Skip to main content

Part of the book series: Springer Series in Statistics ((SSS))

  • 2819 Accesses

Abstract

This chapter sets the stage for the development of the book. The discussion in this chapter concerns the standard context in which mismeasurement is absent. This chapter lays out a broad framework for parametric inferences where estimation is of central interest. §1.1 outlines the inference framework and the objectives. Important issues concerning modeling and inferences are discussed in §1.2. Representative and useful estimation methodology is reviewed in §1.3. Strategies of handling model misspecification are described in §1.4, and the extension to the regression setting is included in §1.5. Brief bibliographic notes are presented in §1.6.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allman, E. S., Matias, C., and Rhodes, J. A. (2009). Identifiability of parameters in latent structure models with many observed variables. The Annals of Statistics, 37, 3099–3132.

    Article  MathSciNet  MATH  Google Scholar 

  • Bai, Z. D. and Fu, J. C. (1987). On the maximum-likelihood estimator for the location parameter of a Cauchy distribution. The Canadian Journal of Statistics, 15, 137–146.

    Article  MathSciNet  MATH  Google Scholar 

  • Barndorff-Nielsen, O. (1983). On a formula for the distribution of the maximum likelihood estimator. Biometrika, 70, 343–365.

    Article  MathSciNet  MATH  Google Scholar 

  • Barndorff-Nielsen, O. E. (1986). Inference on full or partial parameters based on the standardized signed log likelihood ratio. Biometrika, 73, 307–322.

    MathSciNet  MATH  Google Scholar 

  • Bhapkar, V. P. (1972). On a measure of efficiency of an estimating equation. Sankhyā: The Indian Journal of Statistics, Series A, 34, 467–472.

    MathSciNet  MATH  Google Scholar 

  • Bickel, P. J. and Doksum, K. A. (1977). Mathematical Statistics. Holden-Day, Inc. San Francisco.

    MATH  Google Scholar 

  • Chen, H. Y. (2011). A unified framework for studying parameter identifiability and estimation in biased sampling designs. Biometrika, 98, 163–175.

    Article  MathSciNet  MATH  Google Scholar 

  • Cox, D. R. (2006). Principles of Statistical Inference. Cambridge University Press, Cambridge.

    Book  MATH  Google Scholar 

  • Cox, D. R. and Hinkley, D. V. (1974). Theoretical Statistics. Chapman & Hall/CRC, Boca Raton, Florida.

    Book  MATH  Google Scholar 

  • Draper, D. (1995). Assessment and propagation of model uncertainty. Journal of the Royal Statistical Society, Series B, 57, 45–97.

    MathSciNet  MATH  Google Scholar 

  • Durbin, J. (1960). Estimation of parameters in time-series regression models. Journal of the Royal Statistical Society, Series B, 22, 139–153.

    MathSciNet  MATH  Google Scholar 

  • Efron, B. and Tibshirani, R. J. (1993). An Introduction to the Bootstrap. Chapman & Hall, New York.

    Book  MATH  Google Scholar 

  • Ferguson, T. S. (1978). Maximum likelihood estimates of the parameters of the Cauchy distribution for samples of size 3 and 4. Journal of the American Statistical Association, 73, 211–213.

    Article  Google Scholar 

  • Ferguson, H., Reid, N., and Cox, D. R. (1991). Estimating equations from modified profile likelihood. In Estimating Functions, Edited by V. P. Godambe, 279–293. Oxford University Press, Oxford.

    Google Scholar 

  • Fisher, R. A. (1922). On the mathematical foundations of theoretical statistics. Philosophical Transactions of the Royal Society of London, Series A, 222, 309–368.

    Article  MATH  Google Scholar 

  • Fitzmaurice, G., Davidian, M., Verbeke, G., and Molenberghs, G. (2009). Longitudinal Data Analysis, Chapman & Hall /CRC, Boca Raton, Florida.

    MATH  Google Scholar 

  • Freedman, D. A. (2009). Statistical Models: Theory and Practice. Cambridge University Press, New York.

    Book  MATH  Google Scholar 

  • Gabrielsen, A. (1978). Consistency and identifiability. Journal of Econometrics, 8, 261–263.

    Article  MathSciNet  MATH  Google Scholar 

  • Godambe, V. P. (1960). An optimum property of regular maximum likelihood estimation. The Annals of Mathematical Statistics, 31, 1208–1212.

    Article  MathSciNet  MATH  Google Scholar 

  • Godambe, V. P. (1991). Estimating Functions. Oxford University Press, USA.

    MATH  Google Scholar 

  • Gourieroux, C., Monfort, A., and Trognon, A. (1984). Pseudo maximum likelihood methods: Theory. Econometrica, 52, 68l-700.

    Google Scholar 

  • Gustafson, P. (2005). On model expansion, model contraction, identifiability and prior information: Two illustrative scenarios involving mismeasured variables. Statistical Science, 20, 111–140.

    Article  MathSciNet  MATH  Google Scholar 

  • Hanfelt, J. J. and Liang, K.-Y. (1995). Approximate likelihood ratios for general estimating functions. Biometrika, 82, 461–477.

    Article  MathSciNet  MATH  Google Scholar 

  • Hansen, L. P. (1982). Large sample properties of generalized method of moments estimators. Econometrica, 50, 1029–1054.

    Article  MathSciNet  MATH  Google Scholar 

  • Härdle, W. and Linton, O. (1994). Nonparametric regression. In Handbook of Econometrics, Vol. 4, edited by R. Engle and D. McFadden. Amsterdam: North-Holland.

    Google Scholar 

  • Henmi, M. and Eguchi, S. (2004). A paradox concerning nuisance parameters and projected estimating functions. Biometrika, 91, 929–941.

    Article  MathSciNet  MATH  Google Scholar 

  • Heyde, C. C. (1997). Quasi-Likelihood and its Application: A General Approach to Optimal Parameter Estimation. Springer-Verlag New York, Inc.

    Book  MATH  Google Scholar 

  • Heyde, C. C. and Morton, R. (1998). Multiple roots in general estimating equations. Biometrika, 85, 954–959.

    Article  MATH  Google Scholar 

  • Huber, P. J. (1967). The behavior of maximum likelihood estimates under nonstandard conditions. In Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, University of California Press, Berkeley, 221–233.

    Google Scholar 

  • Jiang, W. and Turnbull, B. W. (2004). The indirect method: Inference based on intermediate statistics – A synthesis and examples. Statistical Science, 19, 239–263.

    Article  MathSciNet  MATH  Google Scholar 

  • Kalbfleisch, J. D. and Sprott, D. A. (1970). Application of likelihood methods to models involving large numbers of parameters (with discussion). Journal of the Royal Statistical Society, Series B, 32, 175–208.

    MathSciNet  MATH  Google Scholar 

  • Kent, J. T. (1982). Robust properties of likelihood ratio tests. Biometrika, 69, 19–27.

    MathSciNet  MATH  Google Scholar 

  • Koopmans, T. C. (1949). Identification problems in economic model construction. Econometrica, 17, 125–144.

    Article  MathSciNet  MATH  Google Scholar 

  • Koopmans, T. C. and Reiersøl, O. (1950). The identification of structural characteristics. The Annals of Mathematical Statistics, 21, 165–181.

    Google Scholar 

  • Lehmann, E. L. (1999). Elements of Large-Sample Theory. Springer-Verlag New York, LLC.

    Book  MATH  Google Scholar 

  • Lehmann, E. L. and Casella, G. (1998). Theory of Point Estimation. 2nd edition, Springer-Verlag New York, Inc.

    MATH  Google Scholar 

  • Liang, K.-Y. (1987). Estimating functions and approximate conditional likelihood. Biometrika, 74, 695–702.

    Article  MathSciNet  MATH  Google Scholar 

  • Liang, K.-Y. and Zeger, S. L. (1986). Longitudinal data analysis using generalized linear models. Biometrika, 73, 13–22.

    Article  MathSciNet  MATH  Google Scholar 

  • Liang, K.-Y. and Zeger, S. L. (1995). Inference based on estimating functions in the presence of nuisance parameters. Statistical Science, 10, 158–173.

    Article  MathSciNet  MATH  Google Scholar 

  • Lindsay, B. G. (1988). Composite likelihood methods. Contemporary Mathematics, 80, 221–239.

    Article  MathSciNet  MATH  Google Scholar 

  • Lindsay, B. G., Yi, G., Y., and Sun, J. (2011). Issues and strategies in the selection of composite likelihoods. Statistica Sinica, 21, 71–105.

    Google Scholar 

  • McCullagh, P. (1983). Quasi-likelihood functions. The Annals of Statistics, 11, 59–67.

    Article  MathSciNet  MATH  Google Scholar 

  • McCullagh, P. and Nelder, J. A. (1989). Generalized Linear Models. 2nd edition. London: Chapman & Hall/CRC.

    Book  MATH  Google Scholar 

  • McCullagh, P. and Tibshirani, R. (1990). A simple method for the adjustment of profile likelihoods. Journal of the Royal Statistical Society, Series B, 52, 325–344.

    MathSciNet  MATH  Google Scholar 

  • Newey, W. K. and McFadden, D. (1994). Large sample estimation and hypothesis testing. In Handbook of Econometrics, Vol. 4, 2111–2245, eds. R.F. Engle and D. L. McFadden, Amsterdam: North-Holland.

    Google Scholar 

  • Neyman. J. and Scott, E. L. (1948). Consistent estimates based on partially consistent observations. Econometrica, 16, 1–32.

    Article  MathSciNet  MATH  Google Scholar 

  • Ning, Y., Yi, G. Y., and Reid, N. (2017). A class of weighted estimating equations for semiparametric transformation models with missing covariates. Scandinavian Journal of Statistics (to appear).

    Google Scholar 

  • Pakes, A. and D. Pollard (1989). Simulation and the asymptotics of optimization estimators. Econometrica, 57, 1027–1057.

    Article  MathSciNet  MATH  Google Scholar 

  • Pollard, D. (1985). New ways to prove central limit theorems. Econometric Theory, 1, 295–313.

    Article  Google Scholar 

  • Rao, B. L. S. P. (1992). Identifiability in Stochastic Models: Characterization of Probability Distributions. Boston Academic Press.

    MATH  Google Scholar 

  • Robins, J. M., Rotnitzky, A., and Zhao, L. P. (1994). Estimation of regression coefficients when some regressors are not always observed. Journal of the American Statistical Association, 89, 846–866.

    Article  MathSciNet  MATH  Google Scholar 

  • Roehrig, C. S. (1988). Conditions for identification in nonparametric and parametric models. Econometrica, 56, 433–447.

    Article  MathSciNet  MATH  Google Scholar 

  • Rothenberg, T. J. (1971). Identification in parametric Models. Econometrica, 39, 577–591.

    Article  MathSciNet  MATH  Google Scholar 

  • Royall, R. M. (1986). Model robust confidence intervals using maximum likelihood estimators. International Statistical Review, 54, 221–226.

    Article  MathSciNet  MATH  Google Scholar 

  • Self, S. G. and Liang, K.-Y. (1987). Asymptotic properties of maximum likelihood estimators and likelihood ratio tests under nonstandard conditions. Journal of the American Statistical Association, 82, 605–610.

    Article  MathSciNet  MATH  Google Scholar 

  • Serfling, R. J. (1980). Approximation Theorems of Mathematical Statistics. New York: Wiley.

    Book  MATH  Google Scholar 

  • Shao, J. (2003). Mathematical Statistics. 2nd edition, Springer-Verlag New York, Inc.

    Book  MATH  Google Scholar 

  • Thompson, J. R. and Carter, R. L. (2007). An overview of normal theory structural measurement error models. International Statistical Review, 75, 183–198.

    Article  Google Scholar 

  • van der Vaart, A. W. (1998). Asymptotic Statistics. Cambridge University Press, Cambridge.

    Book  MATH  Google Scholar 

  • Varin, C., Reid, N., and Firth, D. (2011). An overview of composite likelihood methods. Statistica Sinica, 21, 5–42.

    MathSciNet  MATH  Google Scholar 

  • Wedderburn, R. W. M. (1974). Quasi-likelihood, generalized linear models, and the Gauss-Newton method. Biometrika, 61, 439–447.

    MathSciNet  MATH  Google Scholar 

  • White, H. (1982). Maximum likelihood estimation of misspecified models. Econometrica, 50, 1–25.

    Article  MathSciNet  MATH  Google Scholar 

  • Yanagimoto, T. and Yamamoto, E. (1991). The role of unbiasedness in estimating equations. In Estimating Functions, Edited by V. P. Godambe, 89–101. Oxford University Press, Oxford.

    Google Scholar 

  • Yi, G. Y. and Reid, N. (2010). A note on mis-specified estimating functions. Statistica Sinica, 20, 1749–1769.

    MathSciNet  MATH  Google Scholar 

  • Young, G. A. and Smith, R. L. (2005). Essentials of Statistical Inference. Cambridge University Press, New York.

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Yi, G.Y. (2017). Inference Framework and Method. In: Statistical Analysis with Measurement Error or Misclassification. Springer Series in Statistics. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-6640-0_1

Download citation

Publish with us

Policies and ethics