Advertisement

Basic Circadian Timing and Sleep-Wake Regulation

  • Marc Cuesta
  • Philippe Boudreau
  • Diane B. BoivinEmail author
Chapter

Abstract

The circadian system represents one of the most important regulatory signaling networks of the brain and periphery. Virtually, every cell can express circadian rhythms through molecular autoregulated feedback core loops. In mammals, the circadian system described in many brain and non-brain structures. Through this organization, the circadian system controls the rhythmicity of many functions, including the regulation of the sleep-wake cycle. In this chapter, we first describe the basic circadian timing and its main properties. Then, following the description of the sleep-wake cycle, we review the mechanisms by which the circadian system controls different aspects related to sleep and wakefulness.

Keywords

Circadian Clock genes Synchronization Resetting Sleep Sleep homeostasis Chronotype Melatonin Cortisol Core body temperature 

Abbreviations

5-HT

5-hydroxytryptamine or serotonin

A1

Adenosine type 1 receptor

A2a

Adenosine type 2a receptor

AA-NAT

Arylalkylamine N-acetyltransferase

ACh

Acetylcholine

ACTH

Adrenocorticotropic hormone

AMPA

Alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid

ARC

Arcuate nucleus

BDNF

Brain-derived neurotropic factor

BNST

Bed nucleus of the stria terminalis

cAMP

Cyclic adenosine monophosphate

cGMP

Cyclic guanosine monophosphate

CBT

Core body temperature

ccgs

Clock-controlled genes

CR

Constant routine

CRE

Calcium/cAMP response element

CREB

CAMP response element binding

CRH

Corticotropin-releasing hormone

DMH

Dorsomedial nucleus of the hypothalamus

DMV

Dorsal motor nucleus of the vagus

DRN

Dorsal raphe nuclei

EEG

Electroencephalography

EGF

Epidermal growth factor

EMG

Electromyography

ERKs

Extracellular signal-regulated kinases

EOG

Electrooculography

GABA

Gamma-aminobutyric acid

GCs

Glucocorticoids

GHT

Geniculohypothalamic tract

GLU

Glutamate

HB

Habenula

IL-1β

Interleukin-1 beta

IML

Intermediolateral column

IGL

Intergeniculate leaflet

LC

Locus coeruleus

LS

Lateral septum

LDT

Laterodorsal tegmental nucleus

LHA

Lateral hypothalamus area

LPT

Lateral pontine tegmentum

MPO

Medial preoptic area

MRN

Medial raphe nuclei

MT2

Melatonin type 2 receptor

NMDA

N-Methyl-d-aspartate

NO

Nitric oxide

NPY

Neuropeptide Y

NREM

Non-rapid eye movement

ORX

Orexin

PACAP

Pituitary adenylate cyclase-activating peptide

PC

Precoeruleus

PPT

Pedunculopontine tegmental nucleus

Process C

Circadian process of sleep-wake regulation

Process S

Homeostatic process of sleep-wake regulation

PSG

Polysomnography

PVN

Paraventricular nucleus of the hypothalamus

PVT

Paraventricular nucleus of the thalamus

RGT

Retinogeniculate tract

RORE

ROR-specific response elements

REM

Rapid eye movement

RHT

Retinohypothalamic tract

SCG

Superior cervical ganglion

SCN

Suprachiasmatic nucleus

SE

Sleep efficiency

SL

Sleep latency

SLD

Sublaterodorsal nucleus

SPZ

Subparaventricular zone

SWA

Slow-wave activity

TMN

Tuberomammillary nucleus

TNF-α

Tumor necrosis factor alpha

TRH

Thyrotropin-releasing hormone

TSH

Thyroid-stimulating hormone

TST

Total sleep time

USW

Ultradian sleep-wake cycle

VIP

Vasoactive intestinal polypeptide

VLPO

Ventrolateral preoptic area

vPAG

Ventral periaqueductal gray matter

WASO

Wake after sleep onset

WMZ

Wake maintenance zone

ZT

Zeitgeber

References

  1. 1.
    de Mairan J (1729) Observation botanique. Hist Acad Roy SciGoogle Scholar
  2. 2.
    Bell-Pedersen D, Cassone VM, Earnest DJ, Golden SS, Hardin PE, Thomas TL et al (2005) Circadian rhythms from multiple oscillators: lessons from diverse organisms. Nat Rev Genet 6(7):544–556PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Lowrey PL, Takahashi JS (2011) Genetics of circadian rhythms in Mammalian model organisms. Adv Genet 74:175–230PubMedPubMedCentralGoogle Scholar
  4. 4.
    Ruby NF, Burns DE, Heller HC (1999) Circadian rhythms in the suprachiasmatic nucleus are temperature-compensated and phase-shifted by heat pulses in vitro. J Neurosci Off J Soc Neurosci 19(19):8630–8636Google Scholar
  5. 5.
    Moore RY, Eichler VB (1972) Loss of a circadian adrenal corticosterone rhythm following suprachiasmatic lesions in the rat. Brain Res 42(1):201–206PubMedCrossRefGoogle Scholar
  6. 6.
    Stephan FK, Zucker I (1972) Circadian rhythms in drinking behavior and locomotor activity of rats are eliminated by hypothalamic lesions. Proc Natl Acad Sci U S A 69(6):1583–1586PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Ralph MR, Foster RG, Davis FC, Menaker M (1990) Transplanted suprachiasmatic nucleus determines circadian period. Science 247(4945):975–978PubMedCrossRefGoogle Scholar
  8. 8.
    Moore RY, Silver R (1998) Suprachiasmatic nucleus organization. Chronobiol Int 15(5):475–487PubMedCrossRefGoogle Scholar
  9. 9.
    Swaab DF, Fliers E, Partiman TS (1985) The suprachiasmatic nucleus of the human brain in relation to sex, age and senile dementia. Brain Res 342(1):37–44PubMedCrossRefGoogle Scholar
  10. 10.
    Hofman MA, Fliers E, Goudsmit E, Swaab DF (1988) Morphometric analysis of the suprachiasmatic and paraventricular nuclei in the human brain: sex differences and age-dependent changes. J Anat 160:127–143PubMedPubMedCentralGoogle Scholar
  11. 11.
    Hofman MA, Zhou JN, Swaab DF (1996) Suprachiasmatic nucleus of the human brain: an immunocytochemical and morphometric analysis. Anat Rec 244(4):552–562PubMedCrossRefGoogle Scholar
  12. 12.
    Welsh DK, Takahashi JS, Kay SA (2010) Suprachiasmatic nucleus: cell autonomy and network properties. Annu Rev Physiol 72:551–577PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Kriegsfeld LJ, LeSauter J, Silver R (2004) Targeted microlesions reveal novel organization of the hamster suprachiasmatic nucleus. J Neurosci Off J Soci Neurosci 24(10):2449–2457CrossRefGoogle Scholar
  14. 14.
    Moore RY, Speh JC, Leak RK (2002) Suprachiasmatic nucleus organization. Cell Tissue Res 309(1):89–98PubMedCrossRefGoogle Scholar
  15. 15.
    Leak RK, Moore RY (2001) Topographic organization of suprachiasmatic nucleus projection neurons. J Comp Neurol 433(3):312–334PubMedCrossRefGoogle Scholar
  16. 16.
    Morin LP, Shivers KY, Blanchard JH, Muscat L (2006) Complex organization of mouse and rat suprachiasmatic nucleus. Neuroscience 137(4):1285–1297PubMedCrossRefGoogle Scholar
  17. 17.
    Reghunandanan V, Reghunandanan R (2006) Neurotransmitters of the suprachiasmatic nuclei. J Circadian Rhythms 4:2PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Stopa EG, Volicer L, Kuo-Leblanc V, Harper D, Lathi D, Tate B et al (1999) Pathologic evaluation of the human suprachiasmatic nucleus in severe dementia. J Neuropathol Exp Neurol 58(1):29–39PubMedCrossRefGoogle Scholar
  19. 19.
    Harper DG, Stopa EG, Kuo-Leblanc V, McKee AC, Asayama K, Volicer L et al (2008) Dorsomedial SCN neuronal subpopulations subserve different functions in human dementia. Brain J Neurol 131(Pt 6):1609–1617CrossRefGoogle Scholar
  20. 20.
    Shearman LP, Sriram S, Weaver DR, Maywood ES, Chaves I, Zheng B et al (2000) Interacting molecular loops in the mammalian circadian clock. Science 288(5468):1013–1019PubMedCrossRefGoogle Scholar
  21. 21.
    Ko CH, Takahashi JS (2006) Molecular components of the mammalian circadian clock. Hum Mol Genet 15(Spec No 2):R271–R277Google Scholar
  22. 22.
    Duong HA, Robles MS, Knutti D, Weitz CJ (2011) A molecular mechanism for circadian clock negative feedback. Science 332(6036):1436–1439PubMedCrossRefGoogle Scholar
  23. 23.
    Liu AC, Tran HG, Zhang EE, Priest AA, Welsh DK, Kay SA (2008) Redundant function of REV-ERBalpha and beta and non-essential role for Bmal1 cycling in transcriptional regulation of intracellular circadian rhythms. PLoS Genet 4(2):e1000023PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Rossner MJ, Oster H, Wichert SP, Reinecke L, Wehr MC, Reinecke J et al (2008) Disturbed clockwork resetting in Sharp-1 and Sharp-2 single and double mutant mice. PLoS ONE 3(7):e2762PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Pegoraro M, Tauber E (2008) The role of microRNAs (miRNA) in circadian rhythmicity. J Genet 87(5):505–511PubMedCrossRefGoogle Scholar
  26. 26.
    Vanselow JT, Kramer A (2010) Posttranslational regulation of circadian clocks. The circadian clock. Springer, Berlin, pp 79–104Google Scholar
  27. 27.
    Hirano A, Yumimoto K, Tsunematsu R, Matsumoto M, Oyama M, Kozuka-Hata H et al (2013) FBXL21 regulates oscillation of the circadian clock through ubiquitination and stabilization of cryptochromes. Cell 152(5):1106–1118PubMedCrossRefGoogle Scholar
  28. 28.
    Yoo SH, Mohawk JA, Siepka SM, Shan Y, Huh SK, Hong HK et al (2013) Competing E3 ubiquitin ligases govern circadian periodicity by degradation of CRY in nucleus and cytoplasm. Cell 152(5):1091–1105PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Yan J, Wang H, Liu Y, Shao C (2008) Analysis of gene regulatory networks in the mammalian circadian rhythm. PLoS Comput Biol 4(10):e1000193PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Duffield GE (2003) DNA microarray analyses of circadian timing: the genomic basis of biological time. J Neuroendocrinol 15(10):991–1002PubMedCrossRefGoogle Scholar
  31. 31.
    Jin X, Shearman LP, Weaver DR, Zylka MJ, de Vries GJ, Reppert SM (1999) A molecular mechanism regulating rhythmic output from the suprachiasmatic circadian clock. Cell 96(1):57–68PubMedCrossRefGoogle Scholar
  32. 32.
    van Esseveldt KE, Lehman MN, Boer GJ (2000) The suprachiasmatic nucleus and the circadian time-keeping system revisited. Brain Res Rev 33(1):34–77PubMedCrossRefGoogle Scholar
  33. 33.
    Schwartz WJ, Gross RA, Morton MT (1987) The suprachiasmatic nuclei contain a tetrodotoxin-resistant circadian pacemaker. Proc Natl Acad Sci U S A 84(6):1694–1698PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Kuhlman SJ, McMahon DG (2006) Encoding the ins and outs of circadian pacemaking. J Biol Rhythms 21(6):470–481PubMedCrossRefGoogle Scholar
  35. 35.
    Balsalobre A, Damiola F, Schibler U (1998) A serum shock induces circadian gene expression in mammalian tissue culture cells. Cell 93(6):929–937PubMedCrossRefGoogle Scholar
  36. 36.
    Abe M, Herzog ED, Yamazaki S, Straume M, Tei H, Sakaki Y et al (2002) Circadian rhythms in isolated brain regions. J Neurosci Off J Soc Neurosci 22(1):350–356Google Scholar
  37. 37.
    Guilding C, Piggins HD (2007) Challenging the omnipotence of the suprachiasmatic timekeeper: are circadian oscillators present throughout the mammalian brain? Eur J Neurosci 25(11):3195–3216PubMedCrossRefGoogle Scholar
  38. 38.
    Cermakian N, Lamont EW, Boudreau P, Boivin DB (2011) Circadian clock gene expression in brain regions of Alzheimer’s disease patients and control subjects. J Biol Rhythms 26(2):160–170PubMedCrossRefGoogle Scholar
  39. 39.
    Yoo SH, Yamazaki S, Lowrey PL, Shimomura K, Ko CH, Buhr ED et al (2004) Period2: luciferase real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues. Proc Natl Acad Sci U S A 101(15):5339–5346PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Kornmann B, Schaad O, Bujard H, Takahashi JS, Schibler U (2007) System-driven and oscillator-dependent circadian transcription in mice with a conditionally active liver clock. PLoS Biol 5(2):e34PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Tosini G, Menaker M (1996) Circadian rhythms in cultured mammalian retina. Science 272(5260):419–421PubMedCrossRefGoogle Scholar
  42. 42.
    Guo H, Brewer JM, Lehman MN, Bittman EL (2006) Suprachiasmatic regulation of circadian rhythms of gene expression in hamster peripheral organs: effects of transplanting the pacemaker. J Neurosci Off J Soci Neurosci 26(24):6406–6412CrossRefGoogle Scholar
  43. 43.
    Nagoshi E, Saini C, Bauer C, Laroche T, Naef F, Schibler U (2004) Circadian gene expression in individual fibroblasts: cell-autonomous and self-sustained oscillators pass time to daughter cells. Cell 119(5):693–705PubMedCrossRefGoogle Scholar
  44. 44.
    Mendoza J, Challet E (2009) Brain clocks: from the suprachiasmatic nuclei to a cerebral network. Neurosci Rev J Bringing Neurobiol Neurol Psychiatry 15(5):477–488Google Scholar
  45. 45.
    Dardente H, Cermakian N (2007) Molecular circadian rhythms in central and peripheral clocks in mammals. Chronobiol Int 24(2):195–213PubMedCrossRefGoogle Scholar
  46. 46.
    Buhr ED, Yoo SH, Takahashi JS (2010) Temperature as a universal resetting cue for mammalian circadian oscillators. Science 330(6002):379–385PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Damiola F, Le Minh N, Preitner N, Kornmann B, Fleury-Olela F, Schibler U (2000) Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. Genes Dev 14(23):2950–2961PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Balsalobre A (2002) Clock genes in mammalian peripheral tissues. Cell Tissue Res 309(1):193–199PubMedCrossRefGoogle Scholar
  49. 49.
    Granados-Fuentes D, Tseng A, Herzog ED (2006) A circadian clock in the olfactory bulb controls olfactory responsivity. J Neurosci Off J Soc Neurosci 26(47):12219–12225CrossRefGoogle Scholar
  50. 50.
    Son GH, Chung S, Kim K (2011) The adrenal peripheral clock: glucocorticoid and the circadian timing system. Front Neuroendocrinol 32(4):451–465PubMedCrossRefGoogle Scholar
  51. 51.
    Tataroglu O, Davidson AJ, Benvenuto LJ, Menaker M (2006) The methamphetamine-sensitive circadian oscillator (MASCO) in mice. J Biol Rhythms 21(3):185–194PubMedCrossRefGoogle Scholar
  52. 52.
    Honma S, Yasuda T, Yasui A, van der Horst GT, Honma K (2008) Circadian behavioral rhythms in Cry1/Cry2 double-deficient mice induced by methamphetamine. J Biol Rhythms 23(1):91–94PubMedCrossRefGoogle Scholar
  53. 53.
    Mohawk JA, Baer ML, Menaker M (2009) The methamphetamine-sensitive circadian oscillator does not employ canonical clock genes. Proc Natl Acad Sci U S A 106(9):3519–3524PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Cuesta M, Aungier J, Morton AJ (2012) The methamphetamine-sensitive circadian oscillator is dysfunctional in a transgenic mouse model of Huntington’s disease. Neurobiol Dis 45(1):145–155PubMedCrossRefGoogle Scholar
  55. 55.
    Challet E, Mendoza J, Dardente H, Pevet P (2009) Neurogenetics of food anticipation. Eur J Neurosci 30(9):1676–1687PubMedCrossRefGoogle Scholar
  56. 56.
    Mistlberger RE (2009) Food-anticipatory circadian rhythms: concepts and methods. Eur J Neurosci 30(9):1718–1729PubMedCrossRefGoogle Scholar
  57. 57.
    Verwey M, Amir S (2009) Food-entrainable circadian oscillators in the brain. Eur J Neurosci 30(9):1650–1657PubMedCrossRefGoogle Scholar
  58. 58.
    Saper CB, Scammell TE, Lu J (2005) Hypothalamic regulation of sleep and circadian rhythms. Nature 437(7063):1257–1263PubMedCrossRefGoogle Scholar
  59. 59.
    Lu J, Zhang YH, Chou TC, Gaus SE, Elmquist JK, Shiromani P et al (2001) Contrasting effects of ibotenate lesions of the paraventricular nucleus and subparaventricular zone on sleep-wake cycle and temperature regulation. J Neurosci Off J Soci Neurosci 21(13):4864–4874Google Scholar
  60. 60.
    Bartness TJ, Song CK, Demas GE (2001) SCN efferents to peripheral tissues: implications for biological rhythms. J Biol Rhythms 16(3):196–204PubMedCrossRefGoogle Scholar
  61. 61.
    Buijs RM, Chun SJ, Niijima A, Romijn HJ, Nagai K (2001) Parasympathetic and sympathetic control of the pancreas: a role for the suprachiasmatic nucleus and other hypothalamic centers that are involved in the regulation of food intake. J Comp Neurol 431(4):405–423PubMedCrossRefGoogle Scholar
  62. 62.
    Scheer FA, Ter Horst GJ, van Der Vliet J, Buijs RM (2001) Physiological and anatomic evidence for regulation of the heart by suprachiasmatic nucleus in rats. Am J Physiol Heart Circ Physiol 280(3):H1391–H1399PubMedGoogle Scholar
  63. 63.
    Buijs RM, van Eden CG, Goncharuk VD, Kalsbeek A (2003) The biological clock tunes the organs of the body: timing by hormones and the autonomic nervous system. J Endocrinol 177(1):17–26PubMedCrossRefGoogle Scholar
  64. 64.
    Kalsbeek A, van Heerikhuize JJ, Wortel J, Buijs RM (1996) A diurnal rhythm of stimulatory input to the hypothalamo-pituitary-adrenal system as revealed by timed intrahypothalamic administration of the vasopressin V1 antagonist. J Neurosci Off J Soc Neurosci 16(17):5555–5565Google Scholar
  65. 65.
    Buijs RM, Wortel J, Van Heerikhuize JJ, Feenstra MG, Ter Horst GJ, Romijn HJ et al (1999) Anatomical and functional demonstration of a multisynaptic suprachiasmatic nucleus adrenal (cortex) pathway. Eur J Neurosci 11(5):1535–1544PubMedCrossRefGoogle Scholar
  66. 66.
    Garidou ML, Bartol I, Calgari C, Pevet P, Simonneaux V (2001) In vivo observation of a non-noradrenergic regulation of arylalkylamine N-acetyltransferase gene expression in the rat pineal complex. Neuroscience 105(3):721–729PubMedCrossRefGoogle Scholar
  67. 67.
    Kalsbeek A, Garidou ML, Palm IF, Van Der Vliet J, Simonneaux V, Pevet P et al (2000) Melatonin sees the light: blocking GABA-ergic transmission in the paraventricular nucleus induces daytime secretion of melatonin. Eur J Neurosci 12(9):3146–3154PubMedCrossRefGoogle Scholar
  68. 68.
    Kalsbeek A, Yi CX, la Fleur SE, Buijs RM, Fliers E (2010) Suprachiasmatic nucleus and autonomic nervous system influences on awakening from sleep. Int Rev Neurobiol 93:91–107PubMedCrossRefGoogle Scholar
  69. 69.
    Dibner C, Schibler U, Albrecht U (2010) The mammalian circadian timing system: organization and coordination of central and peripheral clocks. Annu Rev Physiol 72:517–549PubMedCrossRefGoogle Scholar
  70. 70.
    Altun A, Ugur-Altun B (2007) Melatonin: therapeutic and clinical utilization. Int J Clin Pract 61(5):835–845PubMedCrossRefGoogle Scholar
  71. 71.
    Revel FG, Masson-Pevet M, Pevet P, Mikkelsen JD, Simonneaux V (2009) Melatonin controls seasonal breeding by a network of hypothalamic targets. Neuroendocrinology 90(1):1–14PubMedCrossRefGoogle Scholar
  72. 72.
    Kalsbeek A, van der Spek R, Lei J, Endert E, Buijs RM, Fliers E (2012) Circadian rhythms in the hypothalamo-pituitary-adrenal (HPA) axis. Mol Cell Endocrinol 349(1):20–29PubMedCrossRefGoogle Scholar
  73. 73.
    Scheer FA, Hu K, Evoniuk H, Kelly EE, Malhotra A, Hilton MF et al (2010) Impact of the human circadian system, exercise, and their interaction on cardiovascular function. Proc Natl Acad Sci U S A 107(47):20541–20546PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Shea SA, Hilton MF, Orlova C, Ayers RT, Mantzoros CS (2005) Independent circadian and sleep/wake regulation of adipokines and glucose in humans. J Clin Endocrinol Metab 90(5):2537–2544PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Czeisler CA, Duffy JF, Shanahan TL, Brown EN, Mitchell JF, Rimmer DW et al (1999) Stability, precision, and near-24-hour period of the human circadian pacemaker. Science 284(5423):2177–2181PubMedCrossRefGoogle Scholar
  76. 76.
    Gronfier C, Wright KP Jr, Kronauer RE, Czeisler CA (2007) Entrainment of the human circadian pacemaker to longer-than-24-h days. Proc Natl Acad Sci U S A 104(21):9081–9086PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Challet E, Malan A, Pevet P (1996) Daily hypocaloric feeding entrains circadian rhythms of wheel-running and body temperature in rats kept in constant darkness. Neurosci Lett 211(1):1–4PubMedCrossRefGoogle Scholar
  78. 78.
    Challet E, Jacob N, Vuillez P, Pevet P, Malan A (1997) Fos-like immunoreactivity in the circadian timing system of calorie-restricted rats fed at dawn: daily rhythms and light pulse-induced changes. Brain Res 770(1–2):228–236PubMedCrossRefGoogle Scholar
  79. 79.
    Hattar S, Liao HW, Takao M, Berson DM, Yau KW (2002) Melanopsin-containing retinal ganglion cells: architecture, projections, and intrinsic photosensitivity. Science 295(5557):1065–1070PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Morin LP, Blanchard JH, Provencio I (2003) Retinal ganglion cell projections to the hamster suprachiasmatic nucleus, intergeniculate leaflet, and visual midbrain: bifurcation and melanopsin immunoreactivity. J Comp Neurol 465(3):401–416PubMedCrossRefGoogle Scholar
  81. 81.
    Hughes S, Hankins MW, Foster RG, Peirson SN (2012) Melanopsin phototransduction: slowly emerging from the dark. Prog Brain Res 199:19–40PubMedCrossRefGoogle Scholar
  82. 82.
    Matsuyama T, Yamashita T, Imamoto Y, Shichida Y (2012) Photochemical properties of Mammalian melanopsin. Biochemistry 51(27):5454–5462PubMedCrossRefGoogle Scholar
  83. 83.
    Morin LP, Goodless-Sanchez N, Smale L, Moore RY (1994) Projections of the suprachiasmatic nuclei, subparaventricular zone and retrochiasmatic area in the golden hamster. Neuroscience 61(2):391–410PubMedCrossRefGoogle Scholar
  84. 84.
    Miller AM, Chappell R, Obermeyer WH, Benca RM (1996) Analysis of the retinohypothalamic tract in congenic albino and pigmented rats. Brain Res 741(1–2):348–351PubMedCrossRefGoogle Scholar
  85. 85.
    Smale L, Boverhof J (1999) The suprachiasmatic nucleus and intergeniculate leaflet of Arvicanthis niloticus, a diurnal murid rodent from East Africa. J Comp Neurol 403(2):190–208PubMedCrossRefGoogle Scholar
  86. 86.
    Sadun AA, Schaechter JD, Smith LE (1984) A retinohypothalamic pathway in man: light mediation of circadian rhythms. Brain Res 302(2):371–377PubMedCrossRefGoogle Scholar
  87. 87.
    Goel N, Governale MM, Jechura TJ, Lee TM (2000) Effects of intergeniculate leaflet lesions on circadian rhythms in Octodon degus. Brain Res 877(2):306–313PubMedCrossRefGoogle Scholar
  88. 88.
    Morin LP (1999) Serotonin and the regulation of mammalian circadian rhythmicity. Ann Med 31(1):12–33PubMedCrossRefGoogle Scholar
  89. 89.
    Daan S, Pittendrigh, SC (1976) A functional analysis of circadian pacemakers in nocturnal rodents. II. The variability of phase response curves. J Comp Physiol 106:253–266Google Scholar
  90. 90.
    Vuillez P, Jacob N, Teclemariam-Mesbah R, Van Rossum A, Vivien-Roels B, Pevet P (1998) Effect of NMDA receptor antagonist MK-801 on light-induced Fos expression in the suprachiasmatic nuclei and on melatonin production in the Syrian hamster. J Neuroendocrinol 10(9):671–677PubMedCrossRefGoogle Scholar
  91. 91.
    Ding JM, Chen D, Weber ET, Faiman LE, Rea MA, Gillette MU (1994) Resetting the biological clock: mediation of nocturnal circadian shifts by glutamate and NO. Science 266(5191):1713–1717PubMedCrossRefGoogle Scholar
  92. 92.
    Ding JM, Buchanan GF, Tischkau SA, Chen D, Kuriashkina L, Faiman LE et al (1998) A neuronal ryanodine receptor mediates light-induced phase delays of the circadian clock. Nature 394(6691):381–384PubMedCrossRefGoogle Scholar
  93. 93.
    Takahashi H, Umeda N, Tsutsumi Y, Fukumura R, Ohkaze H, Sujino M et al (2003) Mouse dexamethasone-induced RAS protein 1 gene is expressed in a circadian rhythmic manner in the suprachiasmatic nucleus. Mol Brain Res 110(1):1–6PubMedCrossRefGoogle Scholar
  94. 94.
    Ginty DD, Kornhauser JM, Thompson MA, Bading H, Mayo KE, Takahashi JS et al (1993) Regulation of CREB phosphorylation in the suprachiasmatic nucleus by light and a circadian clock. Science 260(5105):238–241PubMedCrossRefGoogle Scholar
  95. 95.
    Obrietan K, Impey S, Smith D, Athos J, Storm DR (1999) Circadian regulation of cAMP response element-mediated gene expression in the suprachiasmatic nuclei. J Biol Chem 274(25):17748–17756PubMedCrossRefGoogle Scholar
  96. 96.
    von Gall C, Duffield GE, Hastings MH, Kopp MD, Dehghani F, Korf HW et al (1998) CREB in the mouse SCN: a molecular interface coding the phase-adjusting stimuli light, glutamate, PACAP, and melatonin for clockwork access. J Neurosci Off J Soc Neurosci 18(24):10389–10397Google Scholar
  97. 97.
    Ding JM, Faiman LE, Hurst WJ, Kuriashkina LR, Gillette MU (1997) Resetting the biological clock: mediation of nocturnal CREB phosphorylation via light, glutamate, and nitric oxide. J Neurosci Off J Soc Neurosci 17(2):667–675Google Scholar
  98. 98.
    Akiyama M, Kouzu Y, Takahashi S, Wakamatsu H, Moriya T, Maetani M et al (1999) Inhibition of light- or glutamate-induced mPer1 expression represses the phase shifts into the mouse circadian locomotor and suprachiasmatic firing rhythms. J Neurosci Off J Soc Neurosci 19(3):1115–1121Google Scholar
  99. 99.
    Wakamatsu H, Takahashi S, Moriya T, Inouye ST, Okamura H, Akiyama M et al (2001) Additive effect of mPer1 and mPer2 antisense oligonucleotides on light-induced phase shift. NeuroReport 12(1):127–131PubMedCrossRefGoogle Scholar
  100. 100.
    Albrecht U, Zheng B, Larkin D, Sun ZS, Lee CC (2001) MPer1 and mper2 are essential for normal resetting of the circadian clock. J Biol Rhythms 16(2):100–104PubMedCrossRefGoogle Scholar
  101. 101.
    Caldelas I, Poirel VJ, Sicard B, Pevet P, Challet E (2003) Circadian profile and photic regulation of clock genes in the suprachiasmatic nucleus of a diurnal mammal Arvicanthis ansorgei. Neuroscience 116(2):583–591PubMedCrossRefGoogle Scholar
  102. 102.
    Albrecht U, Sun ZS, Eichele G, Lee CC (1997) A differential response of two putative mammalian circadian regulators, mper1 and mper2, to light. Cell 91(7):1055–1064PubMedCrossRefGoogle Scholar
  103. 103.
    Miyake S, Sumi Y, Yan L, Takekida S, Fukuyama T, Ishida Y et al (2000) Phase-dependent responses of Per1 and Per2 genes to a light-stimulus in the suprachiasmatic nucleus of the rat. Neurosci Lett 294(1):41–44PubMedCrossRefGoogle Scholar
  104. 104.
    Shearman LP, Zylka MJ, Weaver DR, Kolakowski LF Jr, Reppert SM (1997) Two period homologs: circadian expression and photic regulation in the suprachiasmatic nuclei. Neuron 19(6):1261–1269PubMedCrossRefGoogle Scholar
  105. 105.
    de Arriba Zerpa GA, Guido ME, Bussolino DF, Pasquare SJ, Castagnet PI, Giusto NM et al (1999) Light exposure activates retina ganglion cell lysophosphatidic acid acyl transferase and phosphatidic acid phosphatase by a c-fos-dependent mechanism. J Neurochem 73(3):1228–1235PubMedCrossRefGoogle Scholar
  106. 106.
    Abe H, Honma S, Namihira M, Tanahashi Y, Ikeda M, Honma K (1998) Circadian rhythm and light responsiveness of BMAL1 expression, a partner of mammalian clock gene clock, in the suprachiasmatic nucleus of rats. Neurosci Lett 258(2):93–96PubMedCrossRefGoogle Scholar
  107. 107.
    Okamura H, Miyake S, Sumi Y, Yamaguchi S, Yasui A, Muijtjens M et al (1999) Photic induction of mPer1 and mPer2 in cry-deficient mice lacking a biological clock. Science 286(5449):2531–2534PubMedCrossRefGoogle Scholar
  108. 108.
    Masana MI, Sumaya IC, Becker-Andre M, Dubocovich ML (2007) Behavioral characterization and modulation of circadian rhythms by light and melatonin in C3H/HeN mice homozygous for the RORbeta knockout. Am J Physiol Regul Integr Comp Physiol 292(6):R2357–R2367PubMedCrossRefGoogle Scholar
  109. 109.
    Preitner N, Damiola F, Lopez-Molina L, Zakany J, Duboule D, Albrecht U et al (2002) The orphan nuclear receptor REV-ERBalpha controls circadian transcription within the positive limb of the mammalian circadian oscillator. Cell 110(2):251–260PubMedCrossRefGoogle Scholar
  110. 110.
    Cuesta M, Clesse D, Pevet P, Challet E (2009) New light on the serotonergic paradox in the rat circadian system. J Neurochem 110(1):231–243PubMedCrossRefGoogle Scholar
  111. 111.
    Takahashi JS, DeCoursey PJ, Bauman L, Menaker M (1984) Spectral sensitivity of a novel photoreceptive system mediating entrainment of mammalian circadian rhythms. Nature 308(5955):186–188PubMedCrossRefGoogle Scholar
  112. 112.
    Mahoney M, Bult A, Smale L (2001) Phase response curve and light-induced fos expression in the suprachiasmatic nucleus and adjacent hypothalamus of Arvicanthis niloticus. J Biol Rhythms 16(2):149–162PubMedCrossRefGoogle Scholar
  113. 113.
    Czeisler CA, Kronauer RE, Allan JS, Duffy JF, Jewett ME, Brown EN et al (1989) Bright light induction of strong (type 0) resetting of the human circadian pacemaker. Science 244(4910):1328–1333PubMedCrossRefGoogle Scholar
  114. 114.
    St Hilaire MA, Gooley JJ, Khalsa SB, Kronauer RE, Czeisler CA, Lockley SW (2012) Human phase response curve to a 1 h pulse of bright white light. J Physiol 590(Pt 13):3035–3045PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Honma K, Honma S, Wada T (1987) Phase-dependent shift of free-running human circadian rhythms in response to a single bright light pulse. Experientia 43(11–12):1205–1207PubMedCrossRefGoogle Scholar
  116. 116.
    Khalsa SB, Jewett ME, Cajochen C, Czeisler CA (2003) A phase response curve to single bright light pulses in human subjects. J Physiol 549(Pt 3):945–952PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Boivin DB, Duffy JF, Kronauer RE, Czeisler CA (1996) Dose-response relationships for resetting of human circadian clock by light. Nature 379(6565):540–542PubMedCrossRefGoogle Scholar
  118. 118.
    Sharma VK, Chandrashekaran MK, Singaravel M, Subbaraj R (1999) Relationship between light intensity and phase resetting in a mammalian circadian system. J Exp Zool 283(2):181–185PubMedCrossRefGoogle Scholar
  119. 119.
    Zeitzer JM, Dijk DJ, Kronauer R, Brown E, Czeisler C (2000) Sensitivity of the human circadian pacemaker to nocturnal light: melatonin phase resetting and suppression. J Physiol 526(Pt 3):695–702PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Lockley SW, Brainard GC, Czeisler CA (2003) High sensitivity of the human circadian melatonin rhythm to resetting by short wavelength light. J Clin Endocrinol Metab 88(9):4502–4505PubMedCrossRefGoogle Scholar
  121. 121.
    Gooley JJ, Rajaratnam SM, Brainard GC, Kronauer RE, Czeisler CA, Lockley SW (2010) Spectral responses of the human circadian system depend on the irradiance and duration of exposure to light. Sci Transl Med 2(31):31ra3Google Scholar
  122. 122.
    Chang AM, Scheer FA, Czeisler CA (2011) The human circadian system adapts to prior photic history. J Physiol 589(Pt 5):1095–1102PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    James FO, Cermakian N, Boivin DB (2007) Circadian rhythms of melatonin, cortisol, and clock gene expression during simulated night shift work. Sleep 30(11):1427–1436PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Lewy A (2010) Clinical implications of the melatonin phase response curve. J Clin Endocrinol Metab 95(7):3158–3160PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Lewy AJ, Bauer VK, Ahmed S, Thomas KH, Cutler NL, Singer CM et al (1998) The human phase response curve (PRC) to melatonin is about 12 hours out of phase with the PRC to light. Chronobiol Int 15(1):71–83PubMedCrossRefGoogle Scholar
  126. 126.
    Burgess HJ, Revell VL, Molina TA, Eastman CI (2010) Human phase response curves to three days of daily melatonin: 0.5 mg versus 3.0 mg. J Clin Endocrinol Metab 95(7):3325–3331Google Scholar
  127. 127.
    Armstrong SM, Cassone VM, Chesworth MJ, Redman JR, Short RV (1986) Synchronization of mammalian circadian rhythms by melatonin. J Neural Transm Suppl 21:375–394PubMedGoogle Scholar
  128. 128.
    Slotten HA, Krekling S, Sicard B, Pevet P (2002) Daily infusion of melatonin entrains circadian activity rhythms in the diurnal rodent Arvicanthis ansorgei. Behav Brain Res 133(1):11–19PubMedCrossRefGoogle Scholar
  129. 129.
    Hunt AE, Al-Ghoul WM, Gillette MU, Dubocovich ML (2001) Activation of MT(2) melatonin receptors in rat suprachiasmatic nucleus phase advances the circadian clock. Am J Physiol Cell Physiol 280(1):C110–C118PubMedGoogle Scholar
  130. 130.
    McArthur AJ, Hunt AE, Gillette MU (1997) Melatonin action and signal transduction in the rat suprachiasmatic circadian clock: activation of protein kinase C at dusk and dawn. Endocrinology 138(2):627–634PubMedCrossRefGoogle Scholar
  131. 131.
    Dubocovich ML (2007) Melatonin receptors: role on sleep and circadian rhythm regulation. Sleep Med 8(Suppl 3):34–42PubMedCrossRefGoogle Scholar
  132. 132.
    Meyer-Bernstein EL, Morin LP (1996) Differential serotonergic innervation of the suprachiasmatic nucleus and the intergeniculate leaflet and its role in circadian rhythm modulation. J Neurosci Off J Soc Neurosci 16(6):2097–2111Google Scholar
  133. 133.
    Mosko SS, Haubrich D, Jacobs BL (1977) Serotonergic afferents to the dorsal raphe nucleus: evidence from HRP and synaptosomal uptake studies. Brain Res 119(2):269–290PubMedCrossRefGoogle Scholar
  134. 134.
    Leander P, Vrang N, Moller M (1998) Neuronal projections from the mesencephalic raphe nuclear complex to the suprachiasmatic nucleus and the deep pineal gland of the golden hamster (Mesocricetus auratus). J Comp Neurol 399(1):73–93PubMedCrossRefGoogle Scholar
  135. 135.
    Hay-Schmidt A, Vrang N, Larsen PJ, Mikkelsen JD (2003) Projections from the raphe nuclei to the suprachiasmatic nucleus of the rat. J Chem Neuroanat 25(4):293–310PubMedCrossRefGoogle Scholar
  136. 136.
    Yamakawa GR, Antle MC (2010) Phenotype and function of raphe projections to the suprachiasmatic nucleus. Eur J Neurosci 31(11):1974–1983PubMedCrossRefGoogle Scholar
  137. 137.
    Reebs SG, Mrosovsky N (1989) Effects of induced wheel running on the circadian activity rhythms of Syrian hamsters: entrainment and phase response curve. J Biol Rhythms 4(1):39–48PubMedCrossRefGoogle Scholar
  138. 138.
    Maywood ES, Mrosovsky N, Field MD, Hastings MH (1999) Rapid down-regulation of mammalian period genes during behavioral resetting of the circadian clock. Proc Natl Acad Sci U S A 96(26):15211–15216PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Horikawa K, Yokota S, Fuji K, Akiyama M, Moriya T, Okamura H et al (2000) Nonphotic entrainment by 5-HT1A/7 receptor agonists accompanied by reduced Per1 and Per2 mRNA levels in the suprachiasmatic nuclei. J Neurosci Off J Soc Neurosci 20(15):5867–5873Google Scholar
  140. 140.
    Huhman KL, Gillespie CF, Marvel CL, Albers HE (1996) Neuropeptide Y phase shifts circadian rhythms in vivo via a Y2 receptor. NeuroReport 7(7):1249–1252PubMedCrossRefGoogle Scholar
  141. 141.
    Fukuhara C, Brewer JM, Dirden JC, Bittman EL, Tosini G, Harrington ME (2001) Neuropeptide Y rapidly reduces Period 1 and Period 2 mRNA levels in the hamster suprachiasmatic nucleus. Neurosci Lett 314(3):119–122PubMedCrossRefGoogle Scholar
  142. 142.
    Smith RD, Inouye S, Turek FW (1989) Central administration of muscimol phase-shifts the mammalian circadian clock. J Comp Physiol A 164(6):805–814PubMedCrossRefGoogle Scholar
  143. 143.
    Cuesta M, Mendoza J, Clesse D, Pevet P, Challet E (2008) Serotonergic activation potentiates light resetting of the main circadian clock and alters clock gene expression in a diurnal rodent. Exp Neurol 210(2):501–513PubMedCrossRefGoogle Scholar
  144. 144.
    Hut RA, Mrosovsky N, Daan S (1999) Nonphotic entrainment in a diurnal mammal, the European ground squirrel (Spermophilus citellus). J Biol Rhythms 14(5):409–419PubMedCrossRefGoogle Scholar
  145. 145.
    Buxton OM, L’Hermite-Baleriaux M, Hirschfeld U, Cauter E (1997) Acute and delayed effects of exercise on human melatonin secretion. J Biol Rhythms 12(6):568–574PubMedCrossRefGoogle Scholar
  146. 146.
    Buxton OM, Lee CW, L’Hermite-Baleriaux M, Turek FW, Van Cauter E (2003) Exercise elicits phase shifts and acute alterations of melatonin that vary with circadian phase. Am J Physiol Regul Integr Comp Physiol 284(3):R714–R724PubMedCrossRefGoogle Scholar
  147. 147.
    Novak CM, Albers HE (2004) Circadian phase alteration by GABA and light differs in diurnal and nocturnal rodents during the day. Behav Neurosci 118(3):498–504PubMedCrossRefGoogle Scholar
  148. 148.
    Novak CM, Ehlen JC, Paul KN, Fukuhara C, Albers HE (2006) Light and GABA (A) receptor activation alter period mRNA levels in the SCN of diurnal Nile grass rats. Eur J Neurosci 24(10):2843–2852PubMedCrossRefGoogle Scholar
  149. 149.
    Van Reeth O, Sturis J, Byrne MM, Blackman JD, L’Hermite-Baleriaux M, Leproult R et al (1994) Nocturnal exercise phase delays circadian rhythms of melatonin and thyrotropin secretion in normal men. Am J Physiol 266(6 Pt 1):E964–E974PubMedGoogle Scholar
  150. 150.
    Barger LK, Wright KP Jr, Hughes RJ, Czeisler CA (2004) Daily exercise facilitates phase delays of circadian melatonin rhythm in very dim light. Am J Physiol Regul Integr Comp Physiol 286(6):R1077–R1084PubMedCrossRefGoogle Scholar
  151. 151.
    Mistlberger RE, Skene DJ (2005) Nonphotic entrainment in humans? J Biol Rhythms 20(4):339–352PubMedCrossRefGoogle Scholar
  152. 152.
    Cain SW, Rimmer DW, Duffy JF, Czeisler CA (2007) Exercise distributed across day and night does not alter circadian period in humans. J Biol Rhythms 22(6):534–541PubMedCrossRefGoogle Scholar
  153. 153.
    Trulson ME, Jacobs BL (1979) Raphe unit activity in freely moving cats: correlation with level of behavioral arousal. Brain Res 163(1):135–150PubMedCrossRefGoogle Scholar
  154. 154.
    Poncet L, Denoroy L, Jouvet M (1993) Daily variations in in vivo tryptophan hydroxylation and in the contents of serotonin and 5-hydroxyindoleacetic acid in discrete brain areas of the rat. J Neural Transm Gen Sect 92(2–3):137–150PubMedCrossRefGoogle Scholar
  155. 155.
    Dudley TE, DiNardo LA, Glass JD (1998) Endogenous regulation of serotonin release in the hamster suprachiasmatic nucleus. J Neurosci Off J Soc Neurosci 18(13):5045–5052Google Scholar
  156. 156.
    Edgar DM, Reid MS, Dement WC (1997) Serotonergic afferents mediate activity-dependent entrainment of the mouse circadian clock. Am J Physiol 273(1 Pt 2):R265–R269PubMedGoogle Scholar
  157. 157.
    Nakamaru-Ogiso E, Miyamoto H, Hamada K, Tsukada K, Takai K (2012) Novel biochemical manipulation of brain serotonin reveals a role of serotonin in the circadian rhythm of sleep-wake cycles. Eur J Neurosci 35(11):1762–1770PubMedCrossRefGoogle Scholar
  158. 158.
    Monti JM (2010) The role of dorsal raphe nucleus serotonergic and non-serotonergic neurons, and of their receptors, in regulating waking and rapid eye movement (REM) sleep. Sleep Med Rev 14(5):319–327PubMedCrossRefGoogle Scholar
  159. 159.
    James FO, Boivin DB, Charbonneau S, Belanger V, Cermakian N (2007) Expression of clock genes in human peripheral blood mononuclear cells throughout the sleep/wake and circadian cycles. Chronobiol Int 24(6):1009–1034PubMedCrossRefGoogle Scholar
  160. 160.
    Bes F, Jobert M, Schulz H (2013) Modeling sleep propensity when sleep is severely restricted. Sleep 36(4):609–611PubMedPubMedCentralGoogle Scholar
  161. 161.
    Boivin DB, James FO, Wu A, Cho-Park PF, Xiong H, Sun ZS (2003) Circadian clock genes oscillate in human peripheral blood mononuclear cells. Blood 102(12):4143–4145PubMedCrossRefGoogle Scholar
  162. 162.
    Kusanagi H, Hida A, Satoh K, Echizenya M, Shimizu T, Pendergast JS et al (2008) Expression profiles of 10 circadian clock genes in human peripheral blood mononuclear cells. Neurosci Res 61(2):136–142PubMedCrossRefGoogle Scholar
  163. 163.
    Bjarnason GA, Jordan RC, Wood PA, Li Q, Lincoln DW, Sothern RB et al (2001) Circadian expression of clock genes in human oral mucosa and skin: association with specific cell-cycle phases. Am J Pathol 158(5):1793–1801PubMedPubMedCentralCrossRefGoogle Scholar
  164. 164.
    Brown SA, Fleury-Olela F, Nagoshi E, Hauser C, Juge C, Meier CA et al (2005) The period length of fibroblast circadian gene expression varies widely among human individuals. PLoS Biol 3(10):e338PubMedPubMedCentralCrossRefGoogle Scholar
  165. 165.
    Sandu C, Dumas M, Malan A, Sambakhe D, Marteau C, Nizard C et al (2012) Human skin keratinocytes, melanocytes, and fibroblasts contain distinct circadian clock machineries. Cell Mol Life Sci CMLS 69(19):3329–3339PubMedCrossRefGoogle Scholar
  166. 166.
    Garaulet M, Corbalan MD, Madrid JA, Morales E, Baraza JC, Lee YC et al (2010) CLOCK gene is implicated in weight reduction in obese patients participating in a dietary programme based on the Mediterranean diet. Int J Obes 34(3):516–523CrossRefGoogle Scholar
  167. 167.
    Mostafaie N, Kallay E, Sauerzapf E, Bonner E, Kriwanek S, Cross HS et al (2009) Correlated downregulation of estrogen receptor beta and the circadian clock gene Per1 in human colorectal cancer. Mol Carcinog 48(7):642–647PubMedCrossRefGoogle Scholar
  168. 168.
    Otway DT, Mantele S, Bretschneider S, Wright J, Trayhurn P, Skene DJ et al (2011) Rhythmic diurnal gene expression in human adipose tissue from individuals who are lean, overweight, and type 2 diabetic. Diabetes 60(5):1577–1581PubMedPubMedCentralCrossRefGoogle Scholar
  169. 169.
    Akashi M, Soma H, Yamamoto T, Tsugitomi A, Yamashita S, Nishida E et al (2010) Noninvasive method for assessing the human circadian clock using hair follicle cells. Proc Natl Acad Sci U S A 107(35):15643–15648PubMedPubMedCentralCrossRefGoogle Scholar
  170. 170.
    Lim AS, Myers AJ, Yu L, Buchman AS, Duffy JF, De Jager PL et al (2013) Sex difference in daily rhythms of clock gene expression in the aged human cerebral cortex. J Biol Rhythms 28(2):117–129PubMedPubMedCentralCrossRefGoogle Scholar
  171. 171.
    Li JZ, Bunney BG, Meng F, Hagenauer MH, Walsh DM, Vawter MP et al (2013) Circadian patterns of gene expression in the human brain and disruption in major depressive disorder. Proc Natl Acad Sci U S A 110(24):9950–9955PubMedPubMedCentralCrossRefGoogle Scholar
  172. 172.
    Aschoff J, Daan, S, Honma KI (1982) Zeitgebers, entrainment, and masking: some unsettled questions, 1st edn. In: Aschoff J, Daan S et al. (eds) Springer, BerlinGoogle Scholar
  173. 173.
    Redlin U (2001) Neural basis and biological function of masking by light in mammals: suppression of melatonin and locomotor activity. Chronobiol Int 18(5):737–758PubMedCrossRefGoogle Scholar
  174. 174.
    Moore-Ede MC, Sulzman FM (1977) The physiological basis of circadian timekeeping in primates. Physiol 20(3):17–25Google Scholar
  175. 175.
    Duffy JF, Dijk DJ (2002) Getting through to circadian oscillators: why use constant routines? J Biol Rhythms 17(1):4–13PubMedCrossRefGoogle Scholar
  176. 176.
    Reilly T, Waterhouse J (2009) Circadian aspects of body temperature regulation in exercise. J Therm Biol 34(4):161–170CrossRefGoogle Scholar
  177. 177.
    Mills JN, Minors DS, Waterhouse JM (1978) Adaptation to abrupt time shifts of the oscillator(s) controlling human circadian rhythms. J Physiol 285:455–470PubMedPubMedCentralCrossRefGoogle Scholar
  178. 178.
    Minors DS, Waterhouse JM (1992) Investigating the endogenous component of human circadian rhythms: a review of some simple alternatives to constant routines. Chronobiol Int 9(1):55–78PubMedCrossRefGoogle Scholar
  179. 179.
    Blatter K, Cajochen C (2007) Circadian rhythms in cognitive performance: methodological constraints, protocols, theoretical underpinnings. Physiol Behav 90(2–3):196–208PubMedCrossRefGoogle Scholar
  180. 180.
    Carskadon MA, Dement WC (1980) Distribution of REM sleep on a 90 minute sleep-wake schedule. Sleep 2(3):309–317PubMedCrossRefGoogle Scholar
  181. 181.
    Shechter A, Varin F, Boivin DB (2010) Circadian variation of sleep during the follicular and luteal phases of the menstrual cycle. Sleep 33(5):647–656PubMedPubMedCentralCrossRefGoogle Scholar
  182. 182.
    Boudreau P, Yeh WH, Dumont GA, Boivin DB (2012) A circadian rhythm in heart rate variability contributes to the increased cardiac sympathovagal response to awakening in the morning. Chronobiol Int 29(6):757–768PubMedCrossRefGoogle Scholar
  183. 183.
    Zandi AS, Boudreau P, Boivin DB, Dumont GA (eds) (2013) Circadian variation of scalp EEG: a novel measure based on wavelet packet transform and differential entropy. In: 35th Annual international conference of the IEEE engineering in medicine and biology society 2013, Osaka, JapanGoogle Scholar
  184. 184.
    Lavie P, Scherson A (1981) Ultrashort sleep-walking schedule. I. Evidence of ultradian rhythmicity in “sleepability”. Electroencephalogr Clin Neurophysiol 52(2):163–174PubMedCrossRefGoogle Scholar
  185. 185.
    Lavie P, Zomer J (1984) Ultrashort sleep-waking schedule. II. Relationship between ultradian rhythms in sleepability and the REM-non-REM cycles and effects of the circadian phase. Electroencephalogr Clin Neurophysiol 57(1):35–42PubMedCrossRefGoogle Scholar
  186. 186.
    Lavie P (1987) Ultrashort sleep-wake cycle: timing of REM sleep. Evidence for sleep-dependent and sleep-independent components of the REM cycle. Sleep 10(1):62–68PubMedGoogle Scholar
  187. 187.
    Cuesta M, Clesse D, Pevet P, Challet E (2009) From daily behavior to hormonal and neurotransmitters rhythms: comparison between diurnal and nocturnal rat species. Horm Behav 55(2):338–347PubMedCrossRefGoogle Scholar
  188. 188.
    Tobler I (2011) Chapter 9—Phylogeny of sleep regulation. In: Kryger M, Roth T, Dement WC (eds) Principles and practice of sleep medicine, 5th edn. W.B. Saunders, Philadelphia, pp 112–125CrossRefGoogle Scholar
  189. 189.
    Jouvet M, Michel F, Courjon J (1959) Sur un stade d’activité électrique cérébrale rapide au cours du sommeil physiologique. C R Seances Soc Biol Fil 153:1024–1028PubMedGoogle Scholar
  190. 190.
    Rechtschaffen A, Kales A (1968) A manual of standardized terminology, techniques and scoring systems for sleep stages of human subjects. Brain Information Service, Brain Research Institute, UCLA, Los AngelesGoogle Scholar
  191. 191.
    Iber C, Ancoli-Israel S, Chesson A, Quan S (2007) The AASM manual for the scoring of sleep and associated events: rules, terminology and technical specifications. American Academy of Sleep Medicine, Westcherster, p 1000Google Scholar
  192. 192.
    Borbely AA (1982) A two process model of sleep regulation. Hum Neurobiol 1(3):195–204PubMedGoogle Scholar
  193. 193.
    Dijk DJ, Czeisler CA (1994) Paradoxical timing of the circadian rhythm of sleep propensity serves to consolidate sleep and wakefulness in humans. Neurosci Lett 166(1):63–68PubMedCrossRefGoogle Scholar
  194. 194.
    Wyatt JK, Ritz-De Cecco A, Czeisler CA, Dijk DJ (1999) Circadian temperature and melatonin rhythms, sleep, and neurobehavioral function in humans living on a 20-h day. Am J Physiol 277(4 Pt 2):R1152–R1163Google Scholar
  195. 195.
    Dijk DJ, Czeisler CA (1995) Contribution of the circadian pacemaker and the sleep homeostat to sleep propensity, sleep structure, electroencephalographic slow waves, and sleep spindle activity in humans. J Neurosci Off J Soc Neurosci 15(5 Pt 1):3526–3538Google Scholar
  196. 196.
    Achermann P, Borbély AA (2011) Sleep homeostasis and models of sleep regulation. In: Kryger MH, Roth T, Dement WC (eds) Principles and practice of sleep medicine, 5th edn. Elsevier, Philadelphia, pp 431–444Google Scholar
  197. 197.
    Borbely AA, Baumann F, Brandeis D, Strauch I, Lehmann D (1981) Sleep deprivation: effect on sleep stages and EEG power density in man. Electroencephalogr Clin Neurophysiol 51(5):483–495PubMedCrossRefGoogle Scholar
  198. 198.
    Achermann P, Borbely AA (2003) Mathematical models of sleep regulation. Front Biosci J Virtual Libr 8:s683–s693CrossRefGoogle Scholar
  199. 199.
    Finelli LA, Baumann H, Borbely AA, Achermann P (2000) Dual electroencephalogram markers of human sleep homeostasis: correlation between theta activity in waking and slow-wave activity in sleep. Neuroscience 101(3):523–529PubMedCrossRefGoogle Scholar
  200. 200.
    Vyazovskiy VV, Tobler I (2005) Theta activity in the waking EEG is a marker of sleep propensity in the rat. Brain Res 1050(1–2):64–71PubMedCrossRefGoogle Scholar
  201. 201.
    Cajochen C, Brunner DP, Krauchi K, Graw P, Wirz-Justice A (1995) Power density in theta/alpha frequencies of the waking EEG progressively increases during sustained wakefulness. Sleep 18(10):890–894PubMedCrossRefGoogle Scholar
  202. 202.
    Tononi G, Cirelli C (2006) Sleep function and synaptic homeostasis. Sleep Med Rev 10(1):49–62PubMedCrossRefGoogle Scholar
  203. 203.
    Zavada A, Strijkstra AM, Boerema AS, Daan S, Beersma DG (2009) Evidence for differential human slow-wave activity regulation across the brain. J Sleep Res 18(1):3–10PubMedCrossRefGoogle Scholar
  204. 204.
    Rusterholz T, Achermann P (2011) Topographical aspects in the dynamics of sleep homeostasis in young men: individual patterns. BMC Neurosci 12:84PubMedPubMedCentralCrossRefGoogle Scholar
  205. 205.
    Robillard R, Massicotte-Marquez J, Kawinska A, Paquet J, Frenette S, Carrier J (2010) Topography of homeostatic sleep pressure dissipation across the night in young and middle-aged men and women. J Sleep Res 19(3):455–465PubMedCrossRefGoogle Scholar
  206. 206.
    Huber R, Ghilardi MF, Massimini M, Ferrarelli F, Riedner BA, Peterson MJ et al (2006) Arm immobilization causes cortical plastic changes and locally decreases sleep slow wave activity. Nat Neurosci 9(9):1169–1176PubMedCrossRefGoogle Scholar
  207. 207.
    Huber R, Ghilardi MF, Massimini M, Tononi G (2004) Local sleep and learning. Nature 430(6995):78–81PubMedCrossRefGoogle Scholar
  208. 208.
    Murphy M, Huber R, Esser S, Riedner BA, Massimini M, Ferrarelli F et al (2011) The cortical topography of local sleep. Curr Top Med Chem 11(19):2438–2446PubMedPubMedCentralCrossRefGoogle Scholar
  209. 209.
    Hung CS, Sarasso S, Ferrarelli F, Riedner B, Ghilardi MF, Cirelli C et al (2013) Local experience-dependent changes in the wake EEG after prolonged wakefulness. Sleep 36(1):59–72PubMedPubMedCentralCrossRefGoogle Scholar
  210. 210.
    Vyazovskiy VV, Olcese U, Hanlon EC, Nir Y, Cirelli C, Tononi G (2011) Local sleep in awake rats. Nature 472(7344):443–447PubMedPubMedCentralCrossRefGoogle Scholar
  211. 211.
    Porkka-Heiskanen T, Strecker RE, McCarley RW (2000) Brain site-specificity of extracellular adenosine concentration changes during sleep deprivation and spontaneous sleep: an in vivo microdialysis study. Neuroscience 99(3):507–517PubMedCrossRefGoogle Scholar
  212. 212.
    Huang ZL, Urade Y, Hayaishi O (2007) Prostaglandins and adenosine in the regulation of sleep and wakefulness. Curr Opin Pharmacol 7(1):33–38PubMedCrossRefGoogle Scholar
  213. 213.
    Vassalli A, Dijk DJ (2009) Sleep function: current questions and new approaches. Eur J Neurosci 29(9):1830–1841PubMedCrossRefGoogle Scholar
  214. 214.
    Basheer R, Strecker RE, Thakkar MM, McCarley RW (2004) Adenosine and sleep-wake regulation. Prog Neurobiol 73(6):379–396PubMedCrossRefGoogle Scholar
  215. 215.
    Kalinchuk AV, McCarley RW, Porkka-Heiskanen T, Basheer R (2011) The time course of adenosine, nitric oxide (NO) and inducible NO synthase changes in the brain with sleep loss and their role in the non-rapid eye movement sleep homeostatic cascade. J Neurochem 116(2):260–272PubMedCrossRefGoogle Scholar
  216. 216.
    Strecker RE, Morairty S, Thakkar MM, Porkka-Heiskanen T, Basheer R, Dauphin LJ et al (2000) Adenosinergic modulation of basal forebrain and preoptic/anterior hypothalamic neuronal activity in the control of behavioral state. Behav Brain Res 115(2):183–204PubMedCrossRefGoogle Scholar
  217. 217.
    Jackisch R, Strittmatter H, Kasakov L, Hertting G (1984) Endogenous adenosine as a modulator of hippocampal acetylcholine release. Naunyn Schmiedebergs Arch Pharmacol 327(4):319–325PubMedCrossRefGoogle Scholar
  218. 218.
    Alam MN, Szymusiak R, Gong H, King J, McGinty D (1999) Adenosinergic modulation of rat basal forebrain neurons during sleep and waking: neuronal recording with microdialysis. J Physiol 521(Pt 3):679–690PubMedPubMedCentralCrossRefGoogle Scholar
  219. 219.
    Huang ZL, Qu WM, Eguchi N, Chen JF, Schwarzschild MA, Fredholm BB et al (2005) Adenosine A2A, but not A1, receptors mediate the arousal effect of caffeine. Nat Neurosci 8(7):858–859PubMedCrossRefGoogle Scholar
  220. 220.
    Landolt HP, Retey JV, Tonz K, Gottselig JM, Khatami R, Buckelmuller I et al (2004) Caffeine attenuates waking and sleep electroencephalographic markers of sleep homeostasis in humans. Neuropsychopharmacol Off Publ Am Coll Neuropsychopharmacol 29(10):1933–1939CrossRefGoogle Scholar
  221. 221.
    Dement WC (2011) History of sleep physiology and medicine. In: Kryger MH, Roth T, Dement WC (eds) Principles and practice of sleep medicine, 5th edn. Elsevier, Philadelphia, pp 3–15Google Scholar
  222. 222.
    Kleitman N (1960) The sleep cycle. Am J Nurs 60:677–679PubMedCrossRefGoogle Scholar
  223. 223.
    Czeisler CA, Zimmerman JC, Ronda JM, Moore-Ede MC, Weitzman ED (1980) Timing of REM sleep is coupled to the circadian rhythm of body temperature in man. Sleep 2(3):329–346PubMedCrossRefGoogle Scholar
  224. 224.
    Czeisler CA, Dijk DJ, Kronauer RE, Brown EN, Duffy JF, Allan JS et al (2000) Is there an intrinsic period of the circadian clock? Response. Science 288(5469):1174–1175PubMedCrossRefGoogle Scholar
  225. 225.
    Campbell S (2000) Is there an intrinsic period of the circadian clock? Science 288(5469):1174–1175PubMedCrossRefGoogle Scholar
  226. 226.
    Dijk DJ, Duffy JF, Riel E, Shanahan TL, Czeisler CA (1999) Ageing and the circadian and homeostatic regulation of human sleep during forced desynchrony of rest, melatonin and temperature rhythms. J Physiol 516(Pt 2):611–627PubMedPubMedCentralCrossRefGoogle Scholar
  227. 227.
    Boudreau P, Yeh WH, Dumont GA, Boivin DB (2013) Circadian variation of heart rate variability across sleep stages. Sleep 36(12):1919–1928PubMedPubMedCentralCrossRefGoogle Scholar
  228. 228.
    Ibuka N, Kawamura H (1975) Loss of circadian rhythm in sleep-wakefulness cycle in the rat by suprachiasmatic nucleus lesions. Brain Res 96(1):76–81PubMedCrossRefGoogle Scholar
  229. 229.
    Ibuka N, Inouye SI, Kawamura H (1977) Analysis of sleep-wakefulness rhythms in male rats after suprachiasmatic nucleus lesions and ocular enucleation. Brain Res 122(1):33–47PubMedCrossRefGoogle Scholar
  230. 230.
    Mistlberger RE, Bergmann BM, Waldenar W, Rechtschaffen A (1983) Recovery sleep following sleep deprivation in intact and suprachiasmatic nuclei-lesioned rats. Sleep 6(3):217–233PubMedCrossRefGoogle Scholar
  231. 231.
    Wurts SW, Edgar DM (2000) Circadian and homeostatic control of rapid eye movement (REM) sleep: promotion of REM tendency by the suprachiasmatic nucleus. J Neurosci Off J Soc Neurosci 20(11):4300–4310Google Scholar
  232. 232.
    Mouret J, Coindet J, Debilly G, Chouvet G (1978) Suprachiasmatic nuclei lesions in the rat: alterations in sleep circadian rhythms. Electroencephalogr Clin Neurophysiol 45(3):402–408PubMedCrossRefGoogle Scholar
  233. 233.
    Larkin JE, Yokogawa T, Heller HC, Franken P, Ruby NF (2004) Homeostatic regulation of sleep in arrhythmic Siberian hamsters. Am J Physiol Regul Integr Comp Physiol 287(1):R104–R111PubMedCrossRefGoogle Scholar
  234. 234.
    Paech GM, Ferguson SA, Sargent C, Kennaway DJ, Roach GD (2012) The relative contributions of the homeostatic and circadian processes to sleep regulation under conditions of severe sleep restriction. Sleep 35(7):941–948PubMedPubMedCentralCrossRefGoogle Scholar
  235. 235.
    Deboer T, Detari L, Meijer JH (2007) Long term effects of sleep deprivation on the mammalian circadian pacemaker. Sleep 30(3):257–262PubMedCrossRefGoogle Scholar
  236. 236.
    Deboer T, Vansteensel MJ, Detari L, Meijer JH (2003) Sleep states alter activity of suprachiasmatic nucleus neurons. Nat Neurosci 6(10):1086–1090PubMedCrossRefGoogle Scholar
  237. 237.
    Easton A, Meerlo P, Bergmann B, Turek FW (2004) The suprachiasmatic nucleus regulates sleep timing and amount in mice. Sleep 27(7):1307–1318PubMedCrossRefGoogle Scholar
  238. 238.
    Edgar DM, Dement WC, Fuller CA (1993) Effect of SCN lesions on sleep in squirrel monkeys: evidence for opponent processes in sleep-wake regulation. J Neurosci Off J Soc Neurosci 13(3):1065–1079Google Scholar
  239. 239.
    Strogatz SH, Kronauer RE, Czeisler CA (1987) Circadian pacemaker interferes with sleep onset at specific times each day: role in insomnia. Am J Physiol 253(1 Pt 2):R172–R178PubMedGoogle Scholar
  240. 240.
    Lack LC, Lushington K (1996) The rhythms of human sleep propensity and core body temperature. J Sleep Res 5(1):1–11PubMedCrossRefGoogle Scholar
  241. 241.
    Summala H, Mikkola T (1994) Fatal accidents among car and truck drivers: effects of fatigue, age, and alcohol consumption. Hum Factors J Hum Factors Ergon Soc 36(2):315–326CrossRefGoogle Scholar
  242. 242.
    Lenne MG, Triggs TJ, Redman JR (1997) Time of day variations in driving performance. Accid Anal Prev 29(4):431–437PubMedCrossRefGoogle Scholar
  243. 243.
    Dinges DF (1995) An overview of sleepiness and accidents. J Sleep Res 4(S2):4–14PubMedCrossRefGoogle Scholar
  244. 244.
    Lack LC, Wright HR (2007) Treating chronobiological components of chronic insomnia. Sleep Med 8(6):637–644PubMedCrossRefGoogle Scholar
  245. 245.
    Boivin DB, Boudreau P. Circadian rhythms and insomnia—approaching the time barrier. Insomnia rounds. The Canadian Sleep Society, Montréal, p 8 (in press)Google Scholar
  246. 246.
    Krauchi K (2007) The thermophysiological cascade leading to sleep initiation in relation to phase of entrainment [updated Aug 29]. Available fromGoogle Scholar
  247. 247.
    Ferrara M, De Gennaro L (2000) The sleep inertia phenomenon during the sleep-wake transition: theoretical and operational issues. Aviat Space Environ Med 71(8):843–848PubMedGoogle Scholar
  248. 248.
    Krauchi K, Cajochen C, Wirz-Justice A (2004) Waking up properly: is there a role of thermoregulation in sleep inertia? J Sleep Res 13(2):121–127PubMedCrossRefGoogle Scholar
  249. 249.
    Lu J, Sherman D, Devor M, Saper CB (2006) A putative flip-flop switch for control of REM sleep. Nature 441(7093):589–594PubMedCrossRefGoogle Scholar
  250. 250.
    Deurveilher S, Semba K (2005) Indirect projections from the suprachiasmatic nucleus to major arousal-promoting cell groups in rat: implications for the circadian control of behavioural state. Neuroscience 130(1):165–183PubMedCrossRefGoogle Scholar
  251. 251.
    Fuller PM, Saper CB, Lu J (2007) The pontine REM switch: past and present. J Physiol 584(Pt 3):735–741PubMedPubMedCentralCrossRefGoogle Scholar
  252. 252.
    Morin LP, Allen CN (2006) The circadian visual system, 2005. Brain Res Rev 51(1):1–60PubMedCrossRefGoogle Scholar
  253. 253.
    Horne JA, Ostberg O (1976) A self-assessment questionnaire to determine morningness-eveningness in human circadian rhythms. Int J Chronobiol 4(2):97–110PubMedGoogle Scholar
  254. 254.
    Roenneberg T, Wirz-Justice A, Merrow M (2003) Life between clocks: daily temporal patterns of human chronotypes. J Biol Rhythms 18(1):80–90PubMedCrossRefGoogle Scholar
  255. 255.
    Gradisar M, Gardner G, Dohnt H (2011) Recent worldwide sleep patterns and problems during adolescence: a review and meta-analysis of age, region, and sleep. Sleep Med 12(2):110–118PubMedCrossRefGoogle Scholar
  256. 256.
    Crowley SJ, Acebo C, Carskadon MA (2007) Sleep, circadian rhythms, and delayed phase in adolescence. Sleep Med 8(6):602–612PubMedCrossRefGoogle Scholar
  257. 257.
    Roenneberg T, Kuehnle T, Pramstaller PP, Ricken J, Havel M, Guth A et al (2004) A marker for the end of adolescence. Curr Biol CB 14(24):R1038–R1039PubMedCrossRefGoogle Scholar
  258. 258.
    Adan A, Natale V (2002) Gender differences in morningness-eveningness preference. Chronobiol Int 19(4):709–720PubMedCrossRefGoogle Scholar
  259. 259.
    Campbell IG, Darchia N, Higgins LM, Dykan IV, Davis NM, de Bie E et al (2011) Adolescent changes in homeostatic regulation of EEG activity in the delta and theta frequency bands during NREM sleep. Sleep 34(1):83–91PubMedPubMedCentralCrossRefGoogle Scholar
  260. 260.
    Hagenauer MH, Lee TM (2013) Adolescent sleep patterns in humans and laboratory animals. Horm Behav 64(2):270–279PubMedPubMedCentralCrossRefGoogle Scholar
  261. 261.
    Duffy JF, Dijk DJ, Hall EF, Czeisler CA (1999) Relationship of endogenous circadian melatonin and temperature rhythms to self-reported preference for morning or evening activity in young and older people. J Invest Med Off Publ Am Fed Clin Res 47(3):141–150Google Scholar
  262. 262.
    Baehr EK, Revelle W, Eastman CI (2000) Individual differences in the phase and amplitude of the human circadian temperature rhythm: with an emphasis on morningness-eveningness. J Sleep Res 9(2):117–127PubMedCrossRefGoogle Scholar
  263. 263.
    Bailey SL, Heitkemper MM (2001) Circadian rhythmicity of cortisol and body temperature: morningness-eveningness effects. Chronobiol Int 18(2):249–261PubMedCrossRefGoogle Scholar
  264. 264.
    Mongrain V, Lavoie S, Selmaoui B, Paquet J, Dumont M (2004) Phase relationships between sleep-wake cycle and underlying circadian rhythms in morningness-eveningness. J Biol Rhythms 19(3):248–257PubMedCrossRefGoogle Scholar
  265. 265.
    Lack L, Bailey M, Lovato N, Wright H (2009) Chronotype differences in circadian rhythms of temperature, melatonin, and sleepiness as measured in a modified constant routine protocol. Nat Sci Sleep 1:1–8PubMedPubMedCentralCrossRefGoogle Scholar
  266. 266.
    Novakova M, Sladek M, Sumova A (2013) Human chronotype is determined in bodily cells under real-life conditions. Chronobiol Int 30(4):607–617PubMedCrossRefGoogle Scholar
  267. 267.
    Ebisawa T, Uchiyama M, Kajimura N, Mishima K, Kamei Y, Katoh M et al (2001) Association of structural polymorphisms in the human period3 gene with delayed sleep phase syndrome. EMBO Rep 2(4):342–346PubMedPubMedCentralCrossRefGoogle Scholar
  268. 268.
    Archer SN, Robilliard DL, Skene DJ, Smits M, Williams A, Arendt J et al (2003) A length polymorphism in the circadian clock gene Per3 is linked to delayed sleep phase syndrome and extreme diurnal preference. Sleep 26(4):413–415PubMedCrossRefGoogle Scholar
  269. 269.
    Pereira DS, Tufik S, Louzada FM, Benedito-Silva AA, Lopez AR, Lemos NA et al (2005) Association of the length polymorphism in the human Per3 gene with the delayed sleep-phase syndrome: does latitude have an influence upon it? Sleep 28(1):29–32PubMedGoogle Scholar
  270. 270.
    Osland TM, Bjorvatn BR, Steen VM, Pallesen S (2011) Association study of a variable-number tandem repeat polymorphism in the clock gene PERIOD3 and chronotype in Norwegian university students. Chronobiol Int 28(9):764–770PubMedCrossRefGoogle Scholar
  271. 271.
    Goel N, Banks S, Mignot E, Dinges DF (2009) PER3 polymorphism predicts cumulative sleep homeostatic but not neurobehavioral changes to chronic partial sleep deprivation. PLoS ONE 4(6):e5874PubMedPubMedCentralCrossRefGoogle Scholar
  272. 272.
    Viola AU, Archer SN, James LM, Groeger JA, Lo JC, Skene DJ et al (2007) PER3 polymorphism predicts sleep structure and waking performance. Curr Biol CB 17(7):613–618PubMedCrossRefGoogle Scholar
  273. 273.
    Zavada A, Gordijn MC, Beersma DG, Daan S, Roenneberg T (2005) Comparison of the munich chronotype questionnaire with the Horne-Ostberg’s morningness-eveningness score. Chronobiol Int 22(2):267–278PubMedCrossRefGoogle Scholar
  274. 274.
    Sack RL, Auckley D, Auger RR, Carskadon MA, Wright KP Jr, Vitiello MV et al (2007) Circadian rhythm sleep disorders: part II, advanced sleep phase disorder, delayed sleep phase disorder, free-running disorder, and irregular sleep-wake rhythm. An American Academy of sleep medicine review. Sleep 30(11):1484–1501PubMedPubMedCentralCrossRefGoogle Scholar
  275. 275.
    Reid KJ, Zee PZ (2005) Circadian rhythm sleep disorder, delayed sleep phase type. In: Kryger MH, Roth T, Dement WC (eds) Principles and practice of sleep medicine, 4th edn. Elsevier, PhiladelphiaGoogle Scholar
  276. 276.
    Reid KJ, Zee PC (2009) Circadian rhythm disorders. Semin Neurol 29(4):393–405PubMedCrossRefGoogle Scholar
  277. 277.
    Cermakian N, Boivin DB (2003) A molecular perspective of human circadian rhythm disorders. Brain Res Rev 42(3):204–220PubMedCrossRefGoogle Scholar
  278. 278.
    Boivin DB, Boudreau P, Tremblay GM (2012) Phototherapy and orange-tinted goggles for night-shift adaptation of police officers on patrol. Chronobiol Int 29(5):629–640PubMedCrossRefGoogle Scholar
  279. 279.
    Boivin DB, Boudreau P, James FO, Kin NM (2012) Photic resetting in night-shift work: impact on nurses’ sleep. Chronobiol Int 29(5):619–628PubMedCrossRefGoogle Scholar
  280. 280.
    Drake CL, Roehrs T, Richardson G, Walsh JK, Roth T (2004) Shift work sleep disorder: prevalence and consequences beyond that of symptomatic day workers. Sleep 27(8):1453–1462PubMedCrossRefGoogle Scholar
  281. 281.
    Wright KP Jr, Bogan RK, Wyatt JK (2012) Shift work and the assessment and management of shift work disorder (SWD). Sleep Med RevGoogle Scholar
  282. 282.
    Frost P, Kolstad HA, Bonde JP (2009) Shift work and the risk of ischemic heart disease—a systematic review of the epidemiologic evidence. Scand J Work Environ Health 35(3):163–179PubMedCrossRefGoogle Scholar
  283. 283.
    Wang XS, Armstrong ME, Cairns BJ, Key TJ, Travis RC (2011) Shift work and chronic disease: the epidemiological evidence. Occup Med (London) 61(2):78–89CrossRefGoogle Scholar
  284. 284.
    Marino JL, Holt VL, Chen C, Davis S (2008) Shift work, hCLOCK T3111C polymorphism, and endometriosis risk. Epidemiology 19(3):477–484PubMedPubMedCentralCrossRefGoogle Scholar
  285. 285.
    Vyas MV, Garg AX, Iansavichus AV, Costella J, Donner A, Laugsand LE et al (2012) Shift work and vascular events: systematic review and meta-analysis. BMJ 345:e4800PubMedPubMedCentralCrossRefGoogle Scholar
  286. 286.
    Cuesta M, Cermakian N, Boivin DB (2013) Circadian clock genes and psychiatric disorders. The genetic basis of sleep and sleep disorders. University of Cambridge Press, Cambridge, pp 351–364Google Scholar
  287. 287.
    Novak CM, Ehlen JC, Huhman KL, Albers HE (2004) GABA(B) receptor activation in the suprachiasmatic nucleus of diurnal and nocturnal rodents. Brain Res Bull 63(6):531–535PubMedCrossRefGoogle Scholar
  288. 288.
    Daan S, Beersma DG, Borbely AA (1984) Timing of human sleep: recovery process gated by a circadian pacemaker. Am J Physiol 246(2 Pt 2):R161–R183PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Marc Cuesta
    • 1
  • Philippe Boudreau
    • 1
  • Diane B. Boivin
    • 1
    Email author
  1. 1.Department of PsychiatryCentre for Study and Treatment of Circadian Rhythms, Douglas Mental Health University Institute, McGill UniversityMontrealCanada

Personalised recommendations