Skip to main content

Nutrition and Sleep

  • Chapter
  • First Online:
Sleep Disorders Medicine

Abstract

Sleepiness during the afternoon and poor sleep after a heavy evening meal and heavy alcohol consumption are familiar to most people. Despite this, little is known about the effects of different constituents of meals on sleep. There is evidence that a heavy lunch and rapidly absorbing carbohydrates enhance sleepiness in the afternoon. This may add to daytime sleepiness, and for that reason, they should be avoided when one wants to avoid fatigue. On the contrary, a light evening meal rich in carbohydrates may help one to fall asleep. The relationships between the enteric nervous system (ENS) and the central nervous system (CNS) need to be studied much more in the future. There is already evidence that chronic sleep deprivation increases risk of obesity and adult-onset diabetes. Better information about nutritional issues must be taken into consideration in the future studies. This chapter gives an account of the relationship between nutrition and sleep.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lim SS, Vos T, Flaxman AD et al (2012) A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380(9859):2224–2260

    Article  PubMed  PubMed Central  Google Scholar 

  2. Steyn K, Sliwa K, Hawken S et al (2005) Risk factors associated with myocardial infarction in Africa: the INTERHEART Africa study. Circulation 112(23):3554–3561

    Article  PubMed  Google Scholar 

  3. Roberts HJ (1964) The syndrome of narcolepsy and diabetogenic (“functional”) hyperinsulinism, with special reference to obesity, diabetes, idiopathic edema, cerebral dysrhythmias and multiple sclerosis (200 patients). J Am Geriatr Soc 12:926–976

    Article  CAS  PubMed  Google Scholar 

  4. Mizuno S, Mihara T, Miyaoka T, Inagaki T, Horiguchi J (2005) CSF iron, ferritin and transferrin levels in restless legs syndrome. J Sleep Res 14(1):43–47

    Article  PubMed  Google Scholar 

  5. Earley CJ, Ponnuru P, Wang X et al (2008) Altered iron metabolism in lymphocytes from subjects with restless legs syndrome. Sleep 31(6):847–852

    Article  PubMed  PubMed Central  Google Scholar 

  6. Connor JR, Ponnuru P, Wang XS, Patton SM, Allen RP, Earley CJ (2011) Profile of altered brain iron acquisition in restless legs syndrome. Brain 134(Pt 4):959–968

    Article  PubMed  PubMed Central  Google Scholar 

  7. Magistretti PJ, Pellerin L (1999) Cellular mechanisms of brain energy metabolism and their relevance to functional brain imaging. Phil Trans R Soc Lond 354:1155–1163

    Article  CAS  Google Scholar 

  8. Belanger M, Allaman I, Magistretti PJ (2011) Brain energy metabolism: focus on astrocyte-neuron metabolic cooperation. Cell Metab 14(6):724–738

    Article  CAS  PubMed  Google Scholar 

  9. Pellerin L, Magistretti PJ (2012) Sweet sixteen for ANLS. J Cereb Blood Flow Metab 32(7):1152–1166

    Article  CAS  PubMed  Google Scholar 

  10. Korczynski W, Ceregrzyn M, Matyjek R et al (2006) Central and local (enteric) action of orexins. J Physiol Pharmacol 57(Suppl 6):17–42

    PubMed  Google Scholar 

  11. McLean PG, Borman RA, Lee K (2007) 5-HT in the enteric nervous system: gut function and neuropharmacology. Trends Neurosci 30(1):9–13

    Article  CAS  PubMed  Google Scholar 

  12. Benarroch EE (2007) Enteric nervous system: Functional organization and neurologic implications. Neurology 69(20):1953–1957

    Article  PubMed  Google Scholar 

  13. Van Cauter E, Spiegel K, Tasali E, Leproult R (2008) Metabolic consequences of sleep and sleep loss. Sleep Med 9(Suppl 1):S23–S28

    Article  PubMed  PubMed Central  Google Scholar 

  14. Polotsky M, Elsayed-Ahmed AS, Pichard LE et al (2012) Effects of leptin and obesity on the upper airway. J Appl Physiol 112:1637

    Google Scholar 

  15. Korner J, Conroy R, Febres G et al (2013) Randomized double-blind placebo-controlled study of leptin administration after gastric bypass. Obesity (Silver Spring) 21(5):951–956

    Article  CAS  Google Scholar 

  16. Hebebrand J, Muller TD, Holtkamp K, Herpertz-Dahlmann B (2007) The role of leptin in anorexia nervosa: clinical implications. Mol Psychiatry 12(1):23–35

    Article  CAS  PubMed  Google Scholar 

  17. Parton LE, Ye CP, Coppari R et al (2007) Glucose sensing by POMC neurons regulates glucose homeostasis and is impaired in obesity. Nature 449(7159):228–232

    Article  CAS  PubMed  Google Scholar 

  18. Varela L, Horvath TL (2012) Leptin and insulin pathways in POMC and AgRP neurons that modulate energy balance and glucose homeostasis. EMBO Rep 13(12):1079–1086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. de Lecea L, Kilduff TS, Peyron C et al (1998) The hypocretins: hypothalamus-specific peptides with neuroexcitatory activity. Proc Natl Acad Sci U S A 95(1):322–327

    Article  PubMed  PubMed Central  Google Scholar 

  20. Sakurai T, Amemiya A, Ishii M et al (1998) Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell 92(4):573–585

    Article  CAS  PubMed  Google Scholar 

  21. de Lecea L, Jones BE, Boutrel B et al (2006) Addiction and arousal: alternative roles of hypothalamic peptides. J Neurosci 26(41):10372–10375

    Article  PubMed  CAS  Google Scholar 

  22. Sinton CM (2011) Orexin/hypocretin plays a role in the response to physiological disequilibrium. Sleep Med Rev 15(3):197–207

    Article  PubMed  Google Scholar 

  23. Burdakov D, Luckman SM, Verkhratsky A (2005) Glucose-sensing neurons of the hypothalamus. Philos Trans R Soc Lond B Biol Sci 360(1464):2227–2235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mieda M, Willie JT, Hara J, Sinton CM, Sakurai T, Yanagisawa M (2004) Orexin peptides prevent cataplexy and improve wakefulness in an orexin neuron-ablated model of narcolepsy in mice. Proc Natl Acad Sci U S A 101(13):4649–4654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Dahmen N, Becht J, Engel A, Thommes M, Tonn P (2008) Prevalence of eating disorders and eating attacks in narcolepsy. Neuropsychiatr Dis Treat 4(1):257–261

    PubMed  PubMed Central  Google Scholar 

  26. Rui L (2013) Brain regulation of energy balance and body weight. Rev Endocr Metab Disord 14(4):387–407

    Article  CAS  PubMed  Google Scholar 

  27. Williams RH, Alexopoulos H, Jensen LT, Fugger L, Burdakov D (2008) Adaptive sugar sensors in hypothalamic feeding circuits. Proc Natl Acad Sci U S A 105(33):11975–11980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Venner A, Karnani MM, Gonzalez JA, Jensen LT, Fugger L, Burdakov D (2011) Orexin neurons as conditional glucosensors: paradoxical regulation of sugar sensing by intracellular fuels. J Physiol 589(Pt 23):5701–5708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Burdakov D, Karnani MM, Gonzalez A (2013) Lateral hypothalamus as a sensor-regulator in respiratory and metabolic control. Physiol Behav 121:117

    Google Scholar 

  30. Luppi PH, Peyron C, Fort P (2013) Role of MCH neurons in paradoxical (REM) sleep control. Sleep 36(12):1775–1776

    Article  PubMed  PubMed Central  Google Scholar 

  31. Bergman P, Adori C, Vas S et al (2014) Narcolepsy patients have antibodies that stain distinct cell populations in rat brain and influence sleep patterns. Proc Natl Acad Sci U S A 111(35):E3735–E3744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Murillo-Rodriguez E, Haro R, Palomero-Rivero M, Millan-Aldaco D, Drucker-Colin R (2007) Modafinil enhances extracellular levels of dopamine in the nucleus accumbens and increases wakefulness in rats. Behav Brain Res 176(2):353–357

    Article  CAS  PubMed  Google Scholar 

  33. Gershon MD (2005) Nerves, reflexes, and the enteric nervous system: pathogenesis of the irritable bowel syndrome. J Clin Gastroenterol 39(4 Suppl 3):S184–S193

    Article  PubMed  Google Scholar 

  34. Lui M, Gershon MD (2005) Slow excitatory (“5-HT1P”-like) responses of mouse myenteric neurons to 5-HT: mediation by heterodimers of 5-HT1B/1D and Drd2 receptors. Gastroenterology 128(4 Suppl 2):A87

    Google Scholar 

  35. Li ZS, Schmauss C, Cuenca A, Ratcliffe E, Gershon MD (2006) Physiological modulation of intestinal motility by enteric dopaminergic neurons and the D2 receptor: analysis of dopamine receptor expression, location, development, and function in wild-type and knock-out mice. J Neurosci 26(10):2798–2807

    Article  CAS  PubMed  Google Scholar 

  36. Basu PP, Shah NJ, Krishnaswamy N, Pacana T (2011) Prevalence of restless legs syndrome in patients with irritable bowel syndrome. World J Gastroenterol 17(39):4404–4407

    Article  PubMed  PubMed Central  Google Scholar 

  37. de Goffau MC, Luopajarvi K, Knip M et al (2013) Fecal microbiota composition differs between children with beta-cell autoimmunity and those without. Diabetes 62(4):1238–1244

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Weinstock LB, Walters AS (2011) Restless legs syndrome is associated with irritable bowel syndrome and small intestinal bacterial overgrowth. Sleep Med 12(6):610–613

    Article  PubMed  Google Scholar 

  39. Weinstock LB, Zeiss S (2012) Rifaximin antibiotic treatment for restless legs syndrome: A double-blind, placebo-controlled study. Sleep Biol Rhythms 10(2):145–153

    Article  Google Scholar 

  40. Weinstock LB, Fern SE, Duntley SP (2008) Restless legs syndrome in patients with irritable bowel syndrome: response to small intestinal bacterial overgrowth therapy. Dig Dis Sci 53(5):1252–1256

    Article  PubMed  Google Scholar 

  41. Weinstock LB (2010) Antibiotic therapy may improve idiopathic restless legs syndrome: prospective, open-label pilot study of rifaximin, a nonsystemic antibiotic. Sleep Med 11(4):427

    Article  PubMed  Google Scholar 

  42. Wang Y, Kasper LH (2014) The role of microbiome in central nervous system disorders. Brain Behav Immun 38C:1–12

    Article  CAS  Google Scholar 

  43. Barrett E, Ross RP, O’Toole PW, Fitzgerald GF, Stanton C (2012) Gamma-Aminobutyric acid production by culturable bacteria from the human intestine. J Appl Microbiol 113(2):411–417

    Article  CAS  PubMed  Google Scholar 

  44. Lyte M (2011) Probiotics function mechanistically as delivery vehicles for neuroactive compounds: microbial endocrinology in the design and use of probiotics. BioEssays 33(8):574–581

    Article  CAS  PubMed  Google Scholar 

  45. Mayer EA, Savidge T, Shulman RJ (2014) Brain-gut microbiome interactions and functional bowel disorders. Gastroenterology 146(6):1500–1512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Dubrovsky BO (2005) Steroids, neuroactive steroids and neurosteroids in psychopathology. Prog Neuropsychopharmacol Biol Psychiatry 29(2):169–192

    Article  CAS  PubMed  Google Scholar 

  47. George O, Vallee M, Le Moal M, Mayo W (2006) Neurosteroids and cholinergic systems: implications for sleep and cognitive processes and potential role of age-related changes. Psychopharmacology 186(3):402–413

    Article  CAS  PubMed  Google Scholar 

  48. McGrath J, Feron F, Eyles D, Mackay-Sim A (2001) Vitamin D: the neglected neurosteroid? Trends Neurosci 24(10):570–572

    Article  CAS  PubMed  Google Scholar 

  49. Pinna G, Costa E, Guidotti A (2006) Fluoxetine and norfluoxetine stereospecifically and selectively increase brain neurosteroid content at doses that are inactive on 5-HT reuptake. Psychopharmacology 186(3):362–372

    Article  CAS  PubMed  Google Scholar 

  50. Key TJ, Appleby PN, Rosell MS (2006) Health effects of vegetarian and vegan diets. Proc Nutr Soc 65(1):35–41

    Article  CAS  PubMed  Google Scholar 

  51. Mattson MP, Cheng A (2006) Neurohormetic phytochemicals: low-dose toxins that induce adaptive neuronal stress responses. Trends Neurosci 29(11):632–639

    Article  CAS  PubMed  Google Scholar 

  52. Calabrese EJ (2008) Hormesis and medicine. Br J Clin Pharmacol 66(5):594–617

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Bonaccio M, Di Castelnuovo A, Bonanni A et al (2013) Adherence to a Mediterranean diet is associated with a better health-related quality of life: a possible role of high dietary antioxidant content. BMJ Open 3(8):e003003

    Google Scholar 

  54. Linde K, Mulrow CD, Berner M, Egger M (2005) St John’s wort for depression. Cochrane Database Syst Rev (2):CD000448

    Google Scholar 

  55. Gomez-Pinilla F (2008) Brain foods: the effects of nutrients on brain function. Nat Rev Neurosci 9(7):568–578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Calabrese EJ, Mattson MP, Calabrese V (2010) Resveratrol commonly displays hormesis: occurrence and biomedical significance. Hum Exp Toxicol 29(12):980–1015

    Article  CAS  PubMed  Google Scholar 

  57. Lakhan SE, Vieira KF (2010) Nutritional and herbal supplements for anxiety and anxiety-related disorders: systematic review. Nutr J 9:42

    Article  PubMed  PubMed Central  Google Scholar 

  58. Sarris J, Panossian A, Schweitzer I, Stough C, Scholey A (2011) Herbal medicine for depression, anxiety and insomnia: a review of psychopharmacology and clinical evidence. Eur Neuropsychopharmacol 21(12):841–860

    Article  CAS  PubMed  Google Scholar 

  59. Puzzo D, Privitera L, Palmeri A (2012) Hormetic effect of amyloid-beta peptide in synaptic plasticity and memory. Neurobiol Aging 33(7):1484 e15–e24

    Google Scholar 

  60. Mota MC, De-Souza DA, Rossato LT et al (2013) Dietary patterns, metabolic markers and subjective sleep measures in resident physicians. Chronobiol Int 30(8):1032–1041

    Article  CAS  PubMed  Google Scholar 

  61. Edwards SJ, Montgomery IM, Colquhoun EQ, Jordan JE, Clark MG (1992) Spicy meal disturbs sleep: an effect of thermoregulation? Int J Psychophysiol 13(2):97–100

    Article  CAS  PubMed  Google Scholar 

  62. Fisone G, Borgkvist A, Usiello A (2004) Caffeine as a psychomotor stimulant: mechanism of action. Cell Mol Life Sci 61(7–8):857–872

    Article  CAS  PubMed  Google Scholar 

  63. Huang ZL, Qu WM, Eguchi N et al (2005) Adenosine A2A, but not A1, receptors mediate the arousal effect of caffeine. Nat Neurosci 8(7):858–859

    Article  CAS  PubMed  Google Scholar 

  64. Porkka-Heiskanen T, Alanko L, Kalinchuk A, Stenberg D (2002) Adenosine and sleep. Sleep Med Rev 6(4):321–332

    Article  PubMed  Google Scholar 

  65. Porkka-Heiskanen T, Kalinchuk AV (2011) Adenosine, energy metabolism and sleep homeostasis. Sleep Med Rev 15(2):123–135

    Article  PubMed  Google Scholar 

  66. Sallinen M, Onninen J, Tirkkonen K et al (2012) Effects of cumulative sleep restriction on self-perceptions while multitasking. J Sleep Res 22:273

    Google Scholar 

  67. Curless R, French JM, James OF, Wynne HA (1993) Is caffeine a factor in subjective insomnia of elderly people? Age Ageing 22(1):41–45

    Article  CAS  PubMed  Google Scholar 

  68. Brown SL, Salive ME, Pahor M et al (1995) Occult caffeine as a source of sleep problems in an older population. J Am Geriatr Soc 43(8):860–864

    Article  CAS  PubMed  Google Scholar 

  69. Roehrs T, Roth T (2008) Caffeine: Sleep and daytime sleepiness. Sleep Med Rev 12(2):153–162

    Article  PubMed  Google Scholar 

  70. Landolt HP, Werth E, Borbely AA, Dijk DJ (1995) Caffeine intake (200 mg) in the morning affects human sleep and EEG power spectra at night. Brain Res 675(1–2):67–74

    Article  CAS  PubMed  Google Scholar 

  71. Missak SS (1987) Does the human body produce a substance similar to caffeine? Med Hypotheses 24(2):161–165

    Article  CAS  PubMed  Google Scholar 

  72. Ross GW, Abbott RD, Petrovitch H et al (2000) Association of coffee and caffeine intake with the risk of Parkinson disease. JAMA 283(20):2674–2679

    Article  CAS  PubMed  Google Scholar 

  73. Kaasinen V, Aalto S, Nagren K, Rinne JO (2004) Dopaminergic effects of caffeine in the human striatum and thalamus. NeuroReport 15(2):281–285

    Article  CAS  PubMed  Google Scholar 

  74. Kalda A, Yu L, Oztas E, Chen JF (2006) Novel neuroprotection by caffeine and adenosine A(2A) receptor antagonists in animal models of Parkinson’s disease. J Neurol Sci 248(1–2):9–15

    Article  CAS  PubMed  Google Scholar 

  75. Postuma RB, Lang AE, Munhoz RP et al (2012) Caffeine for treatment of Parkinson disease: a randomized controlled trial. Neurology 79(7):651–658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Aguiar LM, Nobre HV Jr, Macedo DS et al (2006) Neuroprotective effects of caffeine in the model of 6-hydroxydopamine lesion in rats. Pharmacol Biochem Behav 84(3):415–419

    Article  CAS  PubMed  Google Scholar 

  77. Pellerin L, Magistretti PJ (2004) Neuroenergetics: calling upon astrocytes to satisfy hungry neurons. Neuroscientist 10(1):53–62

    Article  CAS  PubMed  Google Scholar 

  78. Bergersen LH (2007) Is lactate food for neurons? Comparison of monocarboxylate transporter subtypes in brain and muscle. Neuroscience 145(1):11–19

    Article  CAS  PubMed  Google Scholar 

  79. Hertz L, Chen Y, Gibbs ME, Zang P, Peng L (2004) Astrocytic adrenoceptors: a major drug target in neurological and psychiatric disorders? Curr Drug Targets CNS Neurol Disord 3(3):239–267

    Article  CAS  PubMed  Google Scholar 

  80. Wyss MT, Jolivet R, Buck A, Magistretti PJ, Weber B (2011) In vivo evidence for lactate as a neuronal energy source. J Neurosci 31(20):7477–7485

    Article  CAS  PubMed  Google Scholar 

  81. Nam HW, McIver SR, Hinton DJ et al (2012) Adenosine and glutamate signaling in neuron-glial interactions: implications in alcoholism and sleep disorders. Alcohol Clin Exp Res 36(7):1117–1125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Blutstein T, Haydon PG (2013) The Importance of astrocyte-derived purines in the modulation of sleep. Glia 61(2):129–139

    Article  PubMed  Google Scholar 

  83. Haydon PG, Nedergaard M (2015) How do astrocytes participate in neural plasticity? Cold Spring Harb Perspect Biol 7(3):a020438

    Article  PubMed Central  CAS  Google Scholar 

  84. Montana V, Ni Y, Sunjara V, Hua X, Parpura V (2004) Vesicular glutamate transporter-dependent glutamate release from astrocytes. J Neurosci 24(11):2633–2642

    Article  CAS  PubMed  Google Scholar 

  85. Newman EA (2003) New roles for astrocytes: regulation of synaptic transmission. Trends Neurosci 26(10):536–542

    Article  CAS  PubMed  Google Scholar 

  86. Zhang Q, Fukuda M, Van Bockstaele E, Pascual O, Haydon PG (2004) Synaptotagmin IV regulates glial glutamate release. Proc Natl Acad Sci U S A 101(25):9441–9446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Hertz L, Zielke HR (2004) Astrocytic control of glutamatergic activity: astrocytes as stars of the show. Trends Neurosci 27(12):735–743

    Article  CAS  PubMed  Google Scholar 

  88. Aubert A, Costalat R, Magistretti PJ, Pellerin L (2005) Brain lactate kinetics: Modeling evidence for neuronal lactate uptake upon activation. Proc Natl Acad Sci U S A 102(45):16448–16453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Grandner MA, Jackson N, Gerstner JR, Knutson KL (2013) Sleep symptoms associated with intake of specific dietary nutrients. J Sleep Res 23:22

    Google Scholar 

  90. Egecioglu E, Skibicka KP, Hansson C et al (2011) Hedonic and incentive signals for body weight control. Rev Endocr Metab Disord 12(3):141–151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Lenoir M, Serre F, Cantin L, Ahmed SH (2007) Intense sweetness surpasses cocaine reward. PLoS ONE 2(8):e698

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Ahmed SH, Guillem K, Vandaele Y (2013) Sugar addiction: pushing the drug-sugar analogy to the limit. Curr Opin Clin Nutr Metab Care 16(4):434–439

    Article  CAS  PubMed  Google Scholar 

  93. Spring B, Maller O, Wurtman J, Digman L, Cozolino L (1982) Effects of protein and carbohydrate meals on mood and performance: interactions with sex and age. J Psychiatr Res 17(2):155–167

    Article  PubMed  Google Scholar 

  94. Christensen L, Redig C (1993) Effect of meal composition on mood. Behav Neurosci 107(2):346–353

    Article  CAS  PubMed  Google Scholar 

  95. Christensen L, Brooks A (2006) Changing food preference as a function of mood. J Psychol 140(4):293–306

    Article  PubMed  Google Scholar 

  96. Närvänen S (1983) Role of 5-hydroxytryptamine (serotonin) in oral glucose intolerance. Scand J Clin Lab Invest 167(Suppl):1–53

    Google Scholar 

  97. Cunliffe A, Obeid OA, Powell-Tuck J (1997) Post-prandial changes in measures of fatigue: effect of a mixed or a pure carbohydrate or pure fat meal. Eur J Clin Nutr 51(12):831–838

    Article  CAS  PubMed  Google Scholar 

  98. Behall KM, Scholfield DJ, Yuhaniak I, Canary J (1989) Diets containing high amylose vs amylopectin starch: effects on metabolic variables in human subjects. Am J Clin Nutr 49(2):337–344

    CAS  PubMed  Google Scholar 

  99. Bjorck I, Granfeldt Y, Liljeberg H, Tovar J, Asp NG (1994) Food properties affecting the digestion and absorption of carbohydrates. Am J Clin Nutr 59(3 Suppl):699S–705S

    CAS  PubMed  Google Scholar 

  100. Orr WC, Shadid G, Harnish MJ, Elsenbruch S (1997) Meal composition and its effect on postprandial sleepiness. Physiol Behav 62(4):709–712

    Article  CAS  PubMed  Google Scholar 

  101. Wells AS, Read NW, Uvnas-Moberg K, Alster P (1997) Influences of fat and carbohydrate on postprandial sleepiness, mood, and hormones. Physiol Behav 61(5):679–686

    Article  CAS  PubMed  Google Scholar 

  102. Afaghi A, O’Connor H, Chow CM (2007) High-glycemic-index carbohydrate meals shorten sleep onset. Am J Clin Nutr 85(2):426–430

    CAS  PubMed  Google Scholar 

  103. Cubero J, Chanclon B, Sanchez S, Rivero M, Rodriguez AB, Barriga C (2009) Improving the quality of infant sleep through the inclusion at supper of cereals enriched with tryptophan, adenosine-5’-phosphate, and uridine-5′-phosphate. Nutr Neurosci 12(6):272–280

    Article  CAS  PubMed  Google Scholar 

  104. Bravo R, Matito S, Cubero J et al (2012) Tryptophan-enriched cereal intake improves nocturnal sleep, melatonin, serotonin, and total antioxidant capacity levels and mood in elderly humans. Age (Dordrecht) 35:1277

    Google Scholar 

  105. Driver HS, Shulman I, Baker FC, Buffenstein R (1999) Energy content of the evening meal alters nocturnal body temperature but not sleep. Physiol Behav 68(1–2):17–23

    Article  CAS  PubMed  Google Scholar 

  106. Fronczek R, Raymann RJ, Romeijn N et al (2008) Manipulation of core body and skin temperature improves vigilance and maintenance of wakefulness in narcolepsy. Sleep 31(2):233–240

    Article  PubMed  PubMed Central  Google Scholar 

  107. Lack LC, Gradisar M, Van Someren EJW, Wright HR, Lushington K (2008) The relationship between insomnia and body temperatures. Sleep Med Rev 12(4):307–317

    Article  PubMed  Google Scholar 

  108. Sato-Mito N, Shibata S, Sasaki S, Sato K (2011) Dietary intake is associated with human chronotype as assessed by both morningness-eveningness score and preferred midpoint of sleep in young Japanese women. Int J Food Sci Nutr 62(5):525–532

    Article  CAS  PubMed  Google Scholar 

  109. Bell I (1976) Diet histories in narcolepsy. In: Guilleminault CDW, Passouant P (eds) narcolepsy. Spectrum Publications, New York, pp 221–226

    Google Scholar 

  110. Pijl H, Koppeschaar HP, Cohen AF et al (1993) Evidence for brain serotonin-mediated control of carbohydrate consumption in normal weight and obese humans. Int J Obes Relat Metab Disord 17(9):513–520

    CAS  PubMed  Google Scholar 

  111. Winick M (1996) Editorial: Understanding and treating obesity. Am J Publ Health 86(7):925–926

    Article  CAS  Google Scholar 

  112. Knutson KL, Spiegel K, Penev P, Van Cauter E (2007) The metabolic consequences of sleep deprivation. Sleep Med Rev 11(3):163–178

    Article  PubMed  PubMed Central  Google Scholar 

  113. Marshall NS, Glozier N, Grunstein RR (2008) Is sleep duration related to obesity? A critical review of the epidemiological evidence. Sleep Med Rev 12(4):289–298

    Article  PubMed  Google Scholar 

  114. Tuomilehto H, Peltonen M, Partinen M et al (2008) Sleep duration is associated with an increased risk for the prevalence of type 2 diabetes in middle-aged women - The FIN-D2D survey. Sleep Med 9(3):221–227

    Article  PubMed  Google Scholar 

  115. Grandner MA, Patel NP, Gehrman PR, Perlis ML, Pack AI (2010) Problems associated with short sleep: bridging the gap between laboratory and epidemiological studies. Sleep Med Rev 14(4):239–247

    Article  PubMed  Google Scholar 

  116. Yiengprugsawan V, Banwell C, Seubsman SA, Sleigh AC (2012) Short sleep and obesity in a large national cohort of Thai adults. BMJ Open 2(1):e000561

    Article  PubMed  PubMed Central  Google Scholar 

  117. Grandner MA, Chakravorty S, Perlis ML, Oliver L, Gurubhagavatula I (2013) Habitual sleep duration associated with self-reported and objectively determined cardiometabolic risk factors. Sleep Med 15:42

    Google Scholar 

  118. Baud MO, Magistretti PJ, Petit JM (2013) Sustained sleep fragmentation affects brain temperature, food intake and glucose tolerance in mice. J Sleep Res 22(1):3–12

    Article  PubMed  Google Scholar 

  119. Karacan I, Rosenbloom A, Londono J (1973) The effect of acute fasting on sleep and the sleep-growth hormone response. Psychosomatics 14:33–37

    Article  CAS  PubMed  Google Scholar 

  120. MacFadyen UM, Oswald I, Lewis SA (1973) Starvation and human slow-wave sleep. J Appl Physiol 35(3):391–394

    CAS  PubMed  Google Scholar 

  121. Horne J (1985) Sleep function, with particular reference to sleep deprivation. Ann Clin Res 17:199–208

    CAS  PubMed  Google Scholar 

  122. Spiegel K, Leproult R, Van Cauter E (1999) Impact of sleep debt on metabolic and endocrine function. Lancet 354(9188):1435–1439

    Article  CAS  PubMed  Google Scholar 

  123. Hyun DH, Emerson SS, Jo DG, Mattson MP, de Cabo R (2006) Calorie restriction up-regulates the plasma membrane redox system in brain cells and suppresses oxidative stress during aging. Proc Natl Acad Sci U S A 103(52):19908–19912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Roky R, Chapotot F, Hakkou F, Benchekroun MT, Buguet A (2001) Sleep during Ramadan intermittent fasting. J Sleep Res 10(4):319–327

    Article  CAS  PubMed  Google Scholar 

  125. Roky R, Chapotot F, Benchekroun MT et al (2003) Daytime sleepiness during Ramadan intermittent fasting: polysomnographic and quantitative waking EEG study. J Sleep Res 12(2):95–101

    Article  PubMed  Google Scholar 

  126. Leiper JB, Molla AM, Molla AM (2003) Effects on health of fluid restriction during fasting in Ramadan. Eur J Clin Nutr 57(Suppl 2):S30–S38

    Article  PubMed  Google Scholar 

  127. Maughan RJ, Zerguini Y, Chalabi H, Dvorak J (2012) Achieving optimum sports performance during Ramadan: some practical recommendations. J Sports Sci 30(Suppl 1):S109–S117

    Article  PubMed  Google Scholar 

  128. Rinholm JE, Bergersen LH (2013) White matter lactate—does it matter? Neuroscience 276:109

    Google Scholar 

  129. Hallbook T, Lundgren J, Rosen I (2007) Ketogenic diet improves sleep quality in children with therapy-resistant epilepsy. Epilepsia 48(1):59–65

    Article  PubMed  CAS  Google Scholar 

  130. Brown AJ (2007) Low-carb diets, fasting and euphoria: Is there a link between ketosis and gamma-hydroxybutyrate (GHB)? Med Hypotheses 68(2):268–271

    Article  CAS  PubMed  Google Scholar 

  131. Johnston CS, Tjonn SL, Swan PD, White A, Hutchins H, Sears B (2006) Ketogenic low-carbohydrate diets have no metabolic advantage over nonketogenic low-carbohydrate diets. Am J Clin Nutr 83(5):1055–1061

    CAS  PubMed  Google Scholar 

  132. Bonnet MH, Gomez S, Wirth O, Arand DL (1995) The use of caffeine versus prophylactic naps in sustained performance. Sleep 18(2):97–104

    Google Scholar 

  133. Reyner LA, Horne JA (1997) Suppression of sleepiness in drivers: combination of caffeine with a short nap. Psychophysiology 34(6):721–725

    Article  CAS  PubMed  Google Scholar 

  134. Reyner LA, Horne JA (2002) Efficacy of a ‘functional energy drink’ in counteracting driver sleepiness. Physiol Behav 75(3):331–335

    Article  CAS  PubMed  Google Scholar 

  135. Hays JC, Blazer DG, Foley DJ (1996) Risk of napping: excessive daytime sleepiness and mortality in an older community population. J Am Geriatr Soc 44:693–698

    Article  CAS  PubMed  Google Scholar 

  136. Fang W, Li Z, Wu L et al (2013) Longer habitual afternoon napping is associated with a higher risk for impaired fasting plasma glucose and diabetes mellitus in older adults: results from the Dongfeng-Tongji cohort of retired workers. Sleep Med 14(10):950–954

    Article  PubMed  Google Scholar 

  137. Naska A, Oikonomou E, Trichopoulou A, Psaltopoulou T, Trichopoulos D (2007) Siesta in healthy adults and coronary mortality in the general population. Arch Intern Med 167(3):296–301

    Article  PubMed  Google Scholar 

  138. Taasan V, Block A, Boysen P, Wynne J, White C, Lindsey S (1981) Alcohol increases sleep apnea and oxygen saturation in asymptomatic men. Am J Med 71:240–245

    Article  CAS  PubMed  Google Scholar 

  139. Scrima L, Broudy M, Nay K, Cohn M (1982) Increased severity of obstructive sleep apnea after bedtime alcohol ingestion: diagnostic potential and proposed mechanism of action. Sleep 5:318–328

    Article  CAS  PubMed  Google Scholar 

  140. Remmers J (1984) Obstructive sleep apnea. A common disorder exacerbated by alcohol. Am Rev Respir Dis. 130:153–155

    CAS  PubMed  Google Scholar 

  141. Peppard PE, Austin D, Brown RL (2007) Association of alcohol consumption and sleep disordered breathing in men and women. J Clin Sleep Med 3(3):265–270

    PubMed  PubMed Central  Google Scholar 

  142. Lobo LL, Tufik S (1997) Effects of alcohol on sleep parameters of sleep-deprived healthy volunteers. Sleep 20(1):52–59

    Article  CAS  PubMed  Google Scholar 

  143. Feige B, Gann H, Brueck R et al (2006) Effects of alcohol on polysomnographically recorded sleep in healthy subjects. Alcohol Clin Exp Res 30(9):1527–1537

    Article  PubMed  Google Scholar 

  144. Huang R, Ho SY, Lo WS, Lai HK, Lam TH (2013) Alcohol consumption and sleep problems in Hong Kong adolescents. Sleep Med 14(9):877–882

    Article  PubMed  Google Scholar 

  145. Gross M, Hastey J (1975) A note of REM rebound during experimental alcohol withdrawal in alcoholics. Adv Exp Med Biol 59:509–513

    Article  CAS  PubMed  Google Scholar 

  146. Adamson J, Burdick J (1973) Sleep of dry alcoholics. Arch Gen Psychiatry 28:146–149

    Article  CAS  PubMed  Google Scholar 

  147. Mishara BL, Kastenbaum R (1974) Wine in the treatment of long-term geriatric patients in mental institutions. J Am Geriatr Soc 22(2):88–94

    Article  CAS  PubMed  Google Scholar 

  148. Morgan K, Clarke D (1997) Longitudinal trends in late-life insomnia: implications for prescribing. Age Ageing 26(3):179–184

    Article  CAS  PubMed  Google Scholar 

  149. Kripke D, Langer R, Kline L (2012) Hypnotics’ association with mortality or cancer: a matched cohort study. BMJ Open 2:e000850. doi:10.1136/bmjopen-2012-000850

  150. Lader M (2012) Benzodiazepine harm: how can it be reduced? Br J Clin Pharmacol 77:295

    Google Scholar 

  151. Baldwin DS, Aitchison K, Bateson A et al (2013) Benzodiazepines: risks and benefits. A reconsideration. J Psychopharmacol 27(11):967–971

    Article  CAS  PubMed  Google Scholar 

  152. Mura T, Proust-Lima C, Akbaraly T et al (2013) Chronic use of benzodiazepines and latent cognitive decline in the elderly: results from the Three-city study. Eur Neuropsychopharmacol 23(3):212–223

    Article  CAS  PubMed  Google Scholar 

  153. Lader M (2014) Benzodiazepine harm: how can it be reduced? Br J Clin Pharmacol 77(2):295–301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Carroll PJ (1978) The social hour for geropsychiatric patients. J Am Geriatr Soc 26(1):32–35

    Article  CAS  PubMed  Google Scholar 

  155. Din JN, Newby DE, Flapan AD (2004) Omega 3 fatty acids and cardiovascular disease—fishing for a natural treatment. Br Med J 328(7430):30–35

    Article  CAS  Google Scholar 

  156. Burgess JR, Stevens L, Zhang W, Peck L (2000) Long-chain polyunsaturated fatty acids in children with attention-deficit hyperactivity disorder. Am J Clin Nutr 71(1 Suppl):327S–330S

    CAS  PubMed  Google Scholar 

  157. Fenton WS, Dickerson F, Boronow J, Hibbeln JR, Knable M (2001) A placebo-controlled trial of omega-3 fatty acid (ethyl eicosapentaenoic acid) supplementation for residual symptoms and cognitive impairment in schizophrenia. Am J Psychiatry 158(12):2071–2074

    Article  CAS  PubMed  Google Scholar 

  158. Pradalier A, Bakouche P, Baudesson G et al (2001) Failure of omega-3 polyunsaturated fatty acids in prevention of migraine: a double-blind study versus placebo. Cephalalgia 21(8):818–822

    Article  CAS  PubMed  Google Scholar 

  159. Simopoulos AP (2002) Omega-3 fatty acids in inflammation and autoimmune diseases. J Am Coll Nutr 21(6):495–505

    Article  CAS  PubMed  Google Scholar 

  160. Huffman DM, Altena TS, Mawhinney TP, Thomas TR (2004) Effect of n-3 fatty acids on free tryptophan and exercise fatigue. Eur J Appl Physiol 92(4–5):584–591

    CAS  PubMed  Google Scholar 

  161. Schachter HM, Kourad K, Merali Z, Lumb A, Tran K, Miguelez M (2005) Effects of omega-3 fatty acids on mental health. Evid Rep Technol Assess (Summ). 116:1–11

    Google Scholar 

  162. Freeman MP, Hibbeln JR, Wisner KL et al (2006) Omega-3 fatty acids: evidence basis for treatment and future research in psychiatry. J Clin Psychiatry 67(12):1954–1967

    Article  CAS  PubMed  Google Scholar 

  163. Hooper L, Thompson RL, Harrison RA et al (2006) Risks and benefits of omega 3 fats for mortality, cardiovascular disease, and cancer: systematic review. BMJ 332(7544):752–760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Rintamäki R (2007) Mood in association with dietary nutrition intakes and sleep length. University of Kuopio, Kuopio

    Google Scholar 

  165. Kaushik M, Mozaffarian D, Spiegelman D, Manson JE, Willett WC, Hu FB (2009) Long-chain omega-3 fatty acids, fish intake, and the risk of type 2 diabetes mellitus. Am J Clin Nutr 90(3):613–620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Riediger ND, Othman RA, Suh M, Moghadasian MH (2009) A systemic review of the roles of n-3 fatty acids in health and disease. J Am Diet Assoc 109(4):668–679

    Article  CAS  PubMed  Google Scholar 

  167. Cohen LS, Joffe H, Guthrie KA et al (2013) Efficacy of omega-3 for vasomotor symptoms treatment: a randomized controlled trial. Menopause 28:193

    Google Scholar 

  168. Hall WL, Hay G, Maniou Z, Seed PT, Chowienczyk PJ, Sanders TA (2013) Effect of low doses of long chain n-3 polyunsaturated fatty acids on sleep-time heart rate variability: a randomized, controlled trial. Int J Cardiol 168(4):4439–4442

    Article  PubMed  PubMed Central  Google Scholar 

  169. Otaegui-Arrazola A, Amiano P, Elbusto A, Urdaneta E, Martinez-Lage P (2013) Diet, cognition, and Alzheimer’s disease: food for thought. Eur J Nutr 53:1

    Google Scholar 

  170. Fagioli I, Baroncini P, Ricour C, Salzarulo P (1989) Decrease of slow-wave sleep in children with prolonged absence of essential lipids intake. Sleep 12(6):495–499

    CAS  PubMed  Google Scholar 

  171. Cheruku SR, Montgomery-Downs HE, Farkas SL, Thoman EB, Lammi-Keefe CJ (2002) Higher maternal plasma docosahexaenoic acid during pregnancy is associated with more mature neonatal sleep-state patterning. Am J Clin Nutr 76(3):608–613

    CAS  PubMed  Google Scholar 

  172. Irmisch G, Schlafke D, Gierow W, Herpertz S, Richter J (2007) Fatty acids and sleep in depressed inpatients. Prostaglandins Leukot Essent Fatty Acids 76(1):1–7

    Article  CAS  PubMed  Google Scholar 

  173. Dougalis A, Lees G, Ganellin CR (2004) The sleep inducing brain lipid cis-oleamide (cOA) does not modulate serotonergic transmission in the CA1 pyramidal neurons of the hippocampus in vitro. Neuropharmacology 46(1):63–73

    Article  CAS  PubMed  Google Scholar 

  174. Fowler CJ (2004) Oleamide: a member of the endocannabinoid family? Br J Pharmacol 141(2):195–196

    Article  CAS  PubMed  Google Scholar 

  175. Urade Y, Hayaishi O (2011) Prostaglandin D2 and sleep/wake regulation. Sleep Med Rev 15(6):411–418

    Article  PubMed  Google Scholar 

  176. Roberts H (1965) The syndrome of narcolepsy and diabetogenic hyperinsulinism in the American Negro: important clinical, social and public health aspects. J Am Geriatr Soc 13:852–885

    Article  CAS  PubMed  Google Scholar 

  177. Bruck D, Armstrong S, Coleman G (1994) Sleepiness after glucose in narcolepsy. J Sleep Res 3(3):171–179

    Article  CAS  PubMed  Google Scholar 

  178. Roth B, Nevsimalova S, Sonka K, Docekal P (1986) An alternative to the multiple sleep latency test for determining sleepiness in narcolepsy and hypersomnia: polygraphic score of sleepiness. Sleep 9:243–245

    Article  CAS  PubMed  Google Scholar 

  179. Husain AM, Yancy WS Jr, Carwile ST, Miller PP, Westman EC (2004) Diet therapy for narcolepsy. Neurology 62(12):2300–2302

    Article  CAS  PubMed  Google Scholar 

  180. Schuld A, Hebebrand J, Geller F, Pollmacher T (2000) Increased body-mass index in patients with narcolepsy. Lancet 355(9211):1274–1275

    Article  CAS  PubMed  Google Scholar 

  181. Dahmen N, Bierbrauer J, Kasten M (2001) Increased prevalence of obesity in narcoleptic patients and relatives. Eur Arch Psychiatry Clin Neurosci 251(2):85–89

    Article  CAS  PubMed  Google Scholar 

  182. Poli F, Pizza F, Mignot E et al (2013) High prevalence of precocious puberty and obesity in childhood narcolepsy with cataplexy. Sleep 36(2):175–181

    Article  PubMed  PubMed Central  Google Scholar 

  183. Pizza F, Peltola H, Sarkanen T, Moghadam KK, Plazzi G, Partinen M (2014) Childhood narcolepsy with cataplexy: comparison between post-H1N1 vaccination and sporadic cases. Sleep Med 15(2):262–265

    Article  PubMed  Google Scholar 

  184. Chabas D, Foulon C, Gonzalez J et al (2007) Eating disorder and metabolism in narcoleptic patients. Sleep 30(10):1267–1273

    Article  PubMed  PubMed Central  Google Scholar 

  185. Russell VA, Oades RD, Tannock R et al (2006) Response variability in attention-deficit/hyperactivity disorder: a neuronal and glial energetics hypothesis. Behav Brain Funct 2:30

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  186. Killeen PR (2013) Absent without leave; a neuroenergetic theory of mind wandering. Front Psychol 4:373

    Article  PubMed  PubMed Central  Google Scholar 

  187. Grote L, Leissner L, Hedner J, Ulfberg J (2009) A randomized, double-blind, placebo controlled, multi-center study of intravenous iron sucrose and placebo in the treatment of restless legs syndrome. Mov Disord 24(10):1445–1452

    Article  PubMed  Google Scholar 

  188. Allen RP, Adler CH, Du W, Butcher A, Bregman DB, Earley CJ (2011) Clinical efficacy and safety of IV ferric carboxymaltose (FCM) treatment of RLS: a multi-centred, placebo-controlled preliminary clinical trial. Sleep Med 12(9):906–913

    Article  PubMed  Google Scholar 

  189. Nordlander SB (1953) Intravenous iron in treatment of restless legs. Acta Med Scand 145:453–457

    CAS  PubMed  Google Scholar 

  190. Yehuda S, Yehuda M (2006) Long lasting effects of infancy iron deficiency—preliminary results. J Neural Transm Suppl 71:197–200

    Article  CAS  Google Scholar 

  191. Dosman CF, Brian JA, Drmic IE et al (2007) Children with autism: effect of iron supplementation on sleep and ferritin. Pediatr Neurol 36(3):152–158

    Article  PubMed  Google Scholar 

  192. Kuhn E, Brodan V (1982) Changes in the circadian rhythm of serum iron induced by a 5-day sleep deprivation. Eur J Appl Physiol Occup Physiol 49(2):215–222

    Article  CAS  PubMed  Google Scholar 

  193. Walters AS, Silvestri R, Zucconi M, Chandrashekariah R, Konofal E (2008) Review of the possible relationship and hypothetical links between attention deficit hyperactivity disorder (ADHD) and the simple sleep related movement disorders, parasomnias, hypersomnias, and circadian rhythm disorders. J Clin Sleep Med 4(6):591–600

    PubMed  PubMed Central  Google Scholar 

  194. Gao X, Lyall K, Palacios N, Walters AS, Ascherio A (2011) RLS in middle aged women and attention deficit/hyperactivity disorder in their offspring. Sleep Med 12(1):89–91

    Article  PubMed  PubMed Central  Google Scholar 

  195. Plazzi G, Ferri R, Franceschini C et al (2012) Periodic leg movements during sleep in narcoleptic patients with or without restless legs syndrome. J Sleep Res 21(2):155–162

    Article  PubMed  Google Scholar 

  196. Nevsimalova S, Pisko J, Buskova J et al (2013) Narcolepsy: clinical differences and association with other sleep disorders in different age groups. J Neurol 260(3):767–775

    Article  PubMed  Google Scholar 

  197. Benarroch EE (2009) Brain iron homeostasis and neurodegenerative disease. Neurology 72(16):1436–1440

    Article  PubMed  Google Scholar 

  198. Williams R, Buchheit CL, Berman NE, LeVine SM (2012) Pathogenic implications of iron accumulation in multiple sclerosis. J Neurochem 120(1):7–25

    Article  CAS  PubMed  Google Scholar 

  199. Winick M (1984) Nutrition and brain development. Curr Concepts Nutr 13:71–86

    CAS  PubMed  Google Scholar 

  200. Morgane PJ, Austin-LaFrance R, Bronzino J et al (1993) Prenatal malnutrition and development of the brain. Neurosci Biobehav Rev 17(1):91–128

    Article  CAS  PubMed  Google Scholar 

  201. Pascual JM, Wang D, Hinton V et al (2007) Brain glucose supply and the syndrome of infantile neuroglycopenia. Arch Neurol 64:507–513

    Article  PubMed  Google Scholar 

  202. Fernstrom JD (2000) Can nutrient supplements modify brain function? Am J Clin Nutr 7(Suppl 1):1669S–1673S

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markku Partinen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this chapter

Cite this chapter

Partinen, M. (2017). Nutrition and Sleep. In: Chokroverty, S. (eds) Sleep Disorders Medicine. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-6578-6_30

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6578-6_30

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-6576-2

  • Online ISBN: 978-1-4939-6578-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics