Abstract
Neurotransmitter systems form the organizational backbone for this chapter. We briefly summarize the central nervous system (CNS) excitatory and inhibitory neurotransmitters. The excitatory systems mediate CNS arousal, alertness, activity, and responsiveness to environment, and may also heighten autonomic nervous system (ANS) activation. We end our chapter briefly discussing brain chemistry orchestrating sleep–wake regulation including rapid eye movement (REM) and non-REM cycling.
Keywords
- Neurotransmitters
- Dopamine
- Catecholamine
- Acetylcholine
- Glutamate
- Orexin
- Histamine
- GABA
This is a preview of subscription content, access via your institution.
Buying options









References
Moore KE (1971) Biochemical correlates of the behavioral effects of drugs. In: Rech RH, Moore KE (eds) An introduction to psychopharmacology. Raven Press, New York, pp 79–136
Stahl SM (2000) Essential psychopharmacology, 2nd edn. Cambridge University Press, New York
Swerdlow NR, Koob GF (1987) Lesions of the dorsomedial nucleus of the thalamus, medial prefrontal cortex and pedunculopontine nucleus: effects on locomotor activity mediated by nucleus accumbens-ventral pallidal circuitry. Brain Res 412(2):233–243
Szabo ST, Gould TD, Manji HK (2004) Neurotransmitters, receptors, signal transduction, and second messengers in psychiatric disorders. In: Schatzberg AF, Nemeroff CB (eds) Textbook of psychopharmacology, 3rd edn. American Psychiatric Publishing, Washington, D.C.
Espana RA, Scammell TE (2004) Sleep neurobiology for the clinician. Sleep 27:811–820
Grilly DM (2006) Chapter 5: neuroactive ligands and the nervous system. In: Drugs and human behavior. Boston, Pearson, pp 79–101
Grilly DM (2006) Antidepressants and mood stabilizers. In: Grilly DM (ed) Drugs and human behavior. Pearson, Boston, pp 317–347
Sangal RB, Owens J, Allen AJ, Sutton V, Schuh K, Kelsey D (2006) Effects of atomoxetine and methylphenidate on sleep in children with ADHD. Sleep 29(12):1573–1585
Mendelson WB (1987) Pharmacology and neurotransmitters in sleep. In: Mendelson WB (ed) Human sleep: research and clinical care. Plenum Medical Book Company, New York, pp 33–79
Jasinski DR, Krishnan S (2009) Abuse liability of oral lisdexamfetamine dimesylate in individuals with a history of stimulant abuse. J Psychopharmacol 4:419–427
Hirshkowitz M (2006) Therapy for excessive sleepiness. In: Lee-Chiong T (ed) Sleep: a comprehensive handbook. Wiley-Liss, New Jersey, pp 191–196
Aviden AY (2006) Motor disorders of sleep and parasomnias. In: Avidan AY, Zee PC (eds) Handbook of sleep medicine. Lippincott, Williams and Wilkins, Philadelphia, pp 98–136
Oertel WH, Benes H, Garcia-Borreguero D, Geisler P, Högl B, Trenkwalder C, Tacken I, Schollmayer E, Kohnen R, Stiasny-Kolster K (2008) Rotigotine SP710 study group: one year open-label safety and efficacy trial with rotigotine transdermal patch in moderate to severe idiopathic restless legs syndrome. Sleep Med 9(8):865–873
Ondo W (2004) Secondary restless legs syndrome. In: Chaudhuri KR, Odin P, Olanow CW (eds) Restless legs syndrome. Taylor and Francis, London, pp 57–84
Yang CK, Winkelman JW (2005) Antidepressant and antipsychotic drugs and sleep. In: Sleep research society. SRS basics of sleep guide. Sleep Research Society, Westchester, Illinois, pp 167–173
Vogel GW, Traub AC, Ben-Horin P, Meyers GM (1968) REM deprivation. II. The effects on depressed patients. Arch Gen Psychiatry 18(3):301–311
Schweitzer PK (2000) Drugs that disturb sleep and wakefulness. In: Kryger MH, Roth T, Dement WC (eds) Principles and practice of sleep medicine, 3rd edn. WB Saunders, Philadelphia, pp 441–461
Becker PM (2005) Pharmacologic and nonpharmacologic treatments of insomnia. Neurol Clin 23(4):1149–1163
Ishizuka T, Murakami M, Yamatodani A (2008) Involvement of central histaminergic systems in modafinil-induced but not methylphenidate-induced increases in locomotor activity in rats. Eur J Pharmacol 578(2–3):209–215
Lin J, Hou Y, Jouvet M (1996) Potential brain neuronal targets for amphetamine-, methylphenidate-, and modafinil-induced wakefulness, evidenced by c-fos immunocytochemistry in the cat. Proc Natl Acad Sci 14128–14133
U.S. (1998) Modafinil in narcolepsy multicenter study group: randomized trial of modafinil for the treatment of pathological somnolence in narcolepsy. Ann Neurol 43:88–97
Czeisler CA, Walsh JK, Roth T, Hughes RJ, Wright KP, Kingsbury L, Arora S, Schwartz JR, Niebler GE, Dinges DF (2005) Modafinil for excessive sleepiness associated with shift-work sleep disorder. N Engl J Med 353(5):476–486
Mitler MM, Harsh J, Hirshkowitz M (2000) Treatment of excessive daytime sleepiness associated with narcolepsy: a post-hoc analysis of clinical response to 200-Mg and 400-Mg doses of modafinil (Provigil®). Sleep 23:a292–a293
Bittencourt LR, Lucchesi LM, Rueda AD, Garbuio SA, Palombini LO, Guilleminault C, Tufik S (2008) Placebo and modafinil effect on sleepiness in obstructive sleep apnea. Prog Neuropsychopharmacol Biol Psychiatry 32(2):552–559
Schwartz JR, Nelson MT, Schwartz ER, Hughes R (2004) Effects of modafinil on wakefulness and executive function in patients with narcolepsy experiencing late-day sleepiness. Clin Neuropharmacol 27(2):74–79
Black JE, Hirshkowitz M (2005) Modafinil for treatment of residual excessive sleepiness in nasal continuous positive airway pressure-treated obstructive sleep apnea/hypopnea syndrome. Sleep 28(4):464–471
Morgenthaler TI, Kapur VK, Brown T, Swick TJ, Alessi C, Aurora RN, Boehlecke B, Chesson AL Jr, Friedman L, Maganti R, Owens J, Pancer J, Zak R (2007) Practice parameters for the treatment of narcolepsy and other hypersomnias of central origin. Sleep 30(12):1705–1711
Hart CL, Haney M, Vosburg SK, Comer SD, Gunderson E, Foltin RW (2006) Modafinil attenuates disruptions in cognitive performance during simulated night-shift work. Neuropsychopharmacology 31:1526–1536
Chemelli RM, Willie JT, Sinton CM et al (1999) Narcolepsy in orexin knockout mice: molecular genetics of sleep regulation. Cell 98:437–451
Lin L, Faraco J, Li R et al (1999) The sleep disorder canine narcolepsy is caused by a mutation in the hypocretin (orexin) receptor 2 gene. Cell 98:365–366
Nambu T, Sakurai T, Mizukami K, Hosoya Y, Yanagisawa M, Goto K (1999) Distruibution of orexin neurons in the adult rat brain. Brain Res 827:243–260
Nishino S, Ripley B, Overeem S et al (2000) Hypocretin (orexin) deficiency in human narcolepsy. Lancet 355:39–40
Deadwyler SA, Porrino L, Siegel JM, Hampson RE (2007) Systemic and nasal delivery of orexin-A (Hypocretin-1)reduces the effects of sleep deprivation on cognitive performance in nonhuman primates. J Neurosci 27:4239–4247
Winrow CJ, Gotter AL, Cox CD, Doran SM, Tannenbaum PL, Breslin MJ, Garson SL, Fox SV (2011) Promotion of sleep by suvorexant—A novel dual orexin receptor antagonist. J Neurogenet 25(1–2):52–61
Hoever P, Dorffner G, Benes H, Penzel T, Danker-Hopfe H, Barbanoj MJ, Pillar G, Saletu B, Polo O, Kunz D, Zeithofer J, Berg S, Partinen M, Basseti CL, Hogl B, Ebrahim IO, Holsboer-Trachsler E, Bengsstom H, Peker Y, Hemmeter UM, Chiossi E, Hajak G, Dingemanse J (2012) Orexin receptor antagonism, a new sleep-enabling paradigm: a proof-of-concept clinical trial. Clin Pharmacol Ther 91(6):975–985
López-Muñoz F, Ucha-Udabe R, Alamo C (2005) The history of barbiturates a century after their clinical introduction. Neuropsychiatry Dis Treat 1(4):329–343
Kay DC, Blackburn AB, Buckingham JA, Karacan I (1976) Human pharmacology of sleep. In: Williams RL, Karacan I (eds) Pharmacology of sleep. John Wiley and Sons, New York, pp 83–210
Freemon FR (1973) Clinical pharmacology of sleep: a critical review of all-night electroencephalographic studies. Behav Neuropsychiatry 4–5(11–12, 1–6):49–60
Karacan I, Orr W, Roth T, Kramer M, Thornby J, Bingham S, Kay D (1981) Dose-related effects of phenobarbitone on human sleep-waking patterns. Br J Clin Pharmacol 12(3):303–313
Griffiths RR, Johnson MW (2005) Relative abuse liability of hypnotic drugs: a conceptual framework and algorithm for differentiating among compounds. J Clin Psychiatry 66(suppl 9):31–41
Ballenger JC (2005) Benzodiazepines. In: Schatzberg AF, Nemeroff CB (eds) Textbook of psychopharmacology. American Pychiatric Press, Washington, D.C., pp 215–230
Mendelson WB (1992) Neuropharmacology of sleep induction by benzodiazepines. Crit Rev Neurobiol 6:221–232
Kagen F, Harwood T, Rickels K, Rudzik AD, Sorer H (eds) (1975) Hypnotics. Spectrum Publications, New York
Monti JM, Monti D (2006) Overview of currently available benzodiazepine and nonbenzodiazepine hypnotics. In: Pandi-Perumal SR, Monti JM (eds) Clinical pharmacology of sleep. Birkhausser Verlag, Switzerland, pp 207–223
Roth T (2005) Sedative hypnotics. In: Sleep research society. SRS basics of sleep guide. Sleep Research Society, Westchester, Illinois, pp 143–149
Morris HH 3rd, Estes ML. Traveler’s amnesia. Transient global amnesia secondary to triazolam. JAMA 258(7):945–946
Charney DS, Mihic SJ, Harris RA (2001) Hypnotics and sedatives. In: Hardman JG, Limbird LE (eds) Goodman and Gilman’s the pharmacological basis of therapeutics, 10th edn. McGraw-Hill, New York, pp 399–427
Hindmarch IE (1990) Zopiclone monograph. Adis Press International, Manchester
Griebel G, Perrault G, Letang V, Granger P, Avenet P, Schoemaker H, Sanger DJ (1999) New evidence that the pharmacological effects of benzodiazepine receptor ligands can be associated with activities at different BZ (omega) receptor subtypes. Psychopharmacology 146(2):205–213
Kralic JE, O’Buckley TK, Khisti RT, Hodge CW, Homanics GE, Morrow AL (2002) GABA(A) receptor alpha-1 subunit deletion alters receptor subtype assembly, pharmacological and behavioral responses to benzodiazepines and zolpidem. Neuropharmacology 43(4):685–694
Huang Q, Liu R, Zhang P, He X, McKernan R, Gan T, Bennett DW, Cook JM (1998) Predictive models for GABAA/benzodiazepine receptor subtypes: studies of quantitative structure-activity relationships for imidazobenzodiazepines at five recombinant GABAA/benzodiazepine receptor subtypes [alpha × beta3gamma2 (x = 1–3,5, and 6)] via comparative molecular field analysis. J Med Chem 41(21):4130–4142
Kleitman N (1987) Sleep and wakefulness. University of Chicago Press, Chicago
Elmenhorst D, Meyer PT, Winz OH, Matusch A, Ermert J, Coenen HH, Basheer R, Haas HL, Zilles K, Bauer A (2007) Sleep deprivation increases A1 adenosine receptor binding in the human brain: a positron emission tomography study. J Neurosci 27(9):2410–2415
Thakkar MM, Delgiacco RA, Strecker RE, McCarley RW (2003) Adenosinergic inhibition of basal forebrain wakefulness-active neurons: a simultaneous unit recording and microdialysis study in freely behaving cats. Neuroscience 122(4):1107–1113
Listos J, Malec D, Fidecka S (2006) Adenosine receptor antagonists intensify the benzodiazepine withdrawal signs in mice. Pharmacol Rep 58(5):643–651
Roehrs T, Roth T (2008) Caffeine: sleep and daytime sleepiness. Sleep Med Rev 12(2):153–162
Pendergrast M (1999) Uncommon grounds. Basic Books, New York
McNeil CL (2007) Chocolate in Mesoamerica: a cultural history of cacao. University Press of Florida, Gainesville
Brooks PL, Peever JH (2008) Glycinergic and GABA(A)-mediated inhibition of somatic motoneurons does not mediate rapid eye movement sleep motor atonia. J Neurosci 28(14):3535–3545
McCarley RW (2007) Neurobiology of REM and NREM sleep. Sleep Med 8(4):302–330
Sleep Research Society (1993) Chemical and neuronal mechanisms of sleep and wakefulness. UCLA and SRS, Los Angeles, pp 41–44
Aldrich MS (1999) Neurobiology of sleep. In: Aldrich MS sleep medicine. Oxford University Press, New York, pp 27–38
Riemann D, Hohagen F, Bahro M, Lis S, Stadmüller G, Gann H, Berger M (1994) Cholinergic neurotransmission, REM sleep and depression. J Psychosom Res 38(Suppl 1):15–25
Gillin JC, Sutton L, Ruiz C, Kelsoe J, Dupont RM, Darko D, Risch SC, Golshan S, Janowsky D (1991) The cholinergic rapid eye movement induction test with arecoline in depression. Arch Gen Psychiatry 48(3):264–270
Baghdoyan HA, McCarley RW, Hobson JA (1985) Cholinergic manipulation of brainstem reticular systems: effect on desynchronized sleep generation. In: Wauquier A, Monti JM, Gaillard JM, Radulovacki M (eds) Sleep: neurotransmitters and neuromodulators. Raven Press, New York, pp 15–27
Poland RE, McCracken JT, Lutchmansingh P, Lesser IM, Tondo L, Edwards C, Boone KB, Lin KM (1997) Differential response of rapid eye movement sleep to cholinergic blockade by scopolamine in currently depressed, remitted, and normal control subjects. Biol Psychiatry 41(9):929–938
Siegel JM (2005) REM Sleep. In: Kryger MH, Roth T, Dement WC (eds) Principles and practice of sleep medicine. Elsevier Saunders, Philadelphia, pp 120–135
Halberstadt AL, Balaban CD (2006) Serotonergic and nonserotonergic neurons in the dorsal raphe nucleus send collateralized projections to both the vestibular nuclei and the central amygdaloid nucleus. Neuroscience 140(3):1067–1077
Cooper JR, Bloom FE, Roth RH (2002) Biochemical basis of neuropharmacology. Serotonin, histamine, and adenosine. In: Cooper JR, Bloom FE, Roth RH (eds) The biochemical basis of neuropharmacology, 8th edn. Oxford University Press, Oxford, pp 271–304
Winkelman JW, James L (2004) Serotonergic antidepressants are associated with REM sleep without atonia. Sleep 27(2):317–321
Schenck CH, Mahowald MW, Kim SW, O’Connor KA, Hurwitz TD (1992) Prominent eye movements during NREM sleep and REM sleep behavior disorder associated with fluoxetine treatment of depression and obsessive-compulsive disorder. Sleep 15(3):226–235
Pace-Schott EF, Gersh T, Silvestri R, Stickgold R, Salzman C, Hobson JA (2001) SSRI treatment suppresses dream recall frequency but increases subjective dream intensity in normal subjects. J Sleep Res 10(2):129–142
Mahowald MW, Schenck CH, Bornemann MA (2007) Pathophysiologic mechanisms in REM sleep behavior disorder. Curr Neurol Neurosci Rep 7(2):167–172
Lesage S, Hening WA (2004) The restless legs syndrome and periodic limb movement disorder. Semin Neurol 24(3):249–259
Kupfer DJ, Foster FG (1978) EEG sleep and depression. In: Williams RL, Karacan I (eds) Sleep disorders. Wiley, New York, pp 163–204
Arendt J (2006) Chapter 15. The pineal gland and pineal tumors. www.endotext.org
Pandi-Perumal SR, Trakht I, Srinivasan V, Spence DW, Maestroni GJ, Zisapel N, Cardinali DP (2008) Physiological effects of melatonin: role of melatonin receptors and signal transduction pathways. Prog Neurobiol 85(3):335–353
Borbély AA, Achermann P (1999) Sleep homeostasis and models of sleep regulation. J Biol Rhythms 14(6):557–568
Lewy AJ, Emens J, Sack RL, Hasler BP, Bernert RA (2003) Zeitgeber hierarchy in humans: resetting the circadian phase positions of blind people using melatonin. Chronobiol Int 20(5):837–852
Sack RL, Hughes RJ, Edgar DM, Lewy AJ (1997) Sleep-promoting effects of melatonin: at what dose, in whom, under what conditions, and by what mechanisms? Sleep 20:908–915
Zhdanova IV, Wurtman RJ, Morabito C et al (1996) Effects of low oral doses of melatonin, given 2–4 hours before habitual bedtime, on sleep in normal young humans. Sleep 19:423–431
Roth T, Stubbs C, Walsh JW (2005) (TAK-375), A selective Mt1/Mt2-receptor agonist, reduces latency to persistent sleep in a model of transient insomnia related to novel sleep environment. Sleep 28(3):303–307
Zammit G, Erman M, Wang-Weigand S, Sainati S, Zhang J, Roth T (2007) Evaluation of the efficacy and safety of ramelteon in subjects with chronic insomnia. J Clin Sleep Med 3(5):495–504
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer Science+Business Media New York
About this chapter
Cite this chapter
Hirshkowitz, M., Bhandari, H. (2017). Neurotransmitters, Neurochemistry, and the Clinical Pharmacology of Sleep. In: Chokroverty, S. (eds) Sleep Disorders Medicine. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-6578-6_7
Download citation
DOI: https://doi.org/10.1007/978-1-4939-6578-6_7
Published:
Publisher Name: Springer, New York, NY
Print ISBN: 978-1-4939-6576-2
Online ISBN: 978-1-4939-6578-6
eBook Packages: MedicineMedicine (R0)