Skip to main content

Basic Circadian Timing and Sleep-Wake Regulation

  • Chapter
  • First Online:
Sleep Disorders Medicine

Abstract

The circadian system represents one of the most important regulatory signaling networks of the brain and periphery. Virtually, every cell can express circadian rhythms through molecular autoregulated feedback core loops. In mammals, the circadian system described in many brain and non-brain structures. Through this organization, the circadian system controls the rhythmicity of many functions, including the regulation of the sleep-wake cycle. In this chapter, we first describe the basic circadian timing and its main properties. Then, following the description of the sleep-wake cycle, we review the mechanisms by which the circadian system controls different aspects related to sleep and wakefulness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

5-HT:

5-hydroxytryptamine or serotonin

A1:

Adenosine type 1 receptor

A2a:

Adenosine type 2a receptor

AA-NAT:

Arylalkylamine N-acetyltransferase

ACh:

Acetylcholine

ACTH:

Adrenocorticotropic hormone

AMPA:

Alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid

ARC:

Arcuate nucleus

BDNF:

Brain-derived neurotropic factor

BNST:

Bed nucleus of the stria terminalis

cAMP:

Cyclic adenosine monophosphate

cGMP:

Cyclic guanosine monophosphate

CBT:

Core body temperature

ccgs:

Clock-controlled genes

CR:

Constant routine

CRE:

Calcium/cAMP response element

CREB:

CAMP response element binding

CRH:

Corticotropin-releasing hormone

DMH:

Dorsomedial nucleus of the hypothalamus

DMV:

Dorsal motor nucleus of the vagus

DRN:

Dorsal raphe nuclei

EEG:

Electroencephalography

EGF:

Epidermal growth factor

EMG:

Electromyography

ERKs:

Extracellular signal-regulated kinases

EOG:

Electrooculography

GABA:

Gamma-aminobutyric acid

GCs:

Glucocorticoids

GHT:

Geniculohypothalamic tract

GLU:

Glutamate

HB:

Habenula

IL-1β:

Interleukin-1 beta

IML:

Intermediolateral column

IGL:

Intergeniculate leaflet

LC:

Locus coeruleus

LS:

Lateral septum

LDT:

Laterodorsal tegmental nucleus

LHA:

Lateral hypothalamus area

LPT:

Lateral pontine tegmentum

MPO:

Medial preoptic area

MRN:

Medial raphe nuclei

MT2:

Melatonin type 2 receptor

NMDA:

N-Methyl-d-aspartate

NO:

Nitric oxide

NPY:

Neuropeptide Y

NREM:

Non-rapid eye movement

ORX:

Orexin

PACAP:

Pituitary adenylate cyclase-activating peptide

PC:

Precoeruleus

PPT:

Pedunculopontine tegmental nucleus

Process C:

Circadian process of sleep-wake regulation

Process S:

Homeostatic process of sleep-wake regulation

PSG:

Polysomnography

PVN:

Paraventricular nucleus of the hypothalamus

PVT:

Paraventricular nucleus of the thalamus

RGT:

Retinogeniculate tract

RORE:

ROR-specific response elements

REM:

Rapid eye movement

RHT:

Retinohypothalamic tract

SCG:

Superior cervical ganglion

SCN:

Suprachiasmatic nucleus

SE:

Sleep efficiency

SL:

Sleep latency

SLD:

Sublaterodorsal nucleus

SPZ:

Subparaventricular zone

SWA:

Slow-wave activity

TMN:

Tuberomammillary nucleus

TNF-α:

Tumor necrosis factor alpha

TRH:

Thyrotropin-releasing hormone

TSH:

Thyroid-stimulating hormone

TST:

Total sleep time

USW:

Ultradian sleep-wake cycle

VIP:

Vasoactive intestinal polypeptide

VLPO:

Ventrolateral preoptic area

vPAG:

Ventral periaqueductal gray matter

WASO:

Wake after sleep onset

WMZ:

Wake maintenance zone

ZT:

Zeitgeber

References

  1. de Mairan J (1729) Observation botanique. Hist Acad Roy Sci

    Google Scholar 

  2. Bell-Pedersen D, Cassone VM, Earnest DJ, Golden SS, Hardin PE, Thomas TL et al (2005) Circadian rhythms from multiple oscillators: lessons from diverse organisms. Nat Rev Genet 6(7):544–556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lowrey PL, Takahashi JS (2011) Genetics of circadian rhythms in Mammalian model organisms. Adv Genet 74:175–230

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Ruby NF, Burns DE, Heller HC (1999) Circadian rhythms in the suprachiasmatic nucleus are temperature-compensated and phase-shifted by heat pulses in vitro. J Neurosci Off J Soc Neurosci 19(19):8630–8636

    CAS  Google Scholar 

  5. Moore RY, Eichler VB (1972) Loss of a circadian adrenal corticosterone rhythm following suprachiasmatic lesions in the rat. Brain Res 42(1):201–206

    Article  CAS  PubMed  Google Scholar 

  6. Stephan FK, Zucker I (1972) Circadian rhythms in drinking behavior and locomotor activity of rats are eliminated by hypothalamic lesions. Proc Natl Acad Sci U S A 69(6):1583–1586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ralph MR, Foster RG, Davis FC, Menaker M (1990) Transplanted suprachiasmatic nucleus determines circadian period. Science 247(4945):975–978

    Article  CAS  PubMed  Google Scholar 

  8. Moore RY, Silver R (1998) Suprachiasmatic nucleus organization. Chronobiol Int 15(5):475–487

    Article  CAS  PubMed  Google Scholar 

  9. Swaab DF, Fliers E, Partiman TS (1985) The suprachiasmatic nucleus of the human brain in relation to sex, age and senile dementia. Brain Res 342(1):37–44

    Article  CAS  PubMed  Google Scholar 

  10. Hofman MA, Fliers E, Goudsmit E, Swaab DF (1988) Morphometric analysis of the suprachiasmatic and paraventricular nuclei in the human brain: sex differences and age-dependent changes. J Anat 160:127–143

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Hofman MA, Zhou JN, Swaab DF (1996) Suprachiasmatic nucleus of the human brain: an immunocytochemical and morphometric analysis. Anat Rec 244(4):552–562

    Article  CAS  PubMed  Google Scholar 

  12. Welsh DK, Takahashi JS, Kay SA (2010) Suprachiasmatic nucleus: cell autonomy and network properties. Annu Rev Physiol 72:551–577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kriegsfeld LJ, LeSauter J, Silver R (2004) Targeted microlesions reveal novel organization of the hamster suprachiasmatic nucleus. J Neurosci Off J Soci Neurosci 24(10):2449–2457

    Article  CAS  Google Scholar 

  14. Moore RY, Speh JC, Leak RK (2002) Suprachiasmatic nucleus organization. Cell Tissue Res 309(1):89–98

    Article  CAS  PubMed  Google Scholar 

  15. Leak RK, Moore RY (2001) Topographic organization of suprachiasmatic nucleus projection neurons. J Comp Neurol 433(3):312–334

    Article  CAS  PubMed  Google Scholar 

  16. Morin LP, Shivers KY, Blanchard JH, Muscat L (2006) Complex organization of mouse and rat suprachiasmatic nucleus. Neuroscience 137(4):1285–1297

    Article  CAS  PubMed  Google Scholar 

  17. Reghunandanan V, Reghunandanan R (2006) Neurotransmitters of the suprachiasmatic nuclei. J Circadian Rhythms 4:2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Stopa EG, Volicer L, Kuo-Leblanc V, Harper D, Lathi D, Tate B et al (1999) Pathologic evaluation of the human suprachiasmatic nucleus in severe dementia. J Neuropathol Exp Neurol 58(1):29–39

    Article  CAS  PubMed  Google Scholar 

  19. Harper DG, Stopa EG, Kuo-Leblanc V, McKee AC, Asayama K, Volicer L et al (2008) Dorsomedial SCN neuronal subpopulations subserve different functions in human dementia. Brain J Neurol 131(Pt 6):1609–1617

    Article  Google Scholar 

  20. Shearman LP, Sriram S, Weaver DR, Maywood ES, Chaves I, Zheng B et al (2000) Interacting molecular loops in the mammalian circadian clock. Science 288(5468):1013–1019

    Article  CAS  PubMed  Google Scholar 

  21. Ko CH, Takahashi JS (2006) Molecular components of the mammalian circadian clock. Hum Mol Genet 15(Spec No 2):R271–R277

    Google Scholar 

  22. Duong HA, Robles MS, Knutti D, Weitz CJ (2011) A molecular mechanism for circadian clock negative feedback. Science 332(6036):1436–1439

    Article  CAS  PubMed  Google Scholar 

  23. Liu AC, Tran HG, Zhang EE, Priest AA, Welsh DK, Kay SA (2008) Redundant function of REV-ERBalpha and beta and non-essential role for Bmal1 cycling in transcriptional regulation of intracellular circadian rhythms. PLoS Genet 4(2):e1000023

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Rossner MJ, Oster H, Wichert SP, Reinecke L, Wehr MC, Reinecke J et al (2008) Disturbed clockwork resetting in Sharp-1 and Sharp-2 single and double mutant mice. PLoS ONE 3(7):e2762

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Pegoraro M, Tauber E (2008) The role of microRNAs (miRNA) in circadian rhythmicity. J Genet 87(5):505–511

    Article  CAS  PubMed  Google Scholar 

  26. Vanselow JT, Kramer A (2010) Posttranslational regulation of circadian clocks. The circadian clock. Springer, Berlin, pp 79–104

    Google Scholar 

  27. Hirano A, Yumimoto K, Tsunematsu R, Matsumoto M, Oyama M, Kozuka-Hata H et al (2013) FBXL21 regulates oscillation of the circadian clock through ubiquitination and stabilization of cryptochromes. Cell 152(5):1106–1118

    Article  CAS  PubMed  Google Scholar 

  28. Yoo SH, Mohawk JA, Siepka SM, Shan Y, Huh SK, Hong HK et al (2013) Competing E3 ubiquitin ligases govern circadian periodicity by degradation of CRY in nucleus and cytoplasm. Cell 152(5):1091–1105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yan J, Wang H, Liu Y, Shao C (2008) Analysis of gene regulatory networks in the mammalian circadian rhythm. PLoS Comput Biol 4(10):e1000193

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Duffield GE (2003) DNA microarray analyses of circadian timing: the genomic basis of biological time. J Neuroendocrinol 15(10):991–1002

    Article  CAS  PubMed  Google Scholar 

  31. Jin X, Shearman LP, Weaver DR, Zylka MJ, de Vries GJ, Reppert SM (1999) A molecular mechanism regulating rhythmic output from the suprachiasmatic circadian clock. Cell 96(1):57–68

    Article  CAS  PubMed  Google Scholar 

  32. van Esseveldt KE, Lehman MN, Boer GJ (2000) The suprachiasmatic nucleus and the circadian time-keeping system revisited. Brain Res Rev 33(1):34–77

    Article  PubMed  Google Scholar 

  33. Schwartz WJ, Gross RA, Morton MT (1987) The suprachiasmatic nuclei contain a tetrodotoxin-resistant circadian pacemaker. Proc Natl Acad Sci U S A 84(6):1694–1698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kuhlman SJ, McMahon DG (2006) Encoding the ins and outs of circadian pacemaking. J Biol Rhythms 21(6):470–481

    Article  CAS  PubMed  Google Scholar 

  35. Balsalobre A, Damiola F, Schibler U (1998) A serum shock induces circadian gene expression in mammalian tissue culture cells. Cell 93(6):929–937

    Article  CAS  PubMed  Google Scholar 

  36. Abe M, Herzog ED, Yamazaki S, Straume M, Tei H, Sakaki Y et al (2002) Circadian rhythms in isolated brain regions. J Neurosci Off J Soc Neurosci 22(1):350–356

    CAS  Google Scholar 

  37. Guilding C, Piggins HD (2007) Challenging the omnipotence of the suprachiasmatic timekeeper: are circadian oscillators present throughout the mammalian brain? Eur J Neurosci 25(11):3195–3216

    Article  PubMed  Google Scholar 

  38. Cermakian N, Lamont EW, Boudreau P, Boivin DB (2011) Circadian clock gene expression in brain regions of Alzheimer’s disease patients and control subjects. J Biol Rhythms 26(2):160–170

    Article  PubMed  Google Scholar 

  39. Yoo SH, Yamazaki S, Lowrey PL, Shimomura K, Ko CH, Buhr ED et al (2004) Period2: luciferase real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues. Proc Natl Acad Sci U S A 101(15):5339–5346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kornmann B, Schaad O, Bujard H, Takahashi JS, Schibler U (2007) System-driven and oscillator-dependent circadian transcription in mice with a conditionally active liver clock. PLoS Biol 5(2):e34

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Tosini G, Menaker M (1996) Circadian rhythms in cultured mammalian retina. Science 272(5260):419–421

    Article  CAS  PubMed  Google Scholar 

  42. Guo H, Brewer JM, Lehman MN, Bittman EL (2006) Suprachiasmatic regulation of circadian rhythms of gene expression in hamster peripheral organs: effects of transplanting the pacemaker. J Neurosci Off J Soci Neurosci 26(24):6406–6412

    Article  CAS  Google Scholar 

  43. Nagoshi E, Saini C, Bauer C, Laroche T, Naef F, Schibler U (2004) Circadian gene expression in individual fibroblasts: cell-autonomous and self-sustained oscillators pass time to daughter cells. Cell 119(5):693–705

    Article  CAS  PubMed  Google Scholar 

  44. Mendoza J, Challet E (2009) Brain clocks: from the suprachiasmatic nuclei to a cerebral network. Neurosci Rev J Bringing Neurobiol Neurol Psychiatry 15(5):477–488

    CAS  Google Scholar 

  45. Dardente H, Cermakian N (2007) Molecular circadian rhythms in central and peripheral clocks in mammals. Chronobiol Int 24(2):195–213

    Article  CAS  PubMed  Google Scholar 

  46. Buhr ED, Yoo SH, Takahashi JS (2010) Temperature as a universal resetting cue for mammalian circadian oscillators. Science 330(6002):379–385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Damiola F, Le Minh N, Preitner N, Kornmann B, Fleury-Olela F, Schibler U (2000) Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. Genes Dev 14(23):2950–2961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Balsalobre A (2002) Clock genes in mammalian peripheral tissues. Cell Tissue Res 309(1):193–199

    Article  CAS  PubMed  Google Scholar 

  49. Granados-Fuentes D, Tseng A, Herzog ED (2006) A circadian clock in the olfactory bulb controls olfactory responsivity. J Neurosci Off J Soc Neurosci 26(47):12219–12225

    Article  CAS  Google Scholar 

  50. Son GH, Chung S, Kim K (2011) The adrenal peripheral clock: glucocorticoid and the circadian timing system. Front Neuroendocrinol 32(4):451–465

    Article  CAS  PubMed  Google Scholar 

  51. Tataroglu O, Davidson AJ, Benvenuto LJ, Menaker M (2006) The methamphetamine-sensitive circadian oscillator (MASCO) in mice. J Biol Rhythms 21(3):185–194

    Article  CAS  PubMed  Google Scholar 

  52. Honma S, Yasuda T, Yasui A, van der Horst GT, Honma K (2008) Circadian behavioral rhythms in Cry1/Cry2 double-deficient mice induced by methamphetamine. J Biol Rhythms 23(1):91–94

    Article  CAS  PubMed  Google Scholar 

  53. Mohawk JA, Baer ML, Menaker M (2009) The methamphetamine-sensitive circadian oscillator does not employ canonical clock genes. Proc Natl Acad Sci U S A 106(9):3519–3524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Cuesta M, Aungier J, Morton AJ (2012) The methamphetamine-sensitive circadian oscillator is dysfunctional in a transgenic mouse model of Huntington’s disease. Neurobiol Dis 45(1):145–155

    Article  CAS  PubMed  Google Scholar 

  55. Challet E, Mendoza J, Dardente H, Pevet P (2009) Neurogenetics of food anticipation. Eur J Neurosci 30(9):1676–1687

    Article  PubMed  Google Scholar 

  56. Mistlberger RE (2009) Food-anticipatory circadian rhythms: concepts and methods. Eur J Neurosci 30(9):1718–1729

    Article  PubMed  Google Scholar 

  57. Verwey M, Amir S (2009) Food-entrainable circadian oscillators in the brain. Eur J Neurosci 30(9):1650–1657

    Article  CAS  PubMed  Google Scholar 

  58. Saper CB, Scammell TE, Lu J (2005) Hypothalamic regulation of sleep and circadian rhythms. Nature 437(7063):1257–1263

    Article  CAS  PubMed  Google Scholar 

  59. Lu J, Zhang YH, Chou TC, Gaus SE, Elmquist JK, Shiromani P et al (2001) Contrasting effects of ibotenate lesions of the paraventricular nucleus and subparaventricular zone on sleep-wake cycle and temperature regulation. J Neurosci Off J Soci Neurosci 21(13):4864–4874

    CAS  Google Scholar 

  60. Bartness TJ, Song CK, Demas GE (2001) SCN efferents to peripheral tissues: implications for biological rhythms. J Biol Rhythms 16(3):196–204

    Article  CAS  PubMed  Google Scholar 

  61. Buijs RM, Chun SJ, Niijima A, Romijn HJ, Nagai K (2001) Parasympathetic and sympathetic control of the pancreas: a role for the suprachiasmatic nucleus and other hypothalamic centers that are involved in the regulation of food intake. J Comp Neurol 431(4):405–423

    Article  CAS  PubMed  Google Scholar 

  62. Scheer FA, Ter Horst GJ, van Der Vliet J, Buijs RM (2001) Physiological and anatomic evidence for regulation of the heart by suprachiasmatic nucleus in rats. Am J Physiol Heart Circ Physiol 280(3):H1391–H1399

    CAS  PubMed  Google Scholar 

  63. Buijs RM, van Eden CG, Goncharuk VD, Kalsbeek A (2003) The biological clock tunes the organs of the body: timing by hormones and the autonomic nervous system. J Endocrinol 177(1):17–26

    Article  CAS  PubMed  Google Scholar 

  64. Kalsbeek A, van Heerikhuize JJ, Wortel J, Buijs RM (1996) A diurnal rhythm of stimulatory input to the hypothalamo-pituitary-adrenal system as revealed by timed intrahypothalamic administration of the vasopressin V1 antagonist. J Neurosci Off J Soc Neurosci 16(17):5555–5565

    CAS  Google Scholar 

  65. Buijs RM, Wortel J, Van Heerikhuize JJ, Feenstra MG, Ter Horst GJ, Romijn HJ et al (1999) Anatomical and functional demonstration of a multisynaptic suprachiasmatic nucleus adrenal (cortex) pathway. Eur J Neurosci 11(5):1535–1544

    Article  CAS  PubMed  Google Scholar 

  66. Garidou ML, Bartol I, Calgari C, Pevet P, Simonneaux V (2001) In vivo observation of a non-noradrenergic regulation of arylalkylamine N-acetyltransferase gene expression in the rat pineal complex. Neuroscience 105(3):721–729

    Article  CAS  PubMed  Google Scholar 

  67. Kalsbeek A, Garidou ML, Palm IF, Van Der Vliet J, Simonneaux V, Pevet P et al (2000) Melatonin sees the light: blocking GABA-ergic transmission in the paraventricular nucleus induces daytime secretion of melatonin. Eur J Neurosci 12(9):3146–3154

    Article  CAS  PubMed  Google Scholar 

  68. Kalsbeek A, Yi CX, la Fleur SE, Buijs RM, Fliers E (2010) Suprachiasmatic nucleus and autonomic nervous system influences on awakening from sleep. Int Rev Neurobiol 93:91–107

    Article  PubMed  Google Scholar 

  69. Dibner C, Schibler U, Albrecht U (2010) The mammalian circadian timing system: organization and coordination of central and peripheral clocks. Annu Rev Physiol 72:517–549

    Article  CAS  PubMed  Google Scholar 

  70. Altun A, Ugur-Altun B (2007) Melatonin: therapeutic and clinical utilization. Int J Clin Pract 61(5):835–845

    Article  CAS  PubMed  Google Scholar 

  71. Revel FG, Masson-Pevet M, Pevet P, Mikkelsen JD, Simonneaux V (2009) Melatonin controls seasonal breeding by a network of hypothalamic targets. Neuroendocrinology 90(1):1–14

    Article  CAS  PubMed  Google Scholar 

  72. Kalsbeek A, van der Spek R, Lei J, Endert E, Buijs RM, Fliers E (2012) Circadian rhythms in the hypothalamo-pituitary-adrenal (HPA) axis. Mol Cell Endocrinol 349(1):20–29

    Article  CAS  PubMed  Google Scholar 

  73. Scheer FA, Hu K, Evoniuk H, Kelly EE, Malhotra A, Hilton MF et al (2010) Impact of the human circadian system, exercise, and their interaction on cardiovascular function. Proc Natl Acad Sci U S A 107(47):20541–20546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Shea SA, Hilton MF, Orlova C, Ayers RT, Mantzoros CS (2005) Independent circadian and sleep/wake regulation of adipokines and glucose in humans. J Clin Endocrinol Metab 90(5):2537–2544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Czeisler CA, Duffy JF, Shanahan TL, Brown EN, Mitchell JF, Rimmer DW et al (1999) Stability, precision, and near-24-hour period of the human circadian pacemaker. Science 284(5423):2177–2181

    Article  CAS  PubMed  Google Scholar 

  76. Gronfier C, Wright KP Jr, Kronauer RE, Czeisler CA (2007) Entrainment of the human circadian pacemaker to longer-than-24-h days. Proc Natl Acad Sci U S A 104(21):9081–9086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Challet E, Malan A, Pevet P (1996) Daily hypocaloric feeding entrains circadian rhythms of wheel-running and body temperature in rats kept in constant darkness. Neurosci Lett 211(1):1–4

    Article  CAS  PubMed  Google Scholar 

  78. Challet E, Jacob N, Vuillez P, Pevet P, Malan A (1997) Fos-like immunoreactivity in the circadian timing system of calorie-restricted rats fed at dawn: daily rhythms and light pulse-induced changes. Brain Res 770(1–2):228–236

    Article  CAS  PubMed  Google Scholar 

  79. Hattar S, Liao HW, Takao M, Berson DM, Yau KW (2002) Melanopsin-containing retinal ganglion cells: architecture, projections, and intrinsic photosensitivity. Science 295(5557):1065–1070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Morin LP, Blanchard JH, Provencio I (2003) Retinal ganglion cell projections to the hamster suprachiasmatic nucleus, intergeniculate leaflet, and visual midbrain: bifurcation and melanopsin immunoreactivity. J Comp Neurol 465(3):401–416

    Article  PubMed  Google Scholar 

  81. Hughes S, Hankins MW, Foster RG, Peirson SN (2012) Melanopsin phototransduction: slowly emerging from the dark. Prog Brain Res 199:19–40

    Article  CAS  PubMed  Google Scholar 

  82. Matsuyama T, Yamashita T, Imamoto Y, Shichida Y (2012) Photochemical properties of Mammalian melanopsin. Biochemistry 51(27):5454–5462

    Article  CAS  PubMed  Google Scholar 

  83. Morin LP, Goodless-Sanchez N, Smale L, Moore RY (1994) Projections of the suprachiasmatic nuclei, subparaventricular zone and retrochiasmatic area in the golden hamster. Neuroscience 61(2):391–410

    Article  CAS  PubMed  Google Scholar 

  84. Miller AM, Chappell R, Obermeyer WH, Benca RM (1996) Analysis of the retinohypothalamic tract in congenic albino and pigmented rats. Brain Res 741(1–2):348–351

    Article  CAS  PubMed  Google Scholar 

  85. Smale L, Boverhof J (1999) The suprachiasmatic nucleus and intergeniculate leaflet of Arvicanthis niloticus, a diurnal murid rodent from East Africa. J Comp Neurol 403(2):190–208

    Article  CAS  PubMed  Google Scholar 

  86. Sadun AA, Schaechter JD, Smith LE (1984) A retinohypothalamic pathway in man: light mediation of circadian rhythms. Brain Res 302(2):371–377

    Article  CAS  PubMed  Google Scholar 

  87. Goel N, Governale MM, Jechura TJ, Lee TM (2000) Effects of intergeniculate leaflet lesions on circadian rhythms in Octodon degus. Brain Res 877(2):306–313

    Article  CAS  PubMed  Google Scholar 

  88. Morin LP (1999) Serotonin and the regulation of mammalian circadian rhythmicity. Ann Med 31(1):12–33

    Article  CAS  PubMed  Google Scholar 

  89. Daan S, Pittendrigh, SC (1976) A functional analysis of circadian pacemakers in nocturnal rodents. II. The variability of phase response curves. J Comp Physiol 106:253–266

    Google Scholar 

  90. Vuillez P, Jacob N, Teclemariam-Mesbah R, Van Rossum A, Vivien-Roels B, Pevet P (1998) Effect of NMDA receptor antagonist MK-801 on light-induced Fos expression in the suprachiasmatic nuclei and on melatonin production in the Syrian hamster. J Neuroendocrinol 10(9):671–677

    Article  CAS  PubMed  Google Scholar 

  91. Ding JM, Chen D, Weber ET, Faiman LE, Rea MA, Gillette MU (1994) Resetting the biological clock: mediation of nocturnal circadian shifts by glutamate and NO. Science 266(5191):1713–1717

    Article  CAS  PubMed  Google Scholar 

  92. Ding JM, Buchanan GF, Tischkau SA, Chen D, Kuriashkina L, Faiman LE et al (1998) A neuronal ryanodine receptor mediates light-induced phase delays of the circadian clock. Nature 394(6691):381–384

    Article  CAS  PubMed  Google Scholar 

  93. Takahashi H, Umeda N, Tsutsumi Y, Fukumura R, Ohkaze H, Sujino M et al (2003) Mouse dexamethasone-induced RAS protein 1 gene is expressed in a circadian rhythmic manner in the suprachiasmatic nucleus. Mol Brain Res 110(1):1–6

    Article  CAS  PubMed  Google Scholar 

  94. Ginty DD, Kornhauser JM, Thompson MA, Bading H, Mayo KE, Takahashi JS et al (1993) Regulation of CREB phosphorylation in the suprachiasmatic nucleus by light and a circadian clock. Science 260(5105):238–241

    Article  CAS  PubMed  Google Scholar 

  95. Obrietan K, Impey S, Smith D, Athos J, Storm DR (1999) Circadian regulation of cAMP response element-mediated gene expression in the suprachiasmatic nuclei. J Biol Chem 274(25):17748–17756

    Article  CAS  PubMed  Google Scholar 

  96. von Gall C, Duffield GE, Hastings MH, Kopp MD, Dehghani F, Korf HW et al (1998) CREB in the mouse SCN: a molecular interface coding the phase-adjusting stimuli light, glutamate, PACAP, and melatonin for clockwork access. J Neurosci Off J Soc Neurosci 18(24):10389–10397

    Google Scholar 

  97. Ding JM, Faiman LE, Hurst WJ, Kuriashkina LR, Gillette MU (1997) Resetting the biological clock: mediation of nocturnal CREB phosphorylation via light, glutamate, and nitric oxide. J Neurosci Off J Soc Neurosci 17(2):667–675

    CAS  Google Scholar 

  98. Akiyama M, Kouzu Y, Takahashi S, Wakamatsu H, Moriya T, Maetani M et al (1999) Inhibition of light- or glutamate-induced mPer1 expression represses the phase shifts into the mouse circadian locomotor and suprachiasmatic firing rhythms. J Neurosci Off J Soc Neurosci 19(3):1115–1121

    CAS  Google Scholar 

  99. Wakamatsu H, Takahashi S, Moriya T, Inouye ST, Okamura H, Akiyama M et al (2001) Additive effect of mPer1 and mPer2 antisense oligonucleotides on light-induced phase shift. NeuroReport 12(1):127–131

    Article  CAS  PubMed  Google Scholar 

  100. Albrecht U, Zheng B, Larkin D, Sun ZS, Lee CC (2001) MPer1 and mper2 are essential for normal resetting of the circadian clock. J Biol Rhythms 16(2):100–104

    Article  CAS  PubMed  Google Scholar 

  101. Caldelas I, Poirel VJ, Sicard B, Pevet P, Challet E (2003) Circadian profile and photic regulation of clock genes in the suprachiasmatic nucleus of a diurnal mammal Arvicanthis ansorgei. Neuroscience 116(2):583–591

    Article  CAS  PubMed  Google Scholar 

  102. Albrecht U, Sun ZS, Eichele G, Lee CC (1997) A differential response of two putative mammalian circadian regulators, mper1 and mper2, to light. Cell 91(7):1055–1064

    Article  CAS  PubMed  Google Scholar 

  103. Miyake S, Sumi Y, Yan L, Takekida S, Fukuyama T, Ishida Y et al (2000) Phase-dependent responses of Per1 and Per2 genes to a light-stimulus in the suprachiasmatic nucleus of the rat. Neurosci Lett 294(1):41–44

    Article  CAS  PubMed  Google Scholar 

  104. Shearman LP, Zylka MJ, Weaver DR, Kolakowski LF Jr, Reppert SM (1997) Two period homologs: circadian expression and photic regulation in the suprachiasmatic nuclei. Neuron 19(6):1261–1269

    Article  CAS  PubMed  Google Scholar 

  105. de Arriba Zerpa GA, Guido ME, Bussolino DF, Pasquare SJ, Castagnet PI, Giusto NM et al (1999) Light exposure activates retina ganglion cell lysophosphatidic acid acyl transferase and phosphatidic acid phosphatase by a c-fos-dependent mechanism. J Neurochem 73(3):1228–1235

    Article  PubMed  Google Scholar 

  106. Abe H, Honma S, Namihira M, Tanahashi Y, Ikeda M, Honma K (1998) Circadian rhythm and light responsiveness of BMAL1 expression, a partner of mammalian clock gene clock, in the suprachiasmatic nucleus of rats. Neurosci Lett 258(2):93–96

    Article  CAS  PubMed  Google Scholar 

  107. Okamura H, Miyake S, Sumi Y, Yamaguchi S, Yasui A, Muijtjens M et al (1999) Photic induction of mPer1 and mPer2 in cry-deficient mice lacking a biological clock. Science 286(5449):2531–2534

    Article  CAS  PubMed  Google Scholar 

  108. Masana MI, Sumaya IC, Becker-Andre M, Dubocovich ML (2007) Behavioral characterization and modulation of circadian rhythms by light and melatonin in C3H/HeN mice homozygous for the RORbeta knockout. Am J Physiol Regul Integr Comp Physiol 292(6):R2357–R2367

    Article  CAS  PubMed  Google Scholar 

  109. Preitner N, Damiola F, Lopez-Molina L, Zakany J, Duboule D, Albrecht U et al (2002) The orphan nuclear receptor REV-ERBalpha controls circadian transcription within the positive limb of the mammalian circadian oscillator. Cell 110(2):251–260

    Article  CAS  PubMed  Google Scholar 

  110. Cuesta M, Clesse D, Pevet P, Challet E (2009) New light on the serotonergic paradox in the rat circadian system. J Neurochem 110(1):231–243

    Article  CAS  PubMed  Google Scholar 

  111. Takahashi JS, DeCoursey PJ, Bauman L, Menaker M (1984) Spectral sensitivity of a novel photoreceptive system mediating entrainment of mammalian circadian rhythms. Nature 308(5955):186–188

    Article  CAS  PubMed  Google Scholar 

  112. Mahoney M, Bult A, Smale L (2001) Phase response curve and light-induced fos expression in the suprachiasmatic nucleus and adjacent hypothalamus of Arvicanthis niloticus. J Biol Rhythms 16(2):149–162

    Article  CAS  PubMed  Google Scholar 

  113. Czeisler CA, Kronauer RE, Allan JS, Duffy JF, Jewett ME, Brown EN et al (1989) Bright light induction of strong (type 0) resetting of the human circadian pacemaker. Science 244(4910):1328–1333

    Article  CAS  PubMed  Google Scholar 

  114. St Hilaire MA, Gooley JJ, Khalsa SB, Kronauer RE, Czeisler CA, Lockley SW (2012) Human phase response curve to a 1 h pulse of bright white light. J Physiol 590(Pt 13):3035–3045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Honma K, Honma S, Wada T (1987) Phase-dependent shift of free-running human circadian rhythms in response to a single bright light pulse. Experientia 43(11–12):1205–1207

    Article  CAS  PubMed  Google Scholar 

  116. Khalsa SB, Jewett ME, Cajochen C, Czeisler CA (2003) A phase response curve to single bright light pulses in human subjects. J Physiol 549(Pt 3):945–952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Boivin DB, Duffy JF, Kronauer RE, Czeisler CA (1996) Dose-response relationships for resetting of human circadian clock by light. Nature 379(6565):540–542

    Article  CAS  PubMed  Google Scholar 

  118. Sharma VK, Chandrashekaran MK, Singaravel M, Subbaraj R (1999) Relationship between light intensity and phase resetting in a mammalian circadian system. J Exp Zool 283(2):181–185

    Article  CAS  PubMed  Google Scholar 

  119. Zeitzer JM, Dijk DJ, Kronauer R, Brown E, Czeisler C (2000) Sensitivity of the human circadian pacemaker to nocturnal light: melatonin phase resetting and suppression. J Physiol 526(Pt 3):695–702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Lockley SW, Brainard GC, Czeisler CA (2003) High sensitivity of the human circadian melatonin rhythm to resetting by short wavelength light. J Clin Endocrinol Metab 88(9):4502–4505

    Article  CAS  PubMed  Google Scholar 

  121. Gooley JJ, Rajaratnam SM, Brainard GC, Kronauer RE, Czeisler CA, Lockley SW (2010) Spectral responses of the human circadian system depend on the irradiance and duration of exposure to light. Sci Transl Med 2(31):31ra3

    Google Scholar 

  122. Chang AM, Scheer FA, Czeisler CA (2011) The human circadian system adapts to prior photic history. J Physiol 589(Pt 5):1095–1102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. James FO, Cermakian N, Boivin DB (2007) Circadian rhythms of melatonin, cortisol, and clock gene expression during simulated night shift work. Sleep 30(11):1427–1436

    Article  PubMed  PubMed Central  Google Scholar 

  124. Lewy A (2010) Clinical implications of the melatonin phase response curve. J Clin Endocrinol Metab 95(7):3158–3160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Lewy AJ, Bauer VK, Ahmed S, Thomas KH, Cutler NL, Singer CM et al (1998) The human phase response curve (PRC) to melatonin is about 12 hours out of phase with the PRC to light. Chronobiol Int 15(1):71–83

    Article  CAS  PubMed  Google Scholar 

  126. Burgess HJ, Revell VL, Molina TA, Eastman CI (2010) Human phase response curves to three days of daily melatonin: 0.5 mg versus 3.0 mg. J Clin Endocrinol Metab 95(7):3325–3331

    Google Scholar 

  127. Armstrong SM, Cassone VM, Chesworth MJ, Redman JR, Short RV (1986) Synchronization of mammalian circadian rhythms by melatonin. J Neural Transm Suppl 21:375–394

    CAS  PubMed  Google Scholar 

  128. Slotten HA, Krekling S, Sicard B, Pevet P (2002) Daily infusion of melatonin entrains circadian activity rhythms in the diurnal rodent Arvicanthis ansorgei. Behav Brain Res 133(1):11–19

    Article  CAS  PubMed  Google Scholar 

  129. Hunt AE, Al-Ghoul WM, Gillette MU, Dubocovich ML (2001) Activation of MT(2) melatonin receptors in rat suprachiasmatic nucleus phase advances the circadian clock. Am J Physiol Cell Physiol 280(1):C110–C118

    CAS  PubMed  Google Scholar 

  130. McArthur AJ, Hunt AE, Gillette MU (1997) Melatonin action and signal transduction in the rat suprachiasmatic circadian clock: activation of protein kinase C at dusk and dawn. Endocrinology 138(2):627–634

    Article  CAS  PubMed  Google Scholar 

  131. Dubocovich ML (2007) Melatonin receptors: role on sleep and circadian rhythm regulation. Sleep Med 8(Suppl 3):34–42

    Article  PubMed  Google Scholar 

  132. Meyer-Bernstein EL, Morin LP (1996) Differential serotonergic innervation of the suprachiasmatic nucleus and the intergeniculate leaflet and its role in circadian rhythm modulation. J Neurosci Off J Soc Neurosci 16(6):2097–2111

    CAS  Google Scholar 

  133. Mosko SS, Haubrich D, Jacobs BL (1977) Serotonergic afferents to the dorsal raphe nucleus: evidence from HRP and synaptosomal uptake studies. Brain Res 119(2):269–290

    Article  CAS  PubMed  Google Scholar 

  134. Leander P, Vrang N, Moller M (1998) Neuronal projections from the mesencephalic raphe nuclear complex to the suprachiasmatic nucleus and the deep pineal gland of the golden hamster (Mesocricetus auratus). J Comp Neurol 399(1):73–93

    Article  CAS  PubMed  Google Scholar 

  135. Hay-Schmidt A, Vrang N, Larsen PJ, Mikkelsen JD (2003) Projections from the raphe nuclei to the suprachiasmatic nucleus of the rat. J Chem Neuroanat 25(4):293–310

    Article  PubMed  Google Scholar 

  136. Yamakawa GR, Antle MC (2010) Phenotype and function of raphe projections to the suprachiasmatic nucleus. Eur J Neurosci 31(11):1974–1983

    Article  PubMed  Google Scholar 

  137. Reebs SG, Mrosovsky N (1989) Effects of induced wheel running on the circadian activity rhythms of Syrian hamsters: entrainment and phase response curve. J Biol Rhythms 4(1):39–48

    Article  CAS  PubMed  Google Scholar 

  138. Maywood ES, Mrosovsky N, Field MD, Hastings MH (1999) Rapid down-regulation of mammalian period genes during behavioral resetting of the circadian clock. Proc Natl Acad Sci U S A 96(26):15211–15216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Horikawa K, Yokota S, Fuji K, Akiyama M, Moriya T, Okamura H et al (2000) Nonphotic entrainment by 5-HT1A/7 receptor agonists accompanied by reduced Per1 and Per2 mRNA levels in the suprachiasmatic nuclei. J Neurosci Off J Soc Neurosci 20(15):5867–5873

    CAS  Google Scholar 

  140. Huhman KL, Gillespie CF, Marvel CL, Albers HE (1996) Neuropeptide Y phase shifts circadian rhythms in vivo via a Y2 receptor. NeuroReport 7(7):1249–1252

    Article  CAS  PubMed  Google Scholar 

  141. Fukuhara C, Brewer JM, Dirden JC, Bittman EL, Tosini G, Harrington ME (2001) Neuropeptide Y rapidly reduces Period 1 and Period 2 mRNA levels in the hamster suprachiasmatic nucleus. Neurosci Lett 314(3):119–122

    Article  CAS  PubMed  Google Scholar 

  142. Smith RD, Inouye S, Turek FW (1989) Central administration of muscimol phase-shifts the mammalian circadian clock. J Comp Physiol A 164(6):805–814

    Article  CAS  PubMed  Google Scholar 

  143. Cuesta M, Mendoza J, Clesse D, Pevet P, Challet E (2008) Serotonergic activation potentiates light resetting of the main circadian clock and alters clock gene expression in a diurnal rodent. Exp Neurol 210(2):501–513

    Article  CAS  PubMed  Google Scholar 

  144. Hut RA, Mrosovsky N, Daan S (1999) Nonphotic entrainment in a diurnal mammal, the European ground squirrel (Spermophilus citellus). J Biol Rhythms 14(5):409–419

    Article  CAS  PubMed  Google Scholar 

  145. Buxton OM, L’Hermite-Baleriaux M, Hirschfeld U, Cauter E (1997) Acute and delayed effects of exercise on human melatonin secretion. J Biol Rhythms 12(6):568–574

    Article  CAS  PubMed  Google Scholar 

  146. Buxton OM, Lee CW, L’Hermite-Baleriaux M, Turek FW, Van Cauter E (2003) Exercise elicits phase shifts and acute alterations of melatonin that vary with circadian phase. Am J Physiol Regul Integr Comp Physiol 284(3):R714–R724

    Article  CAS  PubMed  Google Scholar 

  147. Novak CM, Albers HE (2004) Circadian phase alteration by GABA and light differs in diurnal and nocturnal rodents during the day. Behav Neurosci 118(3):498–504

    Article  CAS  PubMed  Google Scholar 

  148. Novak CM, Ehlen JC, Paul KN, Fukuhara C, Albers HE (2006) Light and GABA (A) receptor activation alter period mRNA levels in the SCN of diurnal Nile grass rats. Eur J Neurosci 24(10):2843–2852

    Article  PubMed  Google Scholar 

  149. Van Reeth O, Sturis J, Byrne MM, Blackman JD, L’Hermite-Baleriaux M, Leproult R et al (1994) Nocturnal exercise phase delays circadian rhythms of melatonin and thyrotropin secretion in normal men. Am J Physiol 266(6 Pt 1):E964–E974

    PubMed  Google Scholar 

  150. Barger LK, Wright KP Jr, Hughes RJ, Czeisler CA (2004) Daily exercise facilitates phase delays of circadian melatonin rhythm in very dim light. Am J Physiol Regul Integr Comp Physiol 286(6):R1077–R1084

    Article  CAS  PubMed  Google Scholar 

  151. Mistlberger RE, Skene DJ (2005) Nonphotic entrainment in humans? J Biol Rhythms 20(4):339–352

    Article  PubMed  Google Scholar 

  152. Cain SW, Rimmer DW, Duffy JF, Czeisler CA (2007) Exercise distributed across day and night does not alter circadian period in humans. J Biol Rhythms 22(6):534–541

    Article  PubMed  Google Scholar 

  153. Trulson ME, Jacobs BL (1979) Raphe unit activity in freely moving cats: correlation with level of behavioral arousal. Brain Res 163(1):135–150

    Article  CAS  PubMed  Google Scholar 

  154. Poncet L, Denoroy L, Jouvet M (1993) Daily variations in in vivo tryptophan hydroxylation and in the contents of serotonin and 5-hydroxyindoleacetic acid in discrete brain areas of the rat. J Neural Transm Gen Sect 92(2–3):137–150

    Article  CAS  PubMed  Google Scholar 

  155. Dudley TE, DiNardo LA, Glass JD (1998) Endogenous regulation of serotonin release in the hamster suprachiasmatic nucleus. J Neurosci Off J Soc Neurosci 18(13):5045–5052

    CAS  Google Scholar 

  156. Edgar DM, Reid MS, Dement WC (1997) Serotonergic afferents mediate activity-dependent entrainment of the mouse circadian clock. Am J Physiol 273(1 Pt 2):R265–R269

    CAS  PubMed  Google Scholar 

  157. Nakamaru-Ogiso E, Miyamoto H, Hamada K, Tsukada K, Takai K (2012) Novel biochemical manipulation of brain serotonin reveals a role of serotonin in the circadian rhythm of sleep-wake cycles. Eur J Neurosci 35(11):1762–1770

    Article  PubMed  Google Scholar 

  158. Monti JM (2010) The role of dorsal raphe nucleus serotonergic and non-serotonergic neurons, and of their receptors, in regulating waking and rapid eye movement (REM) sleep. Sleep Med Rev 14(5):319–327

    Article  PubMed  Google Scholar 

  159. James FO, Boivin DB, Charbonneau S, Belanger V, Cermakian N (2007) Expression of clock genes in human peripheral blood mononuclear cells throughout the sleep/wake and circadian cycles. Chronobiol Int 24(6):1009–1034

    Article  CAS  PubMed  Google Scholar 

  160. Bes F, Jobert M, Schulz H (2013) Modeling sleep propensity when sleep is severely restricted. Sleep 36(4):609–611

    PubMed  PubMed Central  Google Scholar 

  161. Boivin DB, James FO, Wu A, Cho-Park PF, Xiong H, Sun ZS (2003) Circadian clock genes oscillate in human peripheral blood mononuclear cells. Blood 102(12):4143–4145

    Article  CAS  PubMed  Google Scholar 

  162. Kusanagi H, Hida A, Satoh K, Echizenya M, Shimizu T, Pendergast JS et al (2008) Expression profiles of 10 circadian clock genes in human peripheral blood mononuclear cells. Neurosci Res 61(2):136–142

    Article  CAS  PubMed  Google Scholar 

  163. Bjarnason GA, Jordan RC, Wood PA, Li Q, Lincoln DW, Sothern RB et al (2001) Circadian expression of clock genes in human oral mucosa and skin: association with specific cell-cycle phases. Am J Pathol 158(5):1793–1801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Brown SA, Fleury-Olela F, Nagoshi E, Hauser C, Juge C, Meier CA et al (2005) The period length of fibroblast circadian gene expression varies widely among human individuals. PLoS Biol 3(10):e338

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  165. Sandu C, Dumas M, Malan A, Sambakhe D, Marteau C, Nizard C et al (2012) Human skin keratinocytes, melanocytes, and fibroblasts contain distinct circadian clock machineries. Cell Mol Life Sci CMLS 69(19):3329–3339

    Article  CAS  PubMed  Google Scholar 

  166. Garaulet M, Corbalan MD, Madrid JA, Morales E, Baraza JC, Lee YC et al (2010) CLOCK gene is implicated in weight reduction in obese patients participating in a dietary programme based on the Mediterranean diet. Int J Obes 34(3):516–523

    Article  CAS  Google Scholar 

  167. Mostafaie N, Kallay E, Sauerzapf E, Bonner E, Kriwanek S, Cross HS et al (2009) Correlated downregulation of estrogen receptor beta and the circadian clock gene Per1 in human colorectal cancer. Mol Carcinog 48(7):642–647

    Article  CAS  PubMed  Google Scholar 

  168. Otway DT, Mantele S, Bretschneider S, Wright J, Trayhurn P, Skene DJ et al (2011) Rhythmic diurnal gene expression in human adipose tissue from individuals who are lean, overweight, and type 2 diabetic. Diabetes 60(5):1577–1581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Akashi M, Soma H, Yamamoto T, Tsugitomi A, Yamashita S, Nishida E et al (2010) Noninvasive method for assessing the human circadian clock using hair follicle cells. Proc Natl Acad Sci U S A 107(35):15643–15648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Lim AS, Myers AJ, Yu L, Buchman AS, Duffy JF, De Jager PL et al (2013) Sex difference in daily rhythms of clock gene expression in the aged human cerebral cortex. J Biol Rhythms 28(2):117–129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Li JZ, Bunney BG, Meng F, Hagenauer MH, Walsh DM, Vawter MP et al (2013) Circadian patterns of gene expression in the human brain and disruption in major depressive disorder. Proc Natl Acad Sci U S A 110(24):9950–9955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Aschoff J, Daan, S, Honma KI (1982) Zeitgebers, entrainment, and masking: some unsettled questions, 1st edn. In: Aschoff J, Daan S et al. (eds) Springer, Berlin

    Google Scholar 

  173. Redlin U (2001) Neural basis and biological function of masking by light in mammals: suppression of melatonin and locomotor activity. Chronobiol Int 18(5):737–758

    Article  CAS  PubMed  Google Scholar 

  174. Moore-Ede MC, Sulzman FM (1977) The physiological basis of circadian timekeeping in primates. Physiol 20(3):17–25

    CAS  Google Scholar 

  175. Duffy JF, Dijk DJ (2002) Getting through to circadian oscillators: why use constant routines? J Biol Rhythms 17(1):4–13

    Article  PubMed  Google Scholar 

  176. Reilly T, Waterhouse J (2009) Circadian aspects of body temperature regulation in exercise. J Therm Biol 34(4):161–170

    Article  Google Scholar 

  177. Mills JN, Minors DS, Waterhouse JM (1978) Adaptation to abrupt time shifts of the oscillator(s) controlling human circadian rhythms. J Physiol 285:455–470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Minors DS, Waterhouse JM (1992) Investigating the endogenous component of human circadian rhythms: a review of some simple alternatives to constant routines. Chronobiol Int 9(1):55–78

    Article  CAS  PubMed  Google Scholar 

  179. Blatter K, Cajochen C (2007) Circadian rhythms in cognitive performance: methodological constraints, protocols, theoretical underpinnings. Physiol Behav 90(2–3):196–208

    Article  CAS  PubMed  Google Scholar 

  180. Carskadon MA, Dement WC (1980) Distribution of REM sleep on a 90 minute sleep-wake schedule. Sleep 2(3):309–317

    Article  CAS  PubMed  Google Scholar 

  181. Shechter A, Varin F, Boivin DB (2010) Circadian variation of sleep during the follicular and luteal phases of the menstrual cycle. Sleep 33(5):647–656

    Article  PubMed  PubMed Central  Google Scholar 

  182. Boudreau P, Yeh WH, Dumont GA, Boivin DB (2012) A circadian rhythm in heart rate variability contributes to the increased cardiac sympathovagal response to awakening in the morning. Chronobiol Int 29(6):757–768

    Article  PubMed  Google Scholar 

  183. Zandi AS, Boudreau P, Boivin DB, Dumont GA (eds) (2013) Circadian variation of scalp EEG: a novel measure based on wavelet packet transform and differential entropy. In: 35th Annual international conference of the IEEE engineering in medicine and biology society 2013, Osaka, Japan

    Google Scholar 

  184. Lavie P, Scherson A (1981) Ultrashort sleep-walking schedule. I. Evidence of ultradian rhythmicity in “sleepability”. Electroencephalogr Clin Neurophysiol 52(2):163–174

    Article  CAS  PubMed  Google Scholar 

  185. Lavie P, Zomer J (1984) Ultrashort sleep-waking schedule. II. Relationship between ultradian rhythms in sleepability and the REM-non-REM cycles and effects of the circadian phase. Electroencephalogr Clin Neurophysiol 57(1):35–42

    Article  CAS  PubMed  Google Scholar 

  186. Lavie P (1987) Ultrashort sleep-wake cycle: timing of REM sleep. Evidence for sleep-dependent and sleep-independent components of the REM cycle. Sleep 10(1):62–68

    CAS  PubMed  Google Scholar 

  187. Cuesta M, Clesse D, Pevet P, Challet E (2009) From daily behavior to hormonal and neurotransmitters rhythms: comparison between diurnal and nocturnal rat species. Horm Behav 55(2):338–347

    Article  CAS  PubMed  Google Scholar 

  188. Tobler I (2011) Chapter 9—Phylogeny of sleep regulation. In: Kryger M, Roth T, Dement WC (eds) Principles and practice of sleep medicine, 5th edn. W.B. Saunders, Philadelphia, pp 112–125

    Chapter  Google Scholar 

  189. Jouvet M, Michel F, Courjon J (1959) Sur un stade d’activité électrique cérébrale rapide au cours du sommeil physiologique. C R Seances Soc Biol Fil 153:1024–1028

    CAS  PubMed  Google Scholar 

  190. Rechtschaffen A, Kales A (1968) A manual of standardized terminology, techniques and scoring systems for sleep stages of human subjects. Brain Information Service, Brain Research Institute, UCLA, Los Angeles

    Google Scholar 

  191. Iber C, Ancoli-Israel S, Chesson A, Quan S (2007) The AASM manual for the scoring of sleep and associated events: rules, terminology and technical specifications. American Academy of Sleep Medicine, Westcherster, p 1000

    Google Scholar 

  192. Borbely AA (1982) A two process model of sleep regulation. Hum Neurobiol 1(3):195–204

    CAS  PubMed  Google Scholar 

  193. Dijk DJ, Czeisler CA (1994) Paradoxical timing of the circadian rhythm of sleep propensity serves to consolidate sleep and wakefulness in humans. Neurosci Lett 166(1):63–68

    Article  CAS  PubMed  Google Scholar 

  194. Wyatt JK, Ritz-De Cecco A, Czeisler CA, Dijk DJ (1999) Circadian temperature and melatonin rhythms, sleep, and neurobehavioral function in humans living on a 20-h day. Am J Physiol 277(4 Pt 2):R1152–R1163

    Google Scholar 

  195. Dijk DJ, Czeisler CA (1995) Contribution of the circadian pacemaker and the sleep homeostat to sleep propensity, sleep structure, electroencephalographic slow waves, and sleep spindle activity in humans. J Neurosci Off J Soc Neurosci 15(5 Pt 1):3526–3538

    CAS  Google Scholar 

  196. Achermann P, Borbély AA (2011) Sleep homeostasis and models of sleep regulation. In: Kryger MH, Roth T, Dement WC (eds) Principles and practice of sleep medicine, 5th edn. Elsevier, Philadelphia, pp 431–444

    Google Scholar 

  197. Borbely AA, Baumann F, Brandeis D, Strauch I, Lehmann D (1981) Sleep deprivation: effect on sleep stages and EEG power density in man. Electroencephalogr Clin Neurophysiol 51(5):483–495

    Article  CAS  PubMed  Google Scholar 

  198. Achermann P, Borbely AA (2003) Mathematical models of sleep regulation. Front Biosci J Virtual Libr 8:s683–s693

    Article  Google Scholar 

  199. Finelli LA, Baumann H, Borbely AA, Achermann P (2000) Dual electroencephalogram markers of human sleep homeostasis: correlation between theta activity in waking and slow-wave activity in sleep. Neuroscience 101(3):523–529

    Article  CAS  PubMed  Google Scholar 

  200. Vyazovskiy VV, Tobler I (2005) Theta activity in the waking EEG is a marker of sleep propensity in the rat. Brain Res 1050(1–2):64–71

    Article  CAS  PubMed  Google Scholar 

  201. Cajochen C, Brunner DP, Krauchi K, Graw P, Wirz-Justice A (1995) Power density in theta/alpha frequencies of the waking EEG progressively increases during sustained wakefulness. Sleep 18(10):890–894

    Article  CAS  PubMed  Google Scholar 

  202. Tononi G, Cirelli C (2006) Sleep function and synaptic homeostasis. Sleep Med Rev 10(1):49–62

    Article  PubMed  Google Scholar 

  203. Zavada A, Strijkstra AM, Boerema AS, Daan S, Beersma DG (2009) Evidence for differential human slow-wave activity regulation across the brain. J Sleep Res 18(1):3–10

    Article  PubMed  Google Scholar 

  204. Rusterholz T, Achermann P (2011) Topographical aspects in the dynamics of sleep homeostasis in young men: individual patterns. BMC Neurosci 12:84

    Article  PubMed  PubMed Central  Google Scholar 

  205. Robillard R, Massicotte-Marquez J, Kawinska A, Paquet J, Frenette S, Carrier J (2010) Topography of homeostatic sleep pressure dissipation across the night in young and middle-aged men and women. J Sleep Res 19(3):455–465

    Article  PubMed  Google Scholar 

  206. Huber R, Ghilardi MF, Massimini M, Ferrarelli F, Riedner BA, Peterson MJ et al (2006) Arm immobilization causes cortical plastic changes and locally decreases sleep slow wave activity. Nat Neurosci 9(9):1169–1176

    Article  CAS  PubMed  Google Scholar 

  207. Huber R, Ghilardi MF, Massimini M, Tononi G (2004) Local sleep and learning. Nature 430(6995):78–81

    Article  CAS  PubMed  Google Scholar 

  208. Murphy M, Huber R, Esser S, Riedner BA, Massimini M, Ferrarelli F et al (2011) The cortical topography of local sleep. Curr Top Med Chem 11(19):2438–2446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Hung CS, Sarasso S, Ferrarelli F, Riedner B, Ghilardi MF, Cirelli C et al (2013) Local experience-dependent changes in the wake EEG after prolonged wakefulness. Sleep 36(1):59–72

    Article  PubMed  PubMed Central  Google Scholar 

  210. Vyazovskiy VV, Olcese U, Hanlon EC, Nir Y, Cirelli C, Tononi G (2011) Local sleep in awake rats. Nature 472(7344):443–447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Porkka-Heiskanen T, Strecker RE, McCarley RW (2000) Brain site-specificity of extracellular adenosine concentration changes during sleep deprivation and spontaneous sleep: an in vivo microdialysis study. Neuroscience 99(3):507–517

    Article  CAS  PubMed  Google Scholar 

  212. Huang ZL, Urade Y, Hayaishi O (2007) Prostaglandins and adenosine in the regulation of sleep and wakefulness. Curr Opin Pharmacol 7(1):33–38

    Article  CAS  PubMed  Google Scholar 

  213. Vassalli A, Dijk DJ (2009) Sleep function: current questions and new approaches. Eur J Neurosci 29(9):1830–1841

    Article  PubMed  Google Scholar 

  214. Basheer R, Strecker RE, Thakkar MM, McCarley RW (2004) Adenosine and sleep-wake regulation. Prog Neurobiol 73(6):379–396

    Article  CAS  PubMed  Google Scholar 

  215. Kalinchuk AV, McCarley RW, Porkka-Heiskanen T, Basheer R (2011) The time course of adenosine, nitric oxide (NO) and inducible NO synthase changes in the brain with sleep loss and their role in the non-rapid eye movement sleep homeostatic cascade. J Neurochem 116(2):260–272

    Article  CAS  PubMed  Google Scholar 

  216. Strecker RE, Morairty S, Thakkar MM, Porkka-Heiskanen T, Basheer R, Dauphin LJ et al (2000) Adenosinergic modulation of basal forebrain and preoptic/anterior hypothalamic neuronal activity in the control of behavioral state. Behav Brain Res 115(2):183–204

    Article  CAS  PubMed  Google Scholar 

  217. Jackisch R, Strittmatter H, Kasakov L, Hertting G (1984) Endogenous adenosine as a modulator of hippocampal acetylcholine release. Naunyn Schmiedebergs Arch Pharmacol 327(4):319–325

    Article  CAS  PubMed  Google Scholar 

  218. Alam MN, Szymusiak R, Gong H, King J, McGinty D (1999) Adenosinergic modulation of rat basal forebrain neurons during sleep and waking: neuronal recording with microdialysis. J Physiol 521(Pt 3):679–690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Huang ZL, Qu WM, Eguchi N, Chen JF, Schwarzschild MA, Fredholm BB et al (2005) Adenosine A2A, but not A1, receptors mediate the arousal effect of caffeine. Nat Neurosci 8(7):858–859

    Article  CAS  PubMed  Google Scholar 

  220. Landolt HP, Retey JV, Tonz K, Gottselig JM, Khatami R, Buckelmuller I et al (2004) Caffeine attenuates waking and sleep electroencephalographic markers of sleep homeostasis in humans. Neuropsychopharmacol Off Publ Am Coll Neuropsychopharmacol 29(10):1933–1939

    Article  CAS  Google Scholar 

  221. Dement WC (2011) History of sleep physiology and medicine. In: Kryger MH, Roth T, Dement WC (eds) Principles and practice of sleep medicine, 5th edn. Elsevier, Philadelphia, pp 3–15

    Google Scholar 

  222. Kleitman N (1960) The sleep cycle. Am J Nurs 60:677–679

    Article  CAS  PubMed  Google Scholar 

  223. Czeisler CA, Zimmerman JC, Ronda JM, Moore-Ede MC, Weitzman ED (1980) Timing of REM sleep is coupled to the circadian rhythm of body temperature in man. Sleep 2(3):329–346

    Article  CAS  PubMed  Google Scholar 

  224. Czeisler CA, Dijk DJ, Kronauer RE, Brown EN, Duffy JF, Allan JS et al (2000) Is there an intrinsic period of the circadian clock? Response. Science 288(5469):1174–1175

    Article  CAS  PubMed  Google Scholar 

  225. Campbell S (2000) Is there an intrinsic period of the circadian clock? Science 288(5469):1174–1175

    Article  CAS  PubMed  Google Scholar 

  226. Dijk DJ, Duffy JF, Riel E, Shanahan TL, Czeisler CA (1999) Ageing and the circadian and homeostatic regulation of human sleep during forced desynchrony of rest, melatonin and temperature rhythms. J Physiol 516(Pt 2):611–627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Boudreau P, Yeh WH, Dumont GA, Boivin DB (2013) Circadian variation of heart rate variability across sleep stages. Sleep 36(12):1919–1928

    Article  PubMed  PubMed Central  Google Scholar 

  228. Ibuka N, Kawamura H (1975) Loss of circadian rhythm in sleep-wakefulness cycle in the rat by suprachiasmatic nucleus lesions. Brain Res 96(1):76–81

    Article  CAS  PubMed  Google Scholar 

  229. Ibuka N, Inouye SI, Kawamura H (1977) Analysis of sleep-wakefulness rhythms in male rats after suprachiasmatic nucleus lesions and ocular enucleation. Brain Res 122(1):33–47

    Article  CAS  PubMed  Google Scholar 

  230. Mistlberger RE, Bergmann BM, Waldenar W, Rechtschaffen A (1983) Recovery sleep following sleep deprivation in intact and suprachiasmatic nuclei-lesioned rats. Sleep 6(3):217–233

    Article  CAS  PubMed  Google Scholar 

  231. Wurts SW, Edgar DM (2000) Circadian and homeostatic control of rapid eye movement (REM) sleep: promotion of REM tendency by the suprachiasmatic nucleus. J Neurosci Off J Soc Neurosci 20(11):4300–4310

    CAS  Google Scholar 

  232. Mouret J, Coindet J, Debilly G, Chouvet G (1978) Suprachiasmatic nuclei lesions in the rat: alterations in sleep circadian rhythms. Electroencephalogr Clin Neurophysiol 45(3):402–408

    Article  CAS  PubMed  Google Scholar 

  233. Larkin JE, Yokogawa T, Heller HC, Franken P, Ruby NF (2004) Homeostatic regulation of sleep in arrhythmic Siberian hamsters. Am J Physiol Regul Integr Comp Physiol 287(1):R104–R111

    Article  CAS  PubMed  Google Scholar 

  234. Paech GM, Ferguson SA, Sargent C, Kennaway DJ, Roach GD (2012) The relative contributions of the homeostatic and circadian processes to sleep regulation under conditions of severe sleep restriction. Sleep 35(7):941–948

    Article  PubMed  PubMed Central  Google Scholar 

  235. Deboer T, Detari L, Meijer JH (2007) Long term effects of sleep deprivation on the mammalian circadian pacemaker. Sleep 30(3):257–262

    Article  PubMed  Google Scholar 

  236. Deboer T, Vansteensel MJ, Detari L, Meijer JH (2003) Sleep states alter activity of suprachiasmatic nucleus neurons. Nat Neurosci 6(10):1086–1090

    Article  CAS  PubMed  Google Scholar 

  237. Easton A, Meerlo P, Bergmann B, Turek FW (2004) The suprachiasmatic nucleus regulates sleep timing and amount in mice. Sleep 27(7):1307–1318

    Article  PubMed  Google Scholar 

  238. Edgar DM, Dement WC, Fuller CA (1993) Effect of SCN lesions on sleep in squirrel monkeys: evidence for opponent processes in sleep-wake regulation. J Neurosci Off J Soc Neurosci 13(3):1065–1079

    CAS  Google Scholar 

  239. Strogatz SH, Kronauer RE, Czeisler CA (1987) Circadian pacemaker interferes with sleep onset at specific times each day: role in insomnia. Am J Physiol 253(1 Pt 2):R172–R178

    CAS  PubMed  Google Scholar 

  240. Lack LC, Lushington K (1996) The rhythms of human sleep propensity and core body temperature. J Sleep Res 5(1):1–11

    Article  CAS  PubMed  Google Scholar 

  241. Summala H, Mikkola T (1994) Fatal accidents among car and truck drivers: effects of fatigue, age, and alcohol consumption. Hum Factors J Hum Factors Ergon Soc 36(2):315–326

    Article  CAS  Google Scholar 

  242. Lenne MG, Triggs TJ, Redman JR (1997) Time of day variations in driving performance. Accid Anal Prev 29(4):431–437

    Article  CAS  PubMed  Google Scholar 

  243. Dinges DF (1995) An overview of sleepiness and accidents. J Sleep Res 4(S2):4–14

    Article  CAS  PubMed  Google Scholar 

  244. Lack LC, Wright HR (2007) Treating chronobiological components of chronic insomnia. Sleep Med 8(6):637–644

    Article  PubMed  Google Scholar 

  245. Boivin DB, Boudreau P. Circadian rhythms and insomnia—approaching the time barrier. Insomnia rounds. The Canadian Sleep Society, Montréal, p 8 (in press)

    Google Scholar 

  246. Krauchi K (2007) The thermophysiological cascade leading to sleep initiation in relation to phase of entrainment [updated Aug 29]. Available from

    Google Scholar 

  247. Ferrara M, De Gennaro L (2000) The sleep inertia phenomenon during the sleep-wake transition: theoretical and operational issues. Aviat Space Environ Med 71(8):843–848

    CAS  PubMed  Google Scholar 

  248. Krauchi K, Cajochen C, Wirz-Justice A (2004) Waking up properly: is there a role of thermoregulation in sleep inertia? J Sleep Res 13(2):121–127

    Article  PubMed  Google Scholar 

  249. Lu J, Sherman D, Devor M, Saper CB (2006) A putative flip-flop switch for control of REM sleep. Nature 441(7093):589–594

    Article  CAS  PubMed  Google Scholar 

  250. Deurveilher S, Semba K (2005) Indirect projections from the suprachiasmatic nucleus to major arousal-promoting cell groups in rat: implications for the circadian control of behavioural state. Neuroscience 130(1):165–183

    Article  CAS  PubMed  Google Scholar 

  251. Fuller PM, Saper CB, Lu J (2007) The pontine REM switch: past and present. J Physiol 584(Pt 3):735–741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Morin LP, Allen CN (2006) The circadian visual system, 2005. Brain Res Rev 51(1):1–60

    Article  CAS  PubMed  Google Scholar 

  253. Horne JA, Ostberg O (1976) A self-assessment questionnaire to determine morningness-eveningness in human circadian rhythms. Int J Chronobiol 4(2):97–110

    CAS  PubMed  Google Scholar 

  254. Roenneberg T, Wirz-Justice A, Merrow M (2003) Life between clocks: daily temporal patterns of human chronotypes. J Biol Rhythms 18(1):80–90

    Article  PubMed  Google Scholar 

  255. Gradisar M, Gardner G, Dohnt H (2011) Recent worldwide sleep patterns and problems during adolescence: a review and meta-analysis of age, region, and sleep. Sleep Med 12(2):110–118

    Article  PubMed  Google Scholar 

  256. Crowley SJ, Acebo C, Carskadon MA (2007) Sleep, circadian rhythms, and delayed phase in adolescence. Sleep Med 8(6):602–612

    Article  PubMed  Google Scholar 

  257. Roenneberg T, Kuehnle T, Pramstaller PP, Ricken J, Havel M, Guth A et al (2004) A marker for the end of adolescence. Curr Biol CB 14(24):R1038–R1039

    Article  CAS  PubMed  Google Scholar 

  258. Adan A, Natale V (2002) Gender differences in morningness-eveningness preference. Chronobiol Int 19(4):709–720

    Article  PubMed  Google Scholar 

  259. Campbell IG, Darchia N, Higgins LM, Dykan IV, Davis NM, de Bie E et al (2011) Adolescent changes in homeostatic regulation of EEG activity in the delta and theta frequency bands during NREM sleep. Sleep 34(1):83–91

    Article  PubMed  PubMed Central  Google Scholar 

  260. Hagenauer MH, Lee TM (2013) Adolescent sleep patterns in humans and laboratory animals. Horm Behav 64(2):270–279

    Article  PubMed  PubMed Central  Google Scholar 

  261. Duffy JF, Dijk DJ, Hall EF, Czeisler CA (1999) Relationship of endogenous circadian melatonin and temperature rhythms to self-reported preference for morning or evening activity in young and older people. J Invest Med Off Publ Am Fed Clin Res 47(3):141–150

    CAS  Google Scholar 

  262. Baehr EK, Revelle W, Eastman CI (2000) Individual differences in the phase and amplitude of the human circadian temperature rhythm: with an emphasis on morningness-eveningness. J Sleep Res 9(2):117–127

    Article  CAS  PubMed  Google Scholar 

  263. Bailey SL, Heitkemper MM (2001) Circadian rhythmicity of cortisol and body temperature: morningness-eveningness effects. Chronobiol Int 18(2):249–261

    Article  CAS  PubMed  Google Scholar 

  264. Mongrain V, Lavoie S, Selmaoui B, Paquet J, Dumont M (2004) Phase relationships between sleep-wake cycle and underlying circadian rhythms in morningness-eveningness. J Biol Rhythms 19(3):248–257

    Article  PubMed  Google Scholar 

  265. Lack L, Bailey M, Lovato N, Wright H (2009) Chronotype differences in circadian rhythms of temperature, melatonin, and sleepiness as measured in a modified constant routine protocol. Nat Sci Sleep 1:1–8

    Article  PubMed  PubMed Central  Google Scholar 

  266. Novakova M, Sladek M, Sumova A (2013) Human chronotype is determined in bodily cells under real-life conditions. Chronobiol Int 30(4):607–617

    Article  CAS  PubMed  Google Scholar 

  267. Ebisawa T, Uchiyama M, Kajimura N, Mishima K, Kamei Y, Katoh M et al (2001) Association of structural polymorphisms in the human period3 gene with delayed sleep phase syndrome. EMBO Rep 2(4):342–346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  268. Archer SN, Robilliard DL, Skene DJ, Smits M, Williams A, Arendt J et al (2003) A length polymorphism in the circadian clock gene Per3 is linked to delayed sleep phase syndrome and extreme diurnal preference. Sleep 26(4):413–415

    Article  PubMed  Google Scholar 

  269. Pereira DS, Tufik S, Louzada FM, Benedito-Silva AA, Lopez AR, Lemos NA et al (2005) Association of the length polymorphism in the human Per3 gene with the delayed sleep-phase syndrome: does latitude have an influence upon it? Sleep 28(1):29–32

    PubMed  Google Scholar 

  270. Osland TM, Bjorvatn BR, Steen VM, Pallesen S (2011) Association study of a variable-number tandem repeat polymorphism in the clock gene PERIOD3 and chronotype in Norwegian university students. Chronobiol Int 28(9):764–770

    Article  CAS  PubMed  Google Scholar 

  271. Goel N, Banks S, Mignot E, Dinges DF (2009) PER3 polymorphism predicts cumulative sleep homeostatic but not neurobehavioral changes to chronic partial sleep deprivation. PLoS ONE 4(6):e5874

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  272. Viola AU, Archer SN, James LM, Groeger JA, Lo JC, Skene DJ et al (2007) PER3 polymorphism predicts sleep structure and waking performance. Curr Biol CB 17(7):613–618

    Article  CAS  PubMed  Google Scholar 

  273. Zavada A, Gordijn MC, Beersma DG, Daan S, Roenneberg T (2005) Comparison of the munich chronotype questionnaire with the Horne-Ostberg’s morningness-eveningness score. Chronobiol Int 22(2):267–278

    Article  PubMed  Google Scholar 

  274. Sack RL, Auckley D, Auger RR, Carskadon MA, Wright KP Jr, Vitiello MV et al (2007) Circadian rhythm sleep disorders: part II, advanced sleep phase disorder, delayed sleep phase disorder, free-running disorder, and irregular sleep-wake rhythm. An American Academy of sleep medicine review. Sleep 30(11):1484–1501

    Article  PubMed  PubMed Central  Google Scholar 

  275. Reid KJ, Zee PZ (2005) Circadian rhythm sleep disorder, delayed sleep phase type. In: Kryger MH, Roth T, Dement WC (eds) Principles and practice of sleep medicine, 4th edn. Elsevier, Philadelphia

    Google Scholar 

  276. Reid KJ, Zee PC (2009) Circadian rhythm disorders. Semin Neurol 29(4):393–405

    Article  PubMed  Google Scholar 

  277. Cermakian N, Boivin DB (2003) A molecular perspective of human circadian rhythm disorders. Brain Res Rev 42(3):204–220

    Article  CAS  PubMed  Google Scholar 

  278. Boivin DB, Boudreau P, Tremblay GM (2012) Phototherapy and orange-tinted goggles for night-shift adaptation of police officers on patrol. Chronobiol Int 29(5):629–640

    Article  PubMed  Google Scholar 

  279. Boivin DB, Boudreau P, James FO, Kin NM (2012) Photic resetting in night-shift work: impact on nurses’ sleep. Chronobiol Int 29(5):619–628

    Article  PubMed  Google Scholar 

  280. Drake CL, Roehrs T, Richardson G, Walsh JK, Roth T (2004) Shift work sleep disorder: prevalence and consequences beyond that of symptomatic day workers. Sleep 27(8):1453–1462

    Article  PubMed  Google Scholar 

  281. Wright KP Jr, Bogan RK, Wyatt JK (2012) Shift work and the assessment and management of shift work disorder (SWD). Sleep Med Rev

    Google Scholar 

  282. Frost P, Kolstad HA, Bonde JP (2009) Shift work and the risk of ischemic heart disease—a systematic review of the epidemiologic evidence. Scand J Work Environ Health 35(3):163–179

    Article  PubMed  Google Scholar 

  283. Wang XS, Armstrong ME, Cairns BJ, Key TJ, Travis RC (2011) Shift work and chronic disease: the epidemiological evidence. Occup Med (London) 61(2):78–89

    Article  Google Scholar 

  284. Marino JL, Holt VL, Chen C, Davis S (2008) Shift work, hCLOCK T3111C polymorphism, and endometriosis risk. Epidemiology 19(3):477–484

    Article  PubMed  PubMed Central  Google Scholar 

  285. Vyas MV, Garg AX, Iansavichus AV, Costella J, Donner A, Laugsand LE et al (2012) Shift work and vascular events: systematic review and meta-analysis. BMJ 345:e4800

    Article  PubMed  PubMed Central  Google Scholar 

  286. Cuesta M, Cermakian N, Boivin DB (2013) Circadian clock genes and psychiatric disorders. The genetic basis of sleep and sleep disorders. University of Cambridge Press, Cambridge, pp 351–364

    Google Scholar 

  287. Novak CM, Ehlen JC, Huhman KL, Albers HE (2004) GABA(B) receptor activation in the suprachiasmatic nucleus of diurnal and nocturnal rodents. Brain Res Bull 63(6):531–535

    Article  CAS  PubMed  Google Scholar 

  288. Daan S, Beersma DG, Borbely AA (1984) Timing of human sleep: recovery process gated by a circadian pacemaker. Am J Physiol 246(2 Pt 2):R161–R183

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diane B. Boivin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this chapter

Cite this chapter

Cuesta, M., Boudreau, P., Boivin, D.B. (2017). Basic Circadian Timing and Sleep-Wake Regulation. In: Chokroverty, S. (eds) Sleep Disorders Medicine. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-6578-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6578-6_6

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-6576-2

  • Online ISBN: 978-1-4939-6578-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics