Skip to main content

Microbiology

  • Chapter
  • First Online:

Abstract

Microbes in space craft are an inevitable reality. Humans and the systems that support them will transfer bacteria, fungi, and viruses to the space craft environment. Over the past six decades, our understanding of microbiology in human space flight has increased considerably. We have gained a significant evidence-base and developed appropriate countermeasures to mitigate the deleterious effect of bacteria, fungi, and viruses during low Earth orbit space flight missions. The International Space Station (ISS) has proven to be a safe, habitable environment and is used to evaluate the microbial risk mitigation strategies needed during longer duration, exploration-class missions. As the space program moves toward exploration-class missions, it is increasingly important to minimize the risk of infectious disease in crew members and to protect the integrity of the space craft. Current and future research efforts will focus on understanding the host-microbe interactions, including changes in the human immune system as well as alterations in microbial function. This chapter reviews current knowledge of space flight microbial risks, summarizes the results from ISS and other space craft, and identifies future research, engineering, and monitoring needs to mitigate microbial risks during exploration-class missions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Wooley BC, McCollum GW. Flight crew health stabilization program. In: Johnston RS, Dietlein LF, Berry CA, editors. Biomedical results of Apollo (NASA SP-368). Washington, DC: National Aeronautics and Space Administration; 1975. p. 141–50. http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19760005580.pdf.

    Google Scholar 

  2. Mehta SK, Pierson DL, Cooley HN, Dubow RJ, Lugg DJ. Epstein-Barr virus reactivation associated with diminished cell-mediated immunity in Antarctic expeditioners. J Med Virol. 2000;61:235–40.

    Article  CAS  PubMed  Google Scholar 

  3. Stowe RP, Pierson DL, Feeback DL, Barratt ADT. Stress-induced reactivation of Epstein-Barr virus in astronauts. Neuroimmunomodulation. 2000;8:51–8.

    Article  CAS  PubMed  Google Scholar 

  4. Pierson DL, Stowe RP, Phillips TM, Lugg DJ, Mehta SK. Epstein-Barr virus shedding by astronauts during space flight. Brain Behav Immun. 2005;19:235–42.

    Article  CAS  PubMed  Google Scholar 

  5. Nickerson CA, Ott CM, Mister SJ, Morrow BJ, Burns-Keliher L, Pierson DL. Microgravity as a novel environmental signal affecting Salmonella enterica serovar Typhimurium virulence. Infect Immun. 2000;68:3147–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Nickerson CA, Ott CM, Wilson JW, Ramamurthy R, Pierson DL. Microbial responses to microgravity and other low-shear environments. Microbiol Mol Biol Rev. 2004;68:345–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Berry CA. The medical legacy of Apollo. Aerospace Med. 1974;45:1046–57.

    CAS  PubMed  Google Scholar 

  8. Taylor GR. Recovery of medically important microorganisms from Apollo astronauts. Aerospace Med. 1974;45:824–8.

    CAS  PubMed  Google Scholar 

  9. Taylor GR, Neale LS, Dardano JR. Immunological analysis of US Space Shuttle crew members. Aviat Space Environ Med. 1986;57:213–7.

    CAS  PubMed  Google Scholar 

  10. Pierson DL. Microbiology. In: Nicogossian AE, Huntoon CL, Pool SL, editors. Space physiology and medicine. 3rd ed. Philadelphia, PA: Lea & Febiger; 1993. p. 157–66.

    Google Scholar 

  11. Koenig DW, Novikova ND, Mishra SK, Viktorov AN, Skuratov V, Lizko NN, Pierson DL. Microbiology investigations of the Mir Space Station and flight crew. New Orleans, LA: American Society for Microbiology; 1996.

    Google Scholar 

  12. Nicogossian AE, Gaiser K. Biomedical challenges of space flight. In: DeHart R, editor. Fundamentals of aerospace medicine. 2nd ed. Baltimore, MD: Williams & Wilkins; 1996. p. 953–76.

    Google Scholar 

  13. Crucian BE, Babiak-Vazquez A, Mehta SK, Pierson DL, Sams CF. Incidence of adverse medical events during short and long-duration spaceflight. NASA Human Research Program Investigators’ workshop, Galveston, TX; USA, 12–13 Feb 2014

    Google Scholar 

  14. Talbot JM, Genin AM. Space medicine and biotechnology. In: Calvin M, Gazenko OG, editors. Foundations of space biology and medicine, vol. III. Moscow: Nauka; 1975.

    Google Scholar 

  15. Taylor GR. Overview of space flight immunology studies. J Leukoc Biol. 1993;54(3):179–88.

    CAS  PubMed  Google Scholar 

  16. Crucian BE, Stowe RP, Pierson DL, Sams CF. Immune system dysregulation following short- vs long-duration space flight. Aviat Space Environ Med. 2008;79(9):835–43.

    Article  PubMed  Google Scholar 

  17. Crucian B, Sams C. Immune system dysregulation during space flight: clinical risk for exploration-class missions. J Leukoc Biol. 2009;86(5):1017–8.

    Article  CAS  PubMed  Google Scholar 

  18. Gueguinou N, Huin-Schohn C, Bascove M, Bueb JL, Tschirhart E, Legrand-Frossi C, Frippiat JP. Could space flight-associated immune system weakening preclude the expansion of human presence beyond Earth’s orbit? J Leukoc Biol. 2009;86(5):1027–38.

    Article  CAS  PubMed  Google Scholar 

  19. Crucian B, Stowe R, Mehta S, Uchakin P, Quiriarte H, Pierson D, Sams C. Immune system dysregulation occurs during short duration space flight on board the Space Shuttle. J Clin Immunol. 2013;33(2):456–65.

    Article  CAS  PubMed  Google Scholar 

  20. Meehan RT. Human mononuclear cell in vitro activation in microgravity and post-space flight Immunology of proteins and peptides IV. In: Atassi MZ, Bachach HL, editors. Advances in experimental medicine and biology. New York, NY: Springer; 1987. p. 273–86.

    Google Scholar 

  21. Manie S, Konstantinova I, Breittmayer JP, Ferrua B, Schaffer L. Effects of long-duration space flight on human T-lymphocyte and monocyte activity. Aviat Space Environ Med. 1991;62(12):1153–8.

    CAS  PubMed  Google Scholar 

  22. Taylor GR, Janney RP. In vivo testing confirms a blunting of the human cell-mediated immune mechanism during space flight. J Leukoc Biol. 1992;51:129–32.

    CAS  PubMed  Google Scholar 

  23. Stowe RP, Sams CF, Mehta SK, Kaur I, Jones ML, Feeback DL, Pierson DL. Leukocyte subsets and neutrophil function after short-term space flight. J Leukoc Biol. 1999;65(2):179–86.

    CAS  PubMed  Google Scholar 

  24. Mehta SK, Kaur I, Grimm EA, Smid C, Feeback DL, Pierson DL. Decreased non-MHC-restricted (CD56+) killer cell cytotoxicity after space flight. J Appl Physiol. 2001;91(14):1815–8.

    Google Scholar 

  25. Kaur I, Simons ER, Castro VA, Mark Ott C, Pierson DL. Changes in neutrophil functions in astronauts. Brain Behav Immun. 2004;18(5):443–50.

    Article  CAS  PubMed  Google Scholar 

  26. Kaur I, Simons ER, Castro VA, Ott CM, Pierson DL. Changes in monocyte functions of astronauts. Brain Behav Immun. 2005;19(6):547–54.

    Article  CAS  PubMed  Google Scholar 

  27. Sonnenfield G, Butel JS, Shearer WT. Effects of the space flight environment on the immune system. Rev Environ Health. 2003;18(1):1–17.

    Article  Google Scholar 

  28. Pierson DL, Mehta DL, Stowe RP. Reactivation of latent herpes viruses in astronauts. Psychoneuroimmunology. 2007;4(E II):851–68.

    Article  Google Scholar 

  29. Payne DA, Mehta SK, Tyring SK, Stowe RP, Pierson DL. Incidence of Epstein-Barr virus in astronaut saliva during space flight. Aviat Space Environ Med. 1999;70(12):1211–3.

    CAS  PubMed  Google Scholar 

  30. Mehta SK, Stowe RP, Feiveson AH, Tyring SK, Pierson DL. Reactivation and shedding of cytomegalovirus in astronauts during space flight. J Infect Dis. 2000;182(6):1761–4.

    Article  CAS  PubMed  Google Scholar 

  31. Mehta SK, Cohrs RJ, Forghani B, Zerbe G, Gilden DH, Pierson DL. Stress-induced subclinical reactivation of varicella zoster virus in astronauts. J Med Virol. 2004;72(1):175–9.

    Article  Google Scholar 

  32. Cohrs RJ, Mehta SK, Kaur I, Jones ML, Feeback DL, Pierson DL. Asymptomatic reactivation and shed of infectious varicella zoster virus in astronauts. J Med Virol. 2008;80(6):1116–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Mehta SK, Laudenslager ML, Stowe RP, Crucian BE, Sams CF, Pierson DL. Multiple latent viruses reactivate in astronauts during Space Shuttle missions. Brain Behav Immun. 2014;41:210–7.

    Article  CAS  PubMed  Google Scholar 

  34. Mehta SK, Tyring SK, Cohrs RJ, Gilden D, Feiveson AH, Lechler KJ, Pierson DL. Rapid and sensitive detection of varicella zoster virus in saliva of patients with herpes zoster. J Virol Methods. 2013;193(1):128–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Dickson KJ. Summary of biological space flight experiments with cells. ASGSB Bulletin. 1991;4(2):151–260.

    CAS  PubMed  Google Scholar 

  36. Horneck G, Klaus DM, Mancinelli RL. Space microbiology. Microbiol Mol Biol Rev. 2010;74(1):121–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Klaus D, Simske S, Todd P, Stodiek L. Investigation of space flight effects on Escherichia coli and a proposed model of underlying physical mechanisms. Microbiology. 1997;143(Pt 2):449–55.

    Article  CAS  PubMed  Google Scholar 

  38. Wilson JW, Ott CM, Höner zu Bentrup K, Ramamurthy R, Quick L, Porwollik S, et al. Space flight alters bacterial gene expression and virulence and reveals a role for global regulator Hfq. Proc Natl Acad Sci. 2007;104(41):16299–304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wilson JW, Ott CM, Quick L, Davis R, Höner zu Bentrup K, Crabbé A, et al. Media ion composition controls regulatory and virulence response of Salmonella in space flight. PLoS One. 2008;3(12), e3923.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Crabbé A, Schurr MJ, Monsieurs P, Morici L, Schurr J, Wilson JW, et al. Transcriptional and proteomic response of Pseudomonas aeruginosa PAO1 to space flight conditions involves Hfq regulation and reveals a role for oxygen. Appl Environ Microbiol. 2011;77(4):1221–30.

    Article  PubMed  Google Scholar 

  41. Kim W, Tengra FK, Young Z, Shong J, Marchand N, Chan HK, et al. Space flight promotes biofilm formation by Pseudomonas aeruginosa. PLoS One. 2013;8(4), e62437.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kim W, Tengra FK, Shong J, Marchand N, Chan HK, Young Z, et al. Effect of space flight on Pseudomonas aeruginosa final cell density is modulated by nutrient and oxygen availability. BMC Microbiol. 2013;13:241.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Crabbé A, Nielsen-Preiss SM, Woolley CM, Barrila J, Buchanan K, McCracken J, et al. Space flight enhances cell aggregation and random budding in Candida albicans. PLoS One. 2013;8(12), e80677.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Fang A, Pierson DL, Koenig DW, Mishra SK, Demain AL. Effect of simulated microgravity and shear stress on Microcin B17 production by Escherichia coli and on its excretion into the medium. Appl Environ Microbiol. 1997;63(10):4090–2.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Fang AL, Pierson DL, Mishra SK, Koenig DL, Demain AL. Gramicidin S production in Bacillus brevis in simulated microgravity. Curr Microbiol. 1997;34(4):199–204.

    Article  CAS  PubMed  Google Scholar 

  46. Fang A, Pierson DL, Mishra SK, Koenig DW, Demain AL. Secondary metabolism in simulated microgravity: β-lactam production by Streptomyces clavuligerus. J Ind Microbiol. 1997;18(1):22–5.

    Article  CAS  Google Scholar 

  47. Wilson JW, Ramamurthy R, Porwollik S, McClelland M, Hammond T, Allen P, Ott CM, Pierson DL, Nickerson CA. Microarray analysis identifies Salmonella genes belonging to the low-shear modeled microgravity regulon. Proc Natl Acad Sci USA. 2002;99(21):13807–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Pellis NR, Goodwin TJ, Risin D, McIntyre BW, Pizzini RP, Cooper D, Baker TL, Spaulding GF. Changes in gravity inhibit lymphocyte locomotion through type I collagen. In Vitro Cell Dev Biol Anim. 1997;33(5):398–405.

    Article  CAS  PubMed  Google Scholar 

  49. Grigoriev AI, Bugrov SA, Bogomolov VV, Egorov AD, Polyakov VV, Tarasov IK, Shulzhenko EB. Main medical results of extended flights on space station Mir in 1986–1990. Acta Astronaut. 1993;29(8):581–5.

    Article  CAS  PubMed  Google Scholar 

  50. Pierson DL. Microbial contamination of spacecraft. Gravit Space Biol Bull. 2001;14(2):1–6.

    CAS  PubMed  Google Scholar 

  51. Ott CM, Bruce RJ, Pierson DL. Microbial characterization of free floating condensate aboard the Mir space station. Microb Ecol. 2004;47(2):133–6.

    Article  CAS  PubMed  Google Scholar 

  52. Novikova ND. Review of the knowledge of microbial contamination of the Russian manned spacecraft. Microb Ecol. 2004;47(2):127–32.

    Article  CAS  PubMed  Google Scholar 

  53. Pierson DL, Bruce R, Castro VA, Mehta SK. Microbiological lessons learned from the Space Shuttle. In: 41st International meeting on environmental systems, Portland, OR, 17–21 Jul 2011.

    Google Scholar 

  54. National Aeronautics and Space Administration (NASA). Medical operations requirements document for space shuttle, 2007. Document number: JSC 13956.

    Google Scholar 

  55. Castro VA, Thrasher AN, Healy M, Ott CM, Pierson DL. Microbial characterization during the early habitation of the International Space Station. Microb Ecol. 2004;47(2):119–26.

    Article  CAS  PubMed  Google Scholar 

  56. Pierson DL, Botkin DJ, Bruce RK, Castro VA, Smith MJ, Oubre CM, Ott CM. Microbial monitoring of the International Space Station. In: Moldenhauer J, editor. Environmental monitoring: a comprehensive handbook, vol. 6. Bethesda, MD: Parenteral Drug Association, DHI Publishing, LLC; 2012. p. 1–28.

    Google Scholar 

Download references

Acknowledgements

The authors thank Drs. Douglas Botkin, Satish Mehta, and Tatyana Modlin for their scientific contributions and review of the chapter. We also thank the crew of the ISS for sample collection and processing, the ISS Program Office, and the Microbiology Laboratory at the Johnson Space Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duane L. Pierson PhD .

Editor information

Editors and Affiliations

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Ch 5_Microbiology (PDF 844 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media LLC

About this chapter

Cite this chapter

Oubre, C.M., Pierson, D.L., Ott, C.M. (2016). Microbiology. In: Nicogossian, A., Williams, R., Huntoon, C., Doarn, C., Polk, J., Schneider, V. (eds) Space Physiology and Medicine. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-6652-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6652-3_5

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-6650-9

  • Online ISBN: 978-1-4939-6652-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics