Nutrition and Sleep



Sleepiness during the afternoon and poor sleep after a heavy evening meal and heavy alcohol consumption are familiar to most people. Despite this, little is known about the effects of different constituents of meals on sleep. There is evidence that a heavy lunch and rapidly absorbing carbohydrates enhance sleepiness in the afternoon. This may add to daytime sleepiness, and for that reason, they should be avoided when one wants to avoid fatigue. On the contrary, a light evening meal rich in carbohydrates may help one to fall asleep. The relationships between the enteric nervous system (ENS) and the central nervous system (CNS) need to be studied much more in the future. There is already evidence that chronic sleep deprivation increases risk of obesity and adult-onset diabetes. Better information about nutritional issues must be taken into consideration in the future studies. This chapter gives an account of the relationship between nutrition and sleep.


Enteric nervous system Neuromodulators Polyunsaturated fatty acids Ketogenic diet Lactate Neurosteroids Neurohormetic phytochemicals 


  1. 1.
    Lim SS, Vos T, Flaxman AD et al (2012) A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380(9859):2224–2260PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Steyn K, Sliwa K, Hawken S et al (2005) Risk factors associated with myocardial infarction in Africa: the INTERHEART Africa study. Circulation 112(23):3554–3561PubMedCrossRefGoogle Scholar
  3. 3.
    Roberts HJ (1964) The syndrome of narcolepsy and diabetogenic (“functional”) hyperinsulinism, with special reference to obesity, diabetes, idiopathic edema, cerebral dysrhythmias and multiple sclerosis (200 patients). J Am Geriatr Soc 12:926–976PubMedCrossRefGoogle Scholar
  4. 4.
    Mizuno S, Mihara T, Miyaoka T, Inagaki T, Horiguchi J (2005) CSF iron, ferritin and transferrin levels in restless legs syndrome. J Sleep Res 14(1):43–47PubMedCrossRefGoogle Scholar
  5. 5.
    Earley CJ, Ponnuru P, Wang X et al (2008) Altered iron metabolism in lymphocytes from subjects with restless legs syndrome. Sleep 31(6):847–852PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Connor JR, Ponnuru P, Wang XS, Patton SM, Allen RP, Earley CJ (2011) Profile of altered brain iron acquisition in restless legs syndrome. Brain 134(Pt 4):959–968PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Magistretti PJ, Pellerin L (1999) Cellular mechanisms of brain energy metabolism and their relevance to functional brain imaging. Phil Trans R Soc Lond 354:1155–1163CrossRefGoogle Scholar
  8. 8.
    Belanger M, Allaman I, Magistretti PJ (2011) Brain energy metabolism: focus on astrocyte-neuron metabolic cooperation. Cell Metab 14(6):724–738PubMedCrossRefGoogle Scholar
  9. 9.
    Pellerin L, Magistretti PJ (2012) Sweet sixteen for ANLS. J Cereb Blood Flow Metab 32(7):1152–1166PubMedCrossRefGoogle Scholar
  10. 10.
    Korczynski W, Ceregrzyn M, Matyjek R et al (2006) Central and local (enteric) action of orexins. J Physiol Pharmacol 57(Suppl 6):17–42PubMedGoogle Scholar
  11. 11.
    McLean PG, Borman RA, Lee K (2007) 5-HT in the enteric nervous system: gut function and neuropharmacology. Trends Neurosci 30(1):9–13PubMedCrossRefGoogle Scholar
  12. 12.
    Benarroch EE (2007) Enteric nervous system: Functional organization and neurologic implications. Neurology 69(20):1953–1957PubMedCrossRefGoogle Scholar
  13. 13.
    Van Cauter E, Spiegel K, Tasali E, Leproult R (2008) Metabolic consequences of sleep and sleep loss. Sleep Med 9(Suppl 1):S23–S28PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Polotsky M, Elsayed-Ahmed AS, Pichard LE et al (2012) Effects of leptin and obesity on the upper airway. J Appl Physiol 112:1637Google Scholar
  15. 15.
    Korner J, Conroy R, Febres G et al (2013) Randomized double-blind placebo-controlled study of leptin administration after gastric bypass. Obesity (Silver Spring) 21(5):951–956CrossRefGoogle Scholar
  16. 16.
    Hebebrand J, Muller TD, Holtkamp K, Herpertz-Dahlmann B (2007) The role of leptin in anorexia nervosa: clinical implications. Mol Psychiatry 12(1):23–35PubMedCrossRefGoogle Scholar
  17. 17.
    Parton LE, Ye CP, Coppari R et al (2007) Glucose sensing by POMC neurons regulates glucose homeostasis and is impaired in obesity. Nature 449(7159):228–232PubMedCrossRefGoogle Scholar
  18. 18.
    Varela L, Horvath TL (2012) Leptin and insulin pathways in POMC and AgRP neurons that modulate energy balance and glucose homeostasis. EMBO Rep 13(12):1079–1086PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    de Lecea L, Kilduff TS, Peyron C et al (1998) The hypocretins: hypothalamus-specific peptides with neuroexcitatory activity. Proc Natl Acad Sci U S A 95(1):322–327PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Sakurai T, Amemiya A, Ishii M et al (1998) Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell 92(4):573–585PubMedCrossRefGoogle Scholar
  21. 21.
    de Lecea L, Jones BE, Boutrel B et al (2006) Addiction and arousal: alternative roles of hypothalamic peptides. J Neurosci 26(41):10372–10375PubMedCrossRefGoogle Scholar
  22. 22.
    Sinton CM (2011) Orexin/hypocretin plays a role in the response to physiological disequilibrium. Sleep Med Rev 15(3):197–207PubMedCrossRefGoogle Scholar
  23. 23.
    Burdakov D, Luckman SM, Verkhratsky A (2005) Glucose-sensing neurons of the hypothalamus. Philos Trans R Soc Lond B Biol Sci 360(1464):2227–2235PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Mieda M, Willie JT, Hara J, Sinton CM, Sakurai T, Yanagisawa M (2004) Orexin peptides prevent cataplexy and improve wakefulness in an orexin neuron-ablated model of narcolepsy in mice. Proc Natl Acad Sci U S A 101(13):4649–4654PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Dahmen N, Becht J, Engel A, Thommes M, Tonn P (2008) Prevalence of eating disorders and eating attacks in narcolepsy. Neuropsychiatr Dis Treat 4(1):257–261PubMedPubMedCentralGoogle Scholar
  26. 26.
    Rui L (2013) Brain regulation of energy balance and body weight. Rev Endocr Metab Disord 14(4):387–407PubMedCrossRefGoogle Scholar
  27. 27.
    Williams RH, Alexopoulos H, Jensen LT, Fugger L, Burdakov D (2008) Adaptive sugar sensors in hypothalamic feeding circuits. Proc Natl Acad Sci U S A 105(33):11975–11980PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Venner A, Karnani MM, Gonzalez JA, Jensen LT, Fugger L, Burdakov D (2011) Orexin neurons as conditional glucosensors: paradoxical regulation of sugar sensing by intracellular fuels. J Physiol 589(Pt 23):5701–5708PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Burdakov D, Karnani MM, Gonzalez A (2013) Lateral hypothalamus as a sensor-regulator in respiratory and metabolic control. Physiol Behav 121:117Google Scholar
  30. 30.
    Luppi PH, Peyron C, Fort P (2013) Role of MCH neurons in paradoxical (REM) sleep control. Sleep 36(12):1775–1776PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Bergman P, Adori C, Vas S et al (2014) Narcolepsy patients have antibodies that stain distinct cell populations in rat brain and influence sleep patterns. Proc Natl Acad Sci U S A 111(35):E3735–E3744PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Murillo-Rodriguez E, Haro R, Palomero-Rivero M, Millan-Aldaco D, Drucker-Colin R (2007) Modafinil enhances extracellular levels of dopamine in the nucleus accumbens and increases wakefulness in rats. Behav Brain Res 176(2):353–357PubMedCrossRefGoogle Scholar
  33. 33.
    Gershon MD (2005) Nerves, reflexes, and the enteric nervous system: pathogenesis of the irritable bowel syndrome. J Clin Gastroenterol 39(4 Suppl 3):S184–S193PubMedCrossRefGoogle Scholar
  34. 34.
    Lui M, Gershon MD (2005) Slow excitatory (“5-HT1P”-like) responses of mouse myenteric neurons to 5-HT: mediation by heterodimers of 5-HT1B/1D and Drd2 receptors. Gastroenterology 128(4 Suppl 2):A87Google Scholar
  35. 35.
    Li ZS, Schmauss C, Cuenca A, Ratcliffe E, Gershon MD (2006) Physiological modulation of intestinal motility by enteric dopaminergic neurons and the D2 receptor: analysis of dopamine receptor expression, location, development, and function in wild-type and knock-out mice. J Neurosci 26(10):2798–2807PubMedCrossRefGoogle Scholar
  36. 36.
    Basu PP, Shah NJ, Krishnaswamy N, Pacana T (2011) Prevalence of restless legs syndrome in patients with irritable bowel syndrome. World J Gastroenterol 17(39):4404–4407PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    de Goffau MC, Luopajarvi K, Knip M et al (2013) Fecal microbiota composition differs between children with beta-cell autoimmunity and those without. Diabetes 62(4):1238–1244PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Weinstock LB, Walters AS (2011) Restless legs syndrome is associated with irritable bowel syndrome and small intestinal bacterial overgrowth. Sleep Med 12(6):610–613PubMedCrossRefGoogle Scholar
  39. 39.
    Weinstock LB, Zeiss S (2012) Rifaximin antibiotic treatment for restless legs syndrome: A double-blind, placebo-controlled study. Sleep Biol Rhythms 10(2):145–153CrossRefGoogle Scholar
  40. 40.
    Weinstock LB, Fern SE, Duntley SP (2008) Restless legs syndrome in patients with irritable bowel syndrome: response to small intestinal bacterial overgrowth therapy. Dig Dis Sci 53(5):1252–1256PubMedCrossRefGoogle Scholar
  41. 41.
    Weinstock LB (2010) Antibiotic therapy may improve idiopathic restless legs syndrome: prospective, open-label pilot study of rifaximin, a nonsystemic antibiotic. Sleep Med 11(4):427PubMedCrossRefGoogle Scholar
  42. 42.
    Wang Y, Kasper LH (2014) The role of microbiome in central nervous system disorders. Brain Behav Immun 38C:1–12CrossRefGoogle Scholar
  43. 43.
    Barrett E, Ross RP, O’Toole PW, Fitzgerald GF, Stanton C (2012) Gamma-Aminobutyric acid production by culturable bacteria from the human intestine. J Appl Microbiol 113(2):411–417PubMedCrossRefGoogle Scholar
  44. 44.
    Lyte M (2011) Probiotics function mechanistically as delivery vehicles for neuroactive compounds: microbial endocrinology in the design and use of probiotics. BioEssays 33(8):574–581PubMedCrossRefGoogle Scholar
  45. 45.
    Mayer EA, Savidge T, Shulman RJ (2014) Brain-gut microbiome interactions and functional bowel disorders. Gastroenterology 146(6):1500–1512PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Dubrovsky BO (2005) Steroids, neuroactive steroids and neurosteroids in psychopathology. Prog Neuropsychopharmacol Biol Psychiatry 29(2):169–192PubMedCrossRefGoogle Scholar
  47. 47.
    George O, Vallee M, Le Moal M, Mayo W (2006) Neurosteroids and cholinergic systems: implications for sleep and cognitive processes and potential role of age-related changes. Psychopharmacology 186(3):402–413PubMedCrossRefGoogle Scholar
  48. 48.
    McGrath J, Feron F, Eyles D, Mackay-Sim A (2001) Vitamin D: the neglected neurosteroid? Trends Neurosci 24(10):570–572PubMedCrossRefGoogle Scholar
  49. 49.
    Pinna G, Costa E, Guidotti A (2006) Fluoxetine and norfluoxetine stereospecifically and selectively increase brain neurosteroid content at doses that are inactive on 5-HT reuptake. Psychopharmacology 186(3):362–372PubMedCrossRefGoogle Scholar
  50. 50.
    Key TJ, Appleby PN, Rosell MS (2006) Health effects of vegetarian and vegan diets. Proc Nutr Soc 65(1):35–41PubMedCrossRefGoogle Scholar
  51. 51.
    Mattson MP, Cheng A (2006) Neurohormetic phytochemicals: low-dose toxins that induce adaptive neuronal stress responses. Trends Neurosci 29(11):632–639PubMedCrossRefGoogle Scholar
  52. 52.
    Calabrese EJ (2008) Hormesis and medicine. Br J Clin Pharmacol 66(5):594–617PubMedPubMedCentralGoogle Scholar
  53. 53.
    Bonaccio M, Di Castelnuovo A, Bonanni A et al (2013) Adherence to a Mediterranean diet is associated with a better health-related quality of life: a possible role of high dietary antioxidant content. BMJ Open 3(8):e003003Google Scholar
  54. 54.
    Linde K, Mulrow CD, Berner M, Egger M (2005) St John’s wort for depression. Cochrane Database Syst Rev (2):CD000448Google Scholar
  55. 55.
    Gomez-Pinilla F (2008) Brain foods: the effects of nutrients on brain function. Nat Rev Neurosci 9(7):568–578PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Calabrese EJ, Mattson MP, Calabrese V (2010) Resveratrol commonly displays hormesis: occurrence and biomedical significance. Hum Exp Toxicol 29(12):980–1015PubMedCrossRefGoogle Scholar
  57. 57.
    Lakhan SE, Vieira KF (2010) Nutritional and herbal supplements for anxiety and anxiety-related disorders: systematic review. Nutr J 9:42PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Sarris J, Panossian A, Schweitzer I, Stough C, Scholey A (2011) Herbal medicine for depression, anxiety and insomnia: a review of psychopharmacology and clinical evidence. Eur Neuropsychopharmacol 21(12):841–860PubMedCrossRefGoogle Scholar
  59. 59.
    Puzzo D, Privitera L, Palmeri A (2012) Hormetic effect of amyloid-beta peptide in synaptic plasticity and memory. Neurobiol Aging 33(7):1484 e15–e24Google Scholar
  60. 60.
    Mota MC, De-Souza DA, Rossato LT et al (2013) Dietary patterns, metabolic markers and subjective sleep measures in resident physicians. Chronobiol Int 30(8):1032–1041PubMedCrossRefGoogle Scholar
  61. 61.
    Edwards SJ, Montgomery IM, Colquhoun EQ, Jordan JE, Clark MG (1992) Spicy meal disturbs sleep: an effect of thermoregulation? Int J Psychophysiol 13(2):97–100PubMedCrossRefGoogle Scholar
  62. 62.
    Fisone G, Borgkvist A, Usiello A (2004) Caffeine as a psychomotor stimulant: mechanism of action. Cell Mol Life Sci 61(7–8):857–872PubMedCrossRefGoogle Scholar
  63. 63.
    Huang ZL, Qu WM, Eguchi N et al (2005) Adenosine A2A, but not A1, receptors mediate the arousal effect of caffeine. Nat Neurosci 8(7):858–859PubMedCrossRefGoogle Scholar
  64. 64.
    Porkka-Heiskanen T, Alanko L, Kalinchuk A, Stenberg D (2002) Adenosine and sleep. Sleep Med Rev 6(4):321–332PubMedCrossRefGoogle Scholar
  65. 65.
    Porkka-Heiskanen T, Kalinchuk AV (2011) Adenosine, energy metabolism and sleep homeostasis. Sleep Med Rev 15(2):123–135PubMedCrossRefGoogle Scholar
  66. 66.
    Sallinen M, Onninen J, Tirkkonen K et al (2012) Effects of cumulative sleep restriction on self-perceptions while multitasking. J Sleep Res 22:273Google Scholar
  67. 67.
    Curless R, French JM, James OF, Wynne HA (1993) Is caffeine a factor in subjective insomnia of elderly people? Age Ageing 22(1):41–45PubMedCrossRefGoogle Scholar
  68. 68.
    Brown SL, Salive ME, Pahor M et al (1995) Occult caffeine as a source of sleep problems in an older population. J Am Geriatr Soc 43(8):860–864PubMedCrossRefGoogle Scholar
  69. 69.
    Roehrs T, Roth T (2008) Caffeine: Sleep and daytime sleepiness. Sleep Med Rev 12(2):153–162PubMedCrossRefGoogle Scholar
  70. 70.
    Landolt HP, Werth E, Borbely AA, Dijk DJ (1995) Caffeine intake (200 mg) in the morning affects human sleep and EEG power spectra at night. Brain Res 675(1–2):67–74PubMedCrossRefGoogle Scholar
  71. 71.
    Missak SS (1987) Does the human body produce a substance similar to caffeine? Med Hypotheses 24(2):161–165PubMedCrossRefGoogle Scholar
  72. 72.
    Ross GW, Abbott RD, Petrovitch H et al (2000) Association of coffee and caffeine intake with the risk of Parkinson disease. JAMA 283(20):2674–2679PubMedCrossRefGoogle Scholar
  73. 73.
    Kaasinen V, Aalto S, Nagren K, Rinne JO (2004) Dopaminergic effects of caffeine in the human striatum and thalamus. NeuroReport 15(2):281–285PubMedCrossRefGoogle Scholar
  74. 74.
    Kalda A, Yu L, Oztas E, Chen JF (2006) Novel neuroprotection by caffeine and adenosine A(2A) receptor antagonists in animal models of Parkinson’s disease. J Neurol Sci 248(1–2):9–15PubMedCrossRefGoogle Scholar
  75. 75.
    Postuma RB, Lang AE, Munhoz RP et al (2012) Caffeine for treatment of Parkinson disease: a randomized controlled trial. Neurology 79(7):651–658PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Aguiar LM, Nobre HV Jr, Macedo DS et al (2006) Neuroprotective effects of caffeine in the model of 6-hydroxydopamine lesion in rats. Pharmacol Biochem Behav 84(3):415–419PubMedCrossRefGoogle Scholar
  77. 77.
    Pellerin L, Magistretti PJ (2004) Neuroenergetics: calling upon astrocytes to satisfy hungry neurons. Neuroscientist 10(1):53–62PubMedCrossRefGoogle Scholar
  78. 78.
    Bergersen LH (2007) Is lactate food for neurons? Comparison of monocarboxylate transporter subtypes in brain and muscle. Neuroscience 145(1):11–19PubMedCrossRefGoogle Scholar
  79. 79.
    Hertz L, Chen Y, Gibbs ME, Zang P, Peng L (2004) Astrocytic adrenoceptors: a major drug target in neurological and psychiatric disorders? Curr Drug Targets CNS Neurol Disord 3(3):239–267PubMedCrossRefGoogle Scholar
  80. 80.
    Wyss MT, Jolivet R, Buck A, Magistretti PJ, Weber B (2011) In vivo evidence for lactate as a neuronal energy source. J Neurosci 31(20):7477–7485PubMedCrossRefGoogle Scholar
  81. 81.
    Nam HW, McIver SR, Hinton DJ et al (2012) Adenosine and glutamate signaling in neuron-glial interactions: implications in alcoholism and sleep disorders. Alcohol Clin Exp Res 36(7):1117–1125PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Blutstein T, Haydon PG (2013) The Importance of astrocyte-derived purines in the modulation of sleep. Glia 61(2):129–139PubMedCrossRefGoogle Scholar
  83. 83.
    Haydon PG, Nedergaard M (2015) How do astrocytes participate in neural plasticity? Cold Spring Harb Perspect Biol 7(3):a020438PubMedCentralCrossRefGoogle Scholar
  84. 84.
    Montana V, Ni Y, Sunjara V, Hua X, Parpura V (2004) Vesicular glutamate transporter-dependent glutamate release from astrocytes. J Neurosci 24(11):2633–2642PubMedCrossRefGoogle Scholar
  85. 85.
    Newman EA (2003) New roles for astrocytes: regulation of synaptic transmission. Trends Neurosci 26(10):536–542PubMedCrossRefGoogle Scholar
  86. 86.
    Zhang Q, Fukuda M, Van Bockstaele E, Pascual O, Haydon PG (2004) Synaptotagmin IV regulates glial glutamate release. Proc Natl Acad Sci U S A 101(25):9441–9446PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Hertz L, Zielke HR (2004) Astrocytic control of glutamatergic activity: astrocytes as stars of the show. Trends Neurosci 27(12):735–743PubMedCrossRefGoogle Scholar
  88. 88.
    Aubert A, Costalat R, Magistretti PJ, Pellerin L (2005) Brain lactate kinetics: Modeling evidence for neuronal lactate uptake upon activation. Proc Natl Acad Sci U S A 102(45):16448–16453PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Grandner MA, Jackson N, Gerstner JR, Knutson KL (2013) Sleep symptoms associated with intake of specific dietary nutrients. J Sleep Res 23:22Google Scholar
  90. 90.
    Egecioglu E, Skibicka KP, Hansson C et al (2011) Hedonic and incentive signals for body weight control. Rev Endocr Metab Disord 12(3):141–151PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Lenoir M, Serre F, Cantin L, Ahmed SH (2007) Intense sweetness surpasses cocaine reward. PLoS ONE 2(8):e698PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Ahmed SH, Guillem K, Vandaele Y (2013) Sugar addiction: pushing the drug-sugar analogy to the limit. Curr Opin Clin Nutr Metab Care 16(4):434–439PubMedCrossRefGoogle Scholar
  93. 93.
    Spring B, Maller O, Wurtman J, Digman L, Cozolino L (1982) Effects of protein and carbohydrate meals on mood and performance: interactions with sex and age. J Psychiatr Res 17(2):155–167PubMedCrossRefGoogle Scholar
  94. 94.
    Christensen L, Redig C (1993) Effect of meal composition on mood. Behav Neurosci 107(2):346–353PubMedCrossRefGoogle Scholar
  95. 95.
    Christensen L, Brooks A (2006) Changing food preference as a function of mood. J Psychol 140(4):293–306PubMedCrossRefGoogle Scholar
  96. 96.
    Närvänen S (1983) Role of 5-hydroxytryptamine (serotonin) in oral glucose intolerance. Scand J Clin Lab Invest 167(Suppl):1–53Google Scholar
  97. 97.
    Cunliffe A, Obeid OA, Powell-Tuck J (1997) Post-prandial changes in measures of fatigue: effect of a mixed or a pure carbohydrate or pure fat meal. Eur J Clin Nutr 51(12):831–838PubMedCrossRefGoogle Scholar
  98. 98.
    Behall KM, Scholfield DJ, Yuhaniak I, Canary J (1989) Diets containing high amylose vs amylopectin starch: effects on metabolic variables in human subjects. Am J Clin Nutr 49(2):337–344PubMedGoogle Scholar
  99. 99.
    Bjorck I, Granfeldt Y, Liljeberg H, Tovar J, Asp NG (1994) Food properties affecting the digestion and absorption of carbohydrates. Am J Clin Nutr 59(3 Suppl):699S–705SPubMedGoogle Scholar
  100. 100.
    Orr WC, Shadid G, Harnish MJ, Elsenbruch S (1997) Meal composition and its effect on postprandial sleepiness. Physiol Behav 62(4):709–712PubMedCrossRefGoogle Scholar
  101. 101.
    Wells AS, Read NW, Uvnas-Moberg K, Alster P (1997) Influences of fat and carbohydrate on postprandial sleepiness, mood, and hormones. Physiol Behav 61(5):679–686PubMedCrossRefGoogle Scholar
  102. 102.
    Afaghi A, O’Connor H, Chow CM (2007) High-glycemic-index carbohydrate meals shorten sleep onset. Am J Clin Nutr 85(2):426–430PubMedGoogle Scholar
  103. 103.
    Cubero J, Chanclon B, Sanchez S, Rivero M, Rodriguez AB, Barriga C (2009) Improving the quality of infant sleep through the inclusion at supper of cereals enriched with tryptophan, adenosine-5’-phosphate, and uridine-5′-phosphate. Nutr Neurosci 12(6):272–280PubMedCrossRefGoogle Scholar
  104. 104.
    Bravo R, Matito S, Cubero J et al (2012) Tryptophan-enriched cereal intake improves nocturnal sleep, melatonin, serotonin, and total antioxidant capacity levels and mood in elderly humans. Age (Dordrecht) 35:1277Google Scholar
  105. 105.
    Driver HS, Shulman I, Baker FC, Buffenstein R (1999) Energy content of the evening meal alters nocturnal body temperature but not sleep. Physiol Behav 68(1–2):17–23PubMedCrossRefGoogle Scholar
  106. 106.
    Fronczek R, Raymann RJ, Romeijn N et al (2008) Manipulation of core body and skin temperature improves vigilance and maintenance of wakefulness in narcolepsy. Sleep 31(2):233–240PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Lack LC, Gradisar M, Van Someren EJW, Wright HR, Lushington K (2008) The relationship between insomnia and body temperatures. Sleep Med Rev 12(4):307–317PubMedCrossRefGoogle Scholar
  108. 108.
    Sato-Mito N, Shibata S, Sasaki S, Sato K (2011) Dietary intake is associated with human chronotype as assessed by both morningness-eveningness score and preferred midpoint of sleep in young Japanese women. Int J Food Sci Nutr 62(5):525–532PubMedCrossRefGoogle Scholar
  109. 109.
    Bell I (1976) Diet histories in narcolepsy. In: Guilleminault CDW, Passouant P (eds) narcolepsy. Spectrum Publications, New York, pp 221–226Google Scholar
  110. 110.
    Pijl H, Koppeschaar HP, Cohen AF et al (1993) Evidence for brain serotonin-mediated control of carbohydrate consumption in normal weight and obese humans. Int J Obes Relat Metab Disord 17(9):513–520PubMedGoogle Scholar
  111. 111.
    Winick M (1996) Editorial: Understanding and treating obesity. Am J Publ Health 86(7):925–926CrossRefGoogle Scholar
  112. 112.
    Knutson KL, Spiegel K, Penev P, Van Cauter E (2007) The metabolic consequences of sleep deprivation. Sleep Med Rev 11(3):163–178PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Marshall NS, Glozier N, Grunstein RR (2008) Is sleep duration related to obesity? A critical review of the epidemiological evidence. Sleep Med Rev 12(4):289–298PubMedCrossRefGoogle Scholar
  114. 114.
    Tuomilehto H, Peltonen M, Partinen M et al (2008) Sleep duration is associated with an increased risk for the prevalence of type 2 diabetes in middle-aged women - The FIN-D2D survey. Sleep Med 9(3):221–227PubMedCrossRefGoogle Scholar
  115. 115.
    Grandner MA, Patel NP, Gehrman PR, Perlis ML, Pack AI (2010) Problems associated with short sleep: bridging the gap between laboratory and epidemiological studies. Sleep Med Rev 14(4):239–247PubMedCrossRefGoogle Scholar
  116. 116.
    Yiengprugsawan V, Banwell C, Seubsman SA, Sleigh AC (2012) Short sleep and obesity in a large national cohort of Thai adults. BMJ Open 2(1):e000561PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Grandner MA, Chakravorty S, Perlis ML, Oliver L, Gurubhagavatula I (2013) Habitual sleep duration associated with self-reported and objectively determined cardiometabolic risk factors. Sleep Med 15:42Google Scholar
  118. 118.
    Baud MO, Magistretti PJ, Petit JM (2013) Sustained sleep fragmentation affects brain temperature, food intake and glucose tolerance in mice. J Sleep Res 22(1):3–12PubMedCrossRefGoogle Scholar
  119. 119.
    Karacan I, Rosenbloom A, Londono J (1973) The effect of acute fasting on sleep and the sleep-growth hormone response. Psychosomatics 14:33–37PubMedCrossRefGoogle Scholar
  120. 120.
    MacFadyen UM, Oswald I, Lewis SA (1973) Starvation and human slow-wave sleep. J Appl Physiol 35(3):391–394PubMedGoogle Scholar
  121. 121.
    Horne J (1985) Sleep function, with particular reference to sleep deprivation. Ann Clin Res 17:199–208PubMedGoogle Scholar
  122. 122.
    Spiegel K, Leproult R, Van Cauter E (1999) Impact of sleep debt on metabolic and endocrine function. Lancet 354(9188):1435–1439PubMedCrossRefGoogle Scholar
  123. 123.
    Hyun DH, Emerson SS, Jo DG, Mattson MP, de Cabo R (2006) Calorie restriction up-regulates the plasma membrane redox system in brain cells and suppresses oxidative stress during aging. Proc Natl Acad Sci U S A 103(52):19908–19912PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Roky R, Chapotot F, Hakkou F, Benchekroun MT, Buguet A (2001) Sleep during Ramadan intermittent fasting. J Sleep Res 10(4):319–327PubMedCrossRefGoogle Scholar
  125. 125.
    Roky R, Chapotot F, Benchekroun MT et al (2003) Daytime sleepiness during Ramadan intermittent fasting: polysomnographic and quantitative waking EEG study. J Sleep Res 12(2):95–101PubMedCrossRefGoogle Scholar
  126. 126.
    Leiper JB, Molla AM, Molla AM (2003) Effects on health of fluid restriction during fasting in Ramadan. Eur J Clin Nutr 57(Suppl 2):S30–S38PubMedCrossRefGoogle Scholar
  127. 127.
    Maughan RJ, Zerguini Y, Chalabi H, Dvorak J (2012) Achieving optimum sports performance during Ramadan: some practical recommendations. J Sports Sci 30(Suppl 1):S109–S117PubMedCrossRefGoogle Scholar
  128. 128.
    Rinholm JE, Bergersen LH (2013) White matter lactate—does it matter? Neuroscience 276:109Google Scholar
  129. 129.
    Hallbook T, Lundgren J, Rosen I (2007) Ketogenic diet improves sleep quality in children with therapy-resistant epilepsy. Epilepsia 48(1):59–65PubMedCrossRefGoogle Scholar
  130. 130.
    Brown AJ (2007) Low-carb diets, fasting and euphoria: Is there a link between ketosis and gamma-hydroxybutyrate (GHB)? Med Hypotheses 68(2):268–271PubMedCrossRefGoogle Scholar
  131. 131.
    Johnston CS, Tjonn SL, Swan PD, White A, Hutchins H, Sears B (2006) Ketogenic low-carbohydrate diets have no metabolic advantage over nonketogenic low-carbohydrate diets. Am J Clin Nutr 83(5):1055–1061PubMedGoogle Scholar
  132. 132.
    Bonnet MH, Gomez S, Wirth O, Arand DL (1995) The use of caffeine versus prophylactic naps in sustained performance. Sleep 18(2):97–104Google Scholar
  133. 133.
    Reyner LA, Horne JA (1997) Suppression of sleepiness in drivers: combination of caffeine with a short nap. Psychophysiology 34(6):721–725PubMedCrossRefGoogle Scholar
  134. 134.
    Reyner LA, Horne JA (2002) Efficacy of a ‘functional energy drink’ in counteracting driver sleepiness. Physiol Behav 75(3):331–335PubMedCrossRefGoogle Scholar
  135. 135.
    Hays JC, Blazer DG, Foley DJ (1996) Risk of napping: excessive daytime sleepiness and mortality in an older community population. J Am Geriatr Soc 44:693–698PubMedCrossRefGoogle Scholar
  136. 136.
    Fang W, Li Z, Wu L et al (2013) Longer habitual afternoon napping is associated with a higher risk for impaired fasting plasma glucose and diabetes mellitus in older adults: results from the Dongfeng-Tongji cohort of retired workers. Sleep Med 14(10):950–954PubMedCrossRefGoogle Scholar
  137. 137.
    Naska A, Oikonomou E, Trichopoulou A, Psaltopoulou T, Trichopoulos D (2007) Siesta in healthy adults and coronary mortality in the general population. Arch Intern Med 167(3):296–301PubMedCrossRefGoogle Scholar
  138. 138.
    Taasan V, Block A, Boysen P, Wynne J, White C, Lindsey S (1981) Alcohol increases sleep apnea and oxygen saturation in asymptomatic men. Am J Med 71:240–245PubMedCrossRefGoogle Scholar
  139. 139.
    Scrima L, Broudy M, Nay K, Cohn M (1982) Increased severity of obstructive sleep apnea after bedtime alcohol ingestion: diagnostic potential and proposed mechanism of action. Sleep 5:318–328PubMedCrossRefGoogle Scholar
  140. 140.
    Remmers J (1984) Obstructive sleep apnea. A common disorder exacerbated by alcohol. Am Rev Respir Dis. 130:153–155PubMedGoogle Scholar
  141. 141.
    Peppard PE, Austin D, Brown RL (2007) Association of alcohol consumption and sleep disordered breathing in men and women. J Clin Sleep Med 3(3):265–270PubMedPubMedCentralGoogle Scholar
  142. 142.
    Lobo LL, Tufik S (1997) Effects of alcohol on sleep parameters of sleep-deprived healthy volunteers. Sleep 20(1):52–59PubMedCrossRefGoogle Scholar
  143. 143.
    Feige B, Gann H, Brueck R et al (2006) Effects of alcohol on polysomnographically recorded sleep in healthy subjects. Alcohol Clin Exp Res 30(9):1527–1537PubMedCrossRefGoogle Scholar
  144. 144.
    Huang R, Ho SY, Lo WS, Lai HK, Lam TH (2013) Alcohol consumption and sleep problems in Hong Kong adolescents. Sleep Med 14(9):877–882PubMedCrossRefGoogle Scholar
  145. 145.
    Gross M, Hastey J (1975) A note of REM rebound during experimental alcohol withdrawal in alcoholics. Adv Exp Med Biol 59:509–513PubMedCrossRefGoogle Scholar
  146. 146.
    Adamson J, Burdick J (1973) Sleep of dry alcoholics. Arch Gen Psychiatry 28:146–149PubMedCrossRefGoogle Scholar
  147. 147.
    Mishara BL, Kastenbaum R (1974) Wine in the treatment of long-term geriatric patients in mental institutions. J Am Geriatr Soc 22(2):88–94PubMedCrossRefGoogle Scholar
  148. 148.
    Morgan K, Clarke D (1997) Longitudinal trends in late-life insomnia: implications for prescribing. Age Ageing 26(3):179–184PubMedCrossRefGoogle Scholar
  149. 149.
    Kripke D, Langer R, Kline L (2012) Hypnotics’ association with mortality or cancer: a matched cohort study. BMJ Open 2:e000850. doi: 10.1136/bmjopen-2012-000850
  150. 150.
    Lader M (2012) Benzodiazepine harm: how can it be reduced? Br J Clin Pharmacol 77:295Google Scholar
  151. 151.
    Baldwin DS, Aitchison K, Bateson A et al (2013) Benzodiazepines: risks and benefits. A reconsideration. J Psychopharmacol 27(11):967–971PubMedCrossRefGoogle Scholar
  152. 152.
    Mura T, Proust-Lima C, Akbaraly T et al (2013) Chronic use of benzodiazepines and latent cognitive decline in the elderly: results from the Three-city study. Eur Neuropsychopharmacol 23(3):212–223PubMedCrossRefGoogle Scholar
  153. 153.
    Lader M (2014) Benzodiazepine harm: how can it be reduced? Br J Clin Pharmacol 77(2):295–301PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    Carroll PJ (1978) The social hour for geropsychiatric patients. J Am Geriatr Soc 26(1):32–35PubMedCrossRefGoogle Scholar
  155. 155.
    Din JN, Newby DE, Flapan AD (2004) Omega 3 fatty acids and cardiovascular disease—fishing for a natural treatment. Br Med J 328(7430):30–35CrossRefGoogle Scholar
  156. 156.
    Burgess JR, Stevens L, Zhang W, Peck L (2000) Long-chain polyunsaturated fatty acids in children with attention-deficit hyperactivity disorder. Am J Clin Nutr 71(1 Suppl):327S–330SPubMedGoogle Scholar
  157. 157.
    Fenton WS, Dickerson F, Boronow J, Hibbeln JR, Knable M (2001) A placebo-controlled trial of omega-3 fatty acid (ethyl eicosapentaenoic acid) supplementation for residual symptoms and cognitive impairment in schizophrenia. Am J Psychiatry 158(12):2071–2074PubMedCrossRefGoogle Scholar
  158. 158.
    Pradalier A, Bakouche P, Baudesson G et al (2001) Failure of omega-3 polyunsaturated fatty acids in prevention of migraine: a double-blind study versus placebo. Cephalalgia 21(8):818–822PubMedCrossRefGoogle Scholar
  159. 159.
    Simopoulos AP (2002) Omega-3 fatty acids in inflammation and autoimmune diseases. J Am Coll Nutr 21(6):495–505PubMedCrossRefGoogle Scholar
  160. 160.
    Huffman DM, Altena TS, Mawhinney TP, Thomas TR (2004) Effect of n-3 fatty acids on free tryptophan and exercise fatigue. Eur J Appl Physiol 92(4–5):584–591PubMedGoogle Scholar
  161. 161.
    Schachter HM, Kourad K, Merali Z, Lumb A, Tran K, Miguelez M (2005) Effects of omega-3 fatty acids on mental health. Evid Rep Technol Assess (Summ). 116:1–11Google Scholar
  162. 162.
    Freeman MP, Hibbeln JR, Wisner KL et al (2006) Omega-3 fatty acids: evidence basis for treatment and future research in psychiatry. J Clin Psychiatry 67(12):1954–1967PubMedCrossRefGoogle Scholar
  163. 163.
    Hooper L, Thompson RL, Harrison RA et al (2006) Risks and benefits of omega 3 fats for mortality, cardiovascular disease, and cancer: systematic review. BMJ 332(7544):752–760PubMedPubMedCentralCrossRefGoogle Scholar
  164. 164.
    Rintamäki R (2007) Mood in association with dietary nutrition intakes and sleep length. University of Kuopio, KuopioGoogle Scholar
  165. 165.
    Kaushik M, Mozaffarian D, Spiegelman D, Manson JE, Willett WC, Hu FB (2009) Long-chain omega-3 fatty acids, fish intake, and the risk of type 2 diabetes mellitus. Am J Clin Nutr 90(3):613–620PubMedPubMedCentralCrossRefGoogle Scholar
  166. 166.
    Riediger ND, Othman RA, Suh M, Moghadasian MH (2009) A systemic review of the roles of n-3 fatty acids in health and disease. J Am Diet Assoc 109(4):668–679PubMedCrossRefGoogle Scholar
  167. 167.
    Cohen LS, Joffe H, Guthrie KA et al (2013) Efficacy of omega-3 for vasomotor symptoms treatment: a randomized controlled trial. Menopause 28:193Google Scholar
  168. 168.
    Hall WL, Hay G, Maniou Z, Seed PT, Chowienczyk PJ, Sanders TA (2013) Effect of low doses of long chain n-3 polyunsaturated fatty acids on sleep-time heart rate variability: a randomized, controlled trial. Int J Cardiol 168(4):4439–4442PubMedPubMedCentralCrossRefGoogle Scholar
  169. 169.
    Otaegui-Arrazola A, Amiano P, Elbusto A, Urdaneta E, Martinez-Lage P (2013) Diet, cognition, and Alzheimer’s disease: food for thought. Eur J Nutr 53:1Google Scholar
  170. 170.
    Fagioli I, Baroncini P, Ricour C, Salzarulo P (1989) Decrease of slow-wave sleep in children with prolonged absence of essential lipids intake. Sleep 12(6):495–499PubMedGoogle Scholar
  171. 171.
    Cheruku SR, Montgomery-Downs HE, Farkas SL, Thoman EB, Lammi-Keefe CJ (2002) Higher maternal plasma docosahexaenoic acid during pregnancy is associated with more mature neonatal sleep-state patterning. Am J Clin Nutr 76(3):608–613PubMedGoogle Scholar
  172. 172.
    Irmisch G, Schlafke D, Gierow W, Herpertz S, Richter J (2007) Fatty acids and sleep in depressed inpatients. Prostaglandins Leukot Essent Fatty Acids 76(1):1–7PubMedCrossRefGoogle Scholar
  173. 173.
    Dougalis A, Lees G, Ganellin CR (2004) The sleep inducing brain lipid cis-oleamide (cOA) does not modulate serotonergic transmission in the CA1 pyramidal neurons of the hippocampus in vitro. Neuropharmacology 46(1):63–73PubMedCrossRefGoogle Scholar
  174. 174.
    Fowler CJ (2004) Oleamide: a member of the endocannabinoid family? Br J Pharmacol 141(2):195–196PubMedCrossRefGoogle Scholar
  175. 175.
    Urade Y, Hayaishi O (2011) Prostaglandin D2 and sleep/wake regulation. Sleep Med Rev 15(6):411–418PubMedCrossRefGoogle Scholar
  176. 176.
    Roberts H (1965) The syndrome of narcolepsy and diabetogenic hyperinsulinism in the American Negro: important clinical, social and public health aspects. J Am Geriatr Soc 13:852–885PubMedCrossRefGoogle Scholar
  177. 177.
    Bruck D, Armstrong S, Coleman G (1994) Sleepiness after glucose in narcolepsy. J Sleep Res 3(3):171–179PubMedCrossRefGoogle Scholar
  178. 178.
    Roth B, Nevsimalova S, Sonka K, Docekal P (1986) An alternative to the multiple sleep latency test for determining sleepiness in narcolepsy and hypersomnia: polygraphic score of sleepiness. Sleep 9:243–245PubMedCrossRefGoogle Scholar
  179. 179.
    Husain AM, Yancy WS Jr, Carwile ST, Miller PP, Westman EC (2004) Diet therapy for narcolepsy. Neurology 62(12):2300–2302PubMedCrossRefGoogle Scholar
  180. 180.
    Schuld A, Hebebrand J, Geller F, Pollmacher T (2000) Increased body-mass index in patients with narcolepsy. Lancet 355(9211):1274–1275PubMedCrossRefGoogle Scholar
  181. 181.
    Dahmen N, Bierbrauer J, Kasten M (2001) Increased prevalence of obesity in narcoleptic patients and relatives. Eur Arch Psychiatry Clin Neurosci 251(2):85–89PubMedCrossRefGoogle Scholar
  182. 182.
    Poli F, Pizza F, Mignot E et al (2013) High prevalence of precocious puberty and obesity in childhood narcolepsy with cataplexy. Sleep 36(2):175–181PubMedPubMedCentralCrossRefGoogle Scholar
  183. 183.
    Pizza F, Peltola H, Sarkanen T, Moghadam KK, Plazzi G, Partinen M (2014) Childhood narcolepsy with cataplexy: comparison between post-H1N1 vaccination and sporadic cases. Sleep Med 15(2):262–265PubMedCrossRefGoogle Scholar
  184. 184.
    Chabas D, Foulon C, Gonzalez J et al (2007) Eating disorder and metabolism in narcoleptic patients. Sleep 30(10):1267–1273PubMedPubMedCentralCrossRefGoogle Scholar
  185. 185.
    Russell VA, Oades RD, Tannock R et al (2006) Response variability in attention-deficit/hyperactivity disorder: a neuronal and glial energetics hypothesis. Behav Brain Funct 2:30PubMedPubMedCentralCrossRefGoogle Scholar
  186. 186.
    Killeen PR (2013) Absent without leave; a neuroenergetic theory of mind wandering. Front Psychol 4:373PubMedPubMedCentralCrossRefGoogle Scholar
  187. 187.
    Grote L, Leissner L, Hedner J, Ulfberg J (2009) A randomized, double-blind, placebo controlled, multi-center study of intravenous iron sucrose and placebo in the treatment of restless legs syndrome. Mov Disord 24(10):1445–1452PubMedCrossRefGoogle Scholar
  188. 188.
    Allen RP, Adler CH, Du W, Butcher A, Bregman DB, Earley CJ (2011) Clinical efficacy and safety of IV ferric carboxymaltose (FCM) treatment of RLS: a multi-centred, placebo-controlled preliminary clinical trial. Sleep Med 12(9):906–913PubMedCrossRefGoogle Scholar
  189. 189.
    Nordlander SB (1953) Intravenous iron in treatment of restless legs. Acta Med Scand 145:453–457PubMedGoogle Scholar
  190. 190.
    Yehuda S, Yehuda M (2006) Long lasting effects of infancy iron deficiency—preliminary results. J Neural Transm Suppl 71:197–200CrossRefGoogle Scholar
  191. 191.
    Dosman CF, Brian JA, Drmic IE et al (2007) Children with autism: effect of iron supplementation on sleep and ferritin. Pediatr Neurol 36(3):152–158PubMedCrossRefGoogle Scholar
  192. 192.
    Kuhn E, Brodan V (1982) Changes in the circadian rhythm of serum iron induced by a 5-day sleep deprivation. Eur J Appl Physiol Occup Physiol 49(2):215–222PubMedCrossRefGoogle Scholar
  193. 193.
    Walters AS, Silvestri R, Zucconi M, Chandrashekariah R, Konofal E (2008) Review of the possible relationship and hypothetical links between attention deficit hyperactivity disorder (ADHD) and the simple sleep related movement disorders, parasomnias, hypersomnias, and circadian rhythm disorders. J Clin Sleep Med 4(6):591–600PubMedPubMedCentralGoogle Scholar
  194. 194.
    Gao X, Lyall K, Palacios N, Walters AS, Ascherio A (2011) RLS in middle aged women and attention deficit/hyperactivity disorder in their offspring. Sleep Med 12(1):89–91PubMedPubMedCentralCrossRefGoogle Scholar
  195. 195.
    Plazzi G, Ferri R, Franceschini C et al (2012) Periodic leg movements during sleep in narcoleptic patients with or without restless legs syndrome. J Sleep Res 21(2):155–162PubMedCrossRefGoogle Scholar
  196. 196.
    Nevsimalova S, Pisko J, Buskova J et al (2013) Narcolepsy: clinical differences and association with other sleep disorders in different age groups. J Neurol 260(3):767–775PubMedCrossRefGoogle Scholar
  197. 197.
    Benarroch EE (2009) Brain iron homeostasis and neurodegenerative disease. Neurology 72(16):1436–1440PubMedCrossRefGoogle Scholar
  198. 198.
    Williams R, Buchheit CL, Berman NE, LeVine SM (2012) Pathogenic implications of iron accumulation in multiple sclerosis. J Neurochem 120(1):7–25PubMedCrossRefGoogle Scholar
  199. 199.
    Winick M (1984) Nutrition and brain development. Curr Concepts Nutr 13:71–86PubMedGoogle Scholar
  200. 200.
    Morgane PJ, Austin-LaFrance R, Bronzino J et al (1993) Prenatal malnutrition and development of the brain. Neurosci Biobehav Rev 17(1):91–128PubMedCrossRefGoogle Scholar
  201. 201.
    Pascual JM, Wang D, Hinton V et al (2007) Brain glucose supply and the syndrome of infantile neuroglycopenia. Arch Neurol 64:507–513PubMedCrossRefGoogle Scholar
  202. 202.
    Fernstrom JD (2000) Can nutrient supplements modify brain function? Am J Clin Nutr 7(Suppl 1):1669S–1673SGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Helsinki University Central HospitalHelsinkiFinland

Personalised recommendations