatic blood pressure control before and after space flight, determined by time-domain baroreflex method. J Appl Physiol. 2005;98(5):1682–90.

    CAS  CrossRef  PubMed  Google Scholar 

  26. Tank J, Baevsky RM, Funtova II, Diedrich A, Slepchenkova IN, Jordan J. Orthostatic heart rate responses after prolonged space flights. Clin Auton Res. 2011;21(2):121–4.

    CrossRef  PubMed  Google Scholar 

  27. Blaber AP, Zuj KA, Goswami N. Cerebrovascular autoregulation: lessons learned from space flight research. Eur J Appl Physiol. 2013;113(8):1909–17.

    CrossRef  PubMed  Google Scholar 

  28. Hughson RL, Shoemaker JK, Blaber AP, Arbeille P, Greaves DK, Pereira-Junior PP, Xu D. Cardiovascular regulation during long-duration space flights to the International Space Station. J Appl Physiol. 2012;112(5):719–27.

    CAS  CrossRef  PubMed  Google Scholar 

  29. Goldberger AL, Bungo MW, Baevsky RM, Bennett BS, Rigney DR, Mietus JE, et al. Heart rate dynamics during long-term space flight: report on Mir cosmonauts. Am Heart J. 1994;128(1):202–4.

    Google Scholar 

  30. Kirsch KA, Haenel F, Rocker L. Venous pressure in microgravity. Naturwissenschaften. 1986;73(7):447–9.

    CAS  CrossRef  PubMed  Google Scholar 

  31. Buckey Jr JC, Gaffney FA, Lane LD, Levine BD, Watenpaugh DE, Wright SJ, et al. Central venous pressure in space. J Appl Physiol. 1996;81(1):19–25.

    PubMed  Google Scholar 

  32. White RJ, Blomqvist CG. Central venous pressure and cardiac function during space flight. J Appl Physiol. 1998;85(2):738–46.

    CAS  PubMed  Google Scholar 

  33. Chung KY, Woo SJ, Yi S, Choi GH, Ahn CH, Hur GC, Lim JG, Kim TW. Diurnal pattern of intraocular pressure is affected by microgravity when measured in space with the pressure phosphene tonometer (PPT). J Glaucoma. 2011;20(8):488–91.

    CrossRef  PubMed  Google Scholar 

  34. Draeger J, Schwartz R, Groenhoff S, Stern C. Self-tonometry under microgravity conditions. Aviat Space Environ Med. 1995;66(6):568–70.

    CAS  PubMed  Google Scholar 

  35. NASA. Human research visual changes evidence report. Washington, DC: NASA; 2010. http://humanresearchroadmap.nasa.gov/Evidence/reports/VIIP.pdf. Accessed 4 Feb 2015.

    Google Scholar 

  36. Otto C, Ploutz-Snyder R. Eye outcome measures in the visual impairment intracranial pressure (VIIP) syndrome following long duration space flight. 2015 Document ID 20140014059 Report # JSC-CN-32236. 2015 Human research program investigators' workshop. http://ntrs.nasa.gov/search.jsp?R=20140014059. Accessed 4 Feb 2015

  37. DeJournette RL. Rocket propellant inhalation in the Apollo-Soyuz astronauts. Radiology. 1977;125(1):21–4.

    CAS  CrossRef  PubMed  Google Scholar 

  38. Prisk GK, Fine JM, Cooper TK, West JB. Pulmonary gas exchange is not impaired 24 h after extravehicular activity. J Appl Physiol. 2005;99(6):2233–8.

    CrossRef  PubMed  Google Scholar 

  39. Prisk GK, Fine JM, Cooper TK, West JB. Lung function is unchanged in the 1 G environment following 6-months exposure to microgravity. Eur J Appl Physiol. 2008;103(6):617–23.

    CrossRef  PubMed  Google Scholar 

  40. Elliott A, Prisk GK, Guy HJB, Kosonen JM, West JB. Forced expirations and maximum expiratory flow-volume curves during sustained microgravity on SLS-1. J Appl Physiol. 1996;81(l):33–43.

    CAS  PubMed  Google Scholar 

  41. Elliott AR, Prisk GK, Guy HJ, West JB. Lung volumes during sustained microgravity on Spacelab SLS-1. J Appl Physiol. 1994;77(4):2005–14.

    CAS  PubMed  Google Scholar 

  42. Prisk GK, Fine JM, Cooper TK, West JB. Vital capacity, respiratory muscle strength, and pulmonary gas exchange during long-duration exposure to microgravity. J Appl Physiol. 2006;101(2):439–47.

    CrossRef  PubMed  Google Scholar 

  43. Elliott AR, Shea SA, Dijk DJ, Wyatt JK, Riel E, Neri DF, Czeisler CA, West JB, Prisk GK. Microgravity reduces sleep-disordered breathing in humans. Am J Respir Crit Care Med. 2001;164(3):478–85.

    CAS  CrossRef  PubMed  Google Scholar 

  44. Hundemer GL, Jersey SL, Stuart RP, Butler WP, Pilmanis AA. Altitude decompression sickness incidence among U-2 pilots: 1994–2010. Aviat Space Environ Med. 2012;83(10):968–74.

    CrossRef  PubMed  Google Scholar 

  45. McGuire S, Sherman P, Profenna L, Grogan P, Sladky J, Brown A, Robinson A, Rowland L, Hong E, Patel B, Tate D, Kawano ES, Fox P, Kochunov P. White matter hyperintensities on MRI in high-altitude U-2 pilots. Neurology. 2013;81(8):729–35.

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  46. Conkin J. Analysis of NASA decompression sickness and venous gas emboli data and gender (Chap 3). In: Fife CE, St.Leger Dowse M, editors. Women and pressure. Flagstaff, AZ: Best Publishing Co; 2010. p. 41–68.

    Google Scholar 

  47. Conkin J. Preventing decompression sickness over three decades of extravehicular activity. NASA technical publication. NASA/TP-2011-216147. Houston, TX: Johnson Space Center; 2011.

    Google Scholar 

  48. Conkin J, Norcross JR, Wessel III JH, Abercromby AFJ, Klein JS, Dervay JP, Gernhardt ML. Evidence report: risk of decompression sickness (DCS) NASA human research program, human health and countermeasures element. http://humanresearchroadmap.nasa.gov/Evidence/reports/DCS.pdf. Accessed 4 Feb 2015.

  49. Conkin J, Powell MR, Gernhardt ML. Age affects severity of venous gas emboli on decompression from 14.7 to 4.3 psia. Aviat Space Environ Med. 2003;74(11):1142–50.

    PubMed  Google Scholar 

  50. Gernhardt ML, Dervay JP, Waligora JM, Fitzpatrick DT, Conkin J. Extravehicular activities (Chap. 5.4). In: Risin D, Stepaniak PC, editors. Biomedical results of the Space Shuttle Program, NASA/SP-2013-607. Washington, DC: US Government Printing Office; 2013. p. 315–26.

    Google Scholar 

  51. Balldin UI, Pilmanis AA, Webb JT. Pulmonary decompression sickness at altitude: early symptoms and circulating gas emboli. Aviat Space Environ Med. 2002;73(10):996–9.

    PubMed  Google Scholar 

  52. Hawkins WR, Zieglschmid JF. Clinical aspects of crew safety. In: Johnson RS, Dietlein LF, Berry CA, editors. Biomedical results of Apollo, NASA SP-368. Washington, DC: US Government Printing Office; 1975. p. 70.

    Google Scholar 

  53. Conkin J, Abercromby AFJ, Dervay JP, Feiveson AH, Gernhardt ML, Norcross J, Ploutz-Snyder R, Wessel III JH. Probabilistic assessment of treatment success for hypobaric decompression sickness. Houston, TX: NASA Johnson Space Center; 2014. NASA Technical Publication NASA/TP-2014-218561.

    Google Scholar 

  54. Conkin J, Abercromby AFJ, Dervay JP, Feiveson AH, Gernhardt ML, Norcross JR, Ploutz-Snyder R, Wessel III JH. Hypobaric decompression sickness treatment model. Aerosp Med Hum Perform. 2015;86(6):508–17.

    CrossRef  PubMed  Google Scholar 

  55. Michel EL, Rummel JA, Sawin CF, Buderer MC, Lem JD. Results of Skylab medical experiment M171-metabolic activity. In: Johnston RS, Dietlein LF, editors. Biomedical results from Skylab, NASA SP-377. Washington, DC: US Government Printing Office; 1977. p. 372–87.

    Google Scholar 

  56. Gazenko OG, Genin AM, Yegorov AD. Summary of medical investigations in the USSR manned space missions. Acta Astronaut. 1981;8(9–10):907–17.

    CAS  CrossRef  PubMed  Google Scholar 

  57. Moore AD Jr, Evetts SN, Feiveson AH, Lee SMC, McCleary FA, Platts SH, Ploutz-Snyder L. Oxygen uptake responses to submaximal exercise loads do not change during long-duration space flight. 2011. http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20110023176.pdf. Accessed 4 Feb 2015.

    Google Scholar 

  58. Moore Jr AD, Downs ME, Lee SMC, Feiveson AH, Knudsen P, Ploutz-Snyder L. Peak exercise oxygen uptake during and following long-duration spaceflight. J Appl Physiol. 2014;117(3):231–8.

    CrossRef  PubMed  Google Scholar 

  59. Baisden DL, Beven GE, Campbel MR, Charles JB, Dervay JP, Foster E, Gray GW, Hamilton DR, Holland DA, Jennings RT, et al. Ad Hoc Committee of Members of the Space Medicine Association; Society of NASA Flight Surgeons. Human health and performance for long-duration spaceflight. Aviat Space Environ Med. 2008;79(6):629–35.

    CrossRef  PubMed  Google Scholar 

  60. Herault S, Fomina G, Alferova I, Kotovskaya A, Poliakov V, Arbeille P. Cardiac, arterial and venous adaptation to weightlessness during 6-month MIR space flights with and without thigh cuffs (bracelets). Eur J Appl Physiol. 2000;81(5):384–90.

    CAS  CrossRef  PubMed  Google Scholar 

  61. Hamilton DR, Sargsyan AE, Garcia K, Ebert DJ, Whitson PA, Feiveson AH, Alferova IV, Dulchavsky SA, Matveev VP, Bogomolov VV, Duncan JM. Cardiac and vascular responses to thigh cuffs and respiratory maneuvers on crewmembers of the International Space Station. J Appl Physiol. 2012;112(3):454–62.

    CrossRef  PubMed  Google Scholar 

  62. Wolthius RA, Bergman SA, Nicogossian AE. Physiological effects of locally applied reduced pressure in man. Physiol Rev. 1974;54:566–95.

    Google Scholar 

  63. Hargens AR, Bhattacharya R, Schneider SM. Space physiology VI: exercise, artificial gravity, and countermeasure development for prolonged space flight. Eur J Appl Physiol. 2013;113(9):2183–92.

    CrossRef  PubMed  Google Scholar 

  64. Wood EH. Evolution of anti-G suits and their limitations and alternative methods for avoidance of G-induced loss of consciousness: final report in 2 volumes. MN, Rochester: Mayo Clinic; 1990.

    Google Scholar 

  65. Perez SA, Charles JB, Fortner GW, Hurst IV V, Meck JV. Cardiovascular effects of anti-G suit and cooling garment during space shuttle re-entry and landing. Aviat Space Environ Med. 2003;74(7):753–7.

    PubMed  Google Scholar 

  66. Geelen G, Arbeille P, Saumet JL, Cottet-Emard JM, Patat F, Vincent M. Hemodynamic and hormonal effects of prolonged anti-G suit inflation in humans. J Appl Physiol. 1992;72(3):977–84.

    CAS  PubMed  Google Scholar 

  67. Kotovskaia AR, Vil'-Vil'iams IF, Luk'ianiuk VI, Kataev IV. +Gx-tolerance by the cosmonauts of ISS crews 1, 6–9 and visiting crews 1–7 aboard Soyuz vehicles [Article in Russian]. Aviakosm Ekolog Me. 2005;39(5):3–9.

    CAS  Google Scholar 

  68. Watenpaugh DE, Hargens AR (1996) The cardiovascular system in microgravity. Compr Physiol. 1996. doi:10.1002/cphy.cp040129.

    Google Scholar 

  69. Charles JB, Mikhaylov V, Yelle JM, Collier RR. Studies of orthostatic intolerance with the use of lower body negative pressure (LBNP). In: Shuttle-Mir science program phase 1A Research post-flight science report. NASA, Lyndon B. Johnson Space Center, Houston, TX, Mar 1998. http://lsda.jsc.nasa.gov/lsda_data/dataset_inv_data/311__2630758615.pdf_Mir_18_3.1.1_2013_263_080919.pdf. Accessed 4 Feb 2015.

  70. Fortney SM. Development of lower body negative pressure as a countermeasure for orthostatic intolerance. J Clin Pharmacol. 1991;31(10):888–92.

    CAS  CrossRef  PubMed  Google Scholar 

  71. Hyatt KH, West DA. Reversal of bedrest-induced orthostatic intolerance by lower body negative pressure and saline. Aviat Space Environ Med. 1977;48(2):120–4.

    CAS  PubMed  Google Scholar 

  72. Lee SMC, Schneider SM, Watenpaugh DE, Lanemack A, Boda WL, Hargens AR. Supine LBNP exercise maintains upright exercise capacity after 30-d bed rest. Med Sci Sports Exerc. 2001;33(5), S2982001.

    Google Scholar 

  73. Kozlovskaya IB, Grigoriev AI. Russian system of countermeasures on board of the international space station (ISS): the first results. 54th international astronautical congress of the international astronautical federation, the International Academy of Astronautics, and the International Institute of Space Law 29 Sept – 3 Oct 2003, Bremen, Germany IAC-03-G.2.01. Published by the American Institute of Aeronautics and Astronautics, Inc

    Google Scholar 

  74. Bungo MW, Charles JB, Johnson Jr PC. Cardiovascular deconditioning during space flight and the use of saline as a countermeasure to orthostatic intolerance. Aviat Space Environ Med. 1985;56(10):985–90.

    CAS  PubMed  Google Scholar 

  75. Grenon SM, Xiao X, Hurwitz S, Sheynberg N, Kim C, Seely EW, Cohen RJ, Williams GH. Why is orthostatic tolerance lower in women than in men? Renal and cardiovascular responses to simulated microgravity and the role of midodrine. J Investig Me. 2006;54(4):180–90.

    CAS  CrossRef  Google Scholar 

  76. Shi SJ, South DA, Meck JV. Fludrocortisone does not prevent orthostatic hypotension in astronauts after space flight. Aviat Space Environ Med. 2004;75(3):235–9.

    CAS  PubMed  Google Scholar 

  77. Stenger MB, Evans JM, Knapp CF, Lee SM, Phillips TR, Perez SA, Moore Jr AD, Paloski WH, Platts SH. Artificial gravity training reduces bed rest-induced cardiovascular deconditioning. Eur J Appl Physiol. 2012;112(2):605–16.

    CrossRef  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor S. Schneider MD .

Editor information

Editors and Affiliations

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Ch 8_Cardio_Pulmonary (PDF 1365 kb)

Rights and permissions

Reprints and Permissions

Copyright information

© 2016 Springer Science+Business Media LLC

About this chapter

Cite this chapter

Schneider, V.S., Charles, J.B., Conkin, J., Prisk, G.K. (2016). Cardiopulmonary System: Aeromedical Considerations. In: Nicogossian, A., Williams, R., Huntoon, C., Doarn, C., Polk, J., Schneider, V. (eds) Space Physiology and Medicine. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-6652-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6652-3_8

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-6650-9

  • Online ISBN: 978-1-4939-6652-3

  • eBook Packages: MedicineMedicine (R0)