Sleep and Immune Regulation

  • Norah Simpson
  • Monika Haack
  • Janet M. MullingtonEmail author


This chapter will review the current status of research investigating the relationship between sleep and the immune system. It will review basic human experimental research, field studies, and epidemiological and emerging intervention/clinical trial studies. Accumulating evidence suggests that insufficient sleep affects basal levels of immune and inflammatory mediators, as well as the inflammatory reactivity to stressors. Recent, more preliminary, studies have also begun to explore the bidirectionality of the sleep–immune relationship through clinical sleep intervention.


Sleep Immune Inflammation Endocrine IL-6 


  1. 1.
    Faestel PM et al (2013) Perceived insufficient rest or sleep among veterans: behavioral risk factor surveilance system 2009. J Clin Sleep Sci 9(6):577–584Google Scholar
  2. 2.
    Ishimori K (1909) True cause of sleep: a hypnogenic substance as evidenced in the brain of sleep-deprived animals. Tokyo Igakkai Zasshi 23:429–459Google Scholar
  3. 3.
    Legendre R, Pieron H (1910) Le probleme des facteurs du sommeil. Resultats d’injections vasculaires et intracerebrales de liquids insomniques. C.R. Soc Biol 68:1077–1079Google Scholar
  4. 4.
    Kornmuller A et al (1961) Neurohumoral ausgeloste schlafzustande an tieren mit gekreutzem kreislfau unter kontrolle von EEG-Ableitiungen. Naturewissenschaften 14:503–505Google Scholar
  5. 5.
    Monnier M, Hoesli L (1964) Dialysis of sleep and waking factors in blood of the rabbit. Science 146:796–798Google Scholar
  6. 6.
    Nagasaki H et al (1974) Proceedings: sleep promoting substances in the brain stem of rats. Nippon Seirigaku Sazzhi 36:293Google Scholar
  7. 7.
    Pappenheimer JR et al (1975) Extraction of sleep-promoting factor S from cerebrospinal fluid and from brains of sleep-deprived animals. J Neurophysiol 38:1299–1311PubMedGoogle Scholar
  8. 8.
    Dinges DF et al (1994) Leukocytosis and natural killer cell fucntion parallel neurbehavioral fatigue induced by 64 hours of sleep deprivation. J Clin Invest 93:1930–1939CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Frey DJ, Fleshner M, Wright KP Jr (2007) The effects of 40 hours of total sleep deprivation on inflammatory markers in healthy young adults. Brain Behav Immun 21:1050–1057Google Scholar
  10. 10.
    Moller-Levet CS et al (2013) Effects of insufficient sleep on circadian rhythmicity and expression amplitude of the human blood transcriptome. Proc Natl Acad Sci U S A 110(12):E1132-41CrossRefPubMedGoogle Scholar
  11. 11.
    Steiger A (2011) Endocrine and metabolic changes during sleep. In: Montagna P, Chokroverty S (eds) Handbook of clinical neurology, vol 98. Elsevier, pp 241–257Google Scholar
  12. 12.
    Van Cauter E, Leproult R, Kupfer DJ (1996) Effects of gender and age on the levels and circadian rhythmicity of plasma cortisol. J Clin Endocrinol Metab 81(7):2468–2473PubMedGoogle Scholar
  13. 13.
    Vgontzas AN et al (2005) IL-6 and its circadian secretion in humans. Neuroimmodulation 12(3):131–140CrossRefGoogle Scholar
  14. 14.
    Haack M, Pollmacher T, Mullington JM (2004) Diurnal and sleep-wake dependent variations of soluble TNF- and IL-2 receptiors in healthy volunteers. Brain Behav Immun 18(4):361–367CrossRefPubMedGoogle Scholar
  15. 15.
    Born J et al (1997) Effects of sleep and circadian rhythm of circulating immune cells. J Immunol 158:4454–4464PubMedGoogle Scholar
  16. 16.
    Pollmacher T et al (1996) Diurnal variations in the human rest response to endotoxin. J Infect Dis 174(5):1040–1045CrossRefPubMedGoogle Scholar
  17. 17.
    Besedovsky L et al (2014) Mineralocorticoid receptor signaling reduces numbers of circulating human naive Tcells and increases their CD62L, CCR7, and CXCR4 expression. Eur J Immunol 44(6):1759–1769CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Mathis D, Shoelson SE (2011) Foreword: immunometabolism: an emerging frontier. Nat Rev Immunol 11:81–83CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Bosy-Westphal A et al (2008) Influence of partial sleep deprivation on energy balance and insulin sensitivity in healthy women. Obes Facts 1(5):266–273CrossRefPubMedGoogle Scholar
  20. 20.
    Gonzales-Ortiz M et al (2000) Effect of sleep deprivation on insulin sensitivity and cortisol concentration in healthy subjects. Diabetes Nutr Metab 13:80–83Google Scholar
  21. 21.
    Mullington JM et al (2003) Sleep loss reduces diurnal rhythm amplitude of leptin in healhty men. J Neuroendocrinol 15:851–854CrossRefPubMedGoogle Scholar
  22. 22.
    Spiegel K et al (2004) Leptin levels are dependent on sleep duration: relationships with sympathovagal balance, carbohydrate regulation, cortisol, and thyrotropin. J Clin Endocrinol Metab 89(11):5762–5771CrossRefPubMedGoogle Scholar
  23. 23.
    Spiegel K et al (2004) Brief communication: sleep curtailment in healthy young men is associated with decreased leptin, elevated ghrelin levels, and increased hunger and appetite. Ann Intern Med 141(11):846–850CrossRefPubMedGoogle Scholar
  24. 24.
    Saijo Y et al (2004) Relationship between C-reactive protein and visceral adipose tissue in healthy Japanese subjects. Diabetes Obes Metab 6(4):249–258CrossRefPubMedGoogle Scholar
  25. 25.
    Fried SK, Bunkin DA, Greenberg AS (1998) Omental and subcutaneous adipose tissues of obese subjects release IL-6: depot differences and regulation by clucocorticoid. J Clin Endocrinol Metab 83(2):847–850PubMedGoogle Scholar
  26. 26.
    Wise J (2014) Obesity rates rise substantially worldwide. BMJ 348:g3582Google Scholar
  27. 27.
    Mozumdar A, Liguori G (2011) Persistent increase of prevalence of metabolic syndrome among U.S. adults: NHANES III to NHANES 1999–2006. Diabetes Care 34(1):216–219CrossRefPubMedGoogle Scholar
  28. 28.
    Kuhn E et al (1969) Metabolic reflection of sleep deprivation. Act Nerv Super (Praha) 11:165–174Google Scholar
  29. 29.
    Boudjeltia KZ et al (2008) Sleep restriction increases white blood cells, mainly neutrophil count, in healthy houng men: a pilot study. Vasc Health Risk Manag 4:1467–1470CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Boyum A et al (1996) The effect of strenuous exercise, calorie deficiency, and sleep deprivation on white blood cells, plasma immunoglobulins, and cytokines. Scand J Immunol 43:228–235Google Scholar
  31. 31.
    Heiser P et al (2000) White blood cells and cortisol after sleep deprivation and recovery sleep in humans. Eur Arch Psychiatry Clin Neurosci 250(1):16–23CrossRefPubMedGoogle Scholar
  32. 32.
    Irwin MR, Carrillo C, Olmstead R (2010) Sleep loss activates celluclar markers of inflammation: sex differences. Brain Behav Immun 24(1):54–57CrossRefPubMedGoogle Scholar
  33. 33.
    Meier-Ewert HK et al (2004) Effect of sleep loss on C-reactive protein, an inflammatory marker of cardiovascular risk. J Am Coll Cardiol 43(4):678–683CrossRefPubMedGoogle Scholar
  34. 34.
    Moldofsky H et al (1989) Effects of sleep deprivation on human immune functions. FASEB J 3(8):1972–1977PubMedGoogle Scholar
  35. 35.
    Shearer WT et al (2001) Soluble TNF-a receptor 1 and IL-6 plasma levels in humans subjected to the sleep deprivation model of spaceflight. J Allergy Clin Immunol 107(1):165–170CrossRefPubMedGoogle Scholar
  36. 36.
    van Leeuwen WMA et al (2009) Sleep restriction increases the risk of developing cardiovascular diseases by augmenting proinflammatory responses through IL-17 and CRP. PLoS ONE 4(2):e4589CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Vgontzas AN et al (2004) Adverse effects of modest sleep restriction on sleepiness, performance, and inflammatory cytokines. J Clin Endocrinol Metab 89(5):2119–2126CrossRefPubMedGoogle Scholar
  38. 38.
    Haack M, Sanchez E, Mullington JM (2007) Elevated inflammatory markers in response to prolonged sleep restriction and associated with increased pain experience in healthy volunteers. Sleep 30(9):1145–1152CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Agorastos A et al (2014) Circadian rhythmicity, variability and correlation of interleukin-6 levels in plasma and cerebrospinal fluid of healthy men. Psychoneuroendocrinology 44:71–82CrossRefPubMedGoogle Scholar
  40. 40.
    Haack M et al (2002) Diurnal variations of interleukin-6 plasma levels are confounded by blood drawing procedures. Psychoneuroendocrinology 27(8):921–931CrossRefPubMedGoogle Scholar
  41. 41.
    Aziz N et al (2004) Spurious temor necrosis factor-alpha and interleukin-6 production by human monocytes from blood collected in endotoxin-contaminated vacutainer blood collection tubes. Clin Chem 50(11):2215–2216CrossRefPubMedGoogle Scholar
  42. 42.
    Archer SN et al (2014) Mistimed sleep disrupts circadian regulation of the human transcriptome. Proc Natl Acad Sci U S A 111(6):E682–E691CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Lange T et al (2003) Sleep enhances the human antibody response to hepatits A vaccination. Psychsomatic Med 65(5):831–835CrossRefGoogle Scholar
  44. 44.
    Lange T et al (2011) Sleep after vaccination boosts immunological memory. J Immunol 187(1):283–290CrossRefPubMedGoogle Scholar
  45. 45.
    Cohen S et al (2009) Sleep habits and susceptibility to the common cold. Arch Intern Med 169(1):62–67CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Benedict C et al (2012) Acute sleep deprivation has no lasting effects on the human antibody titer response following a novel influenza A H1N1 virus vaccination. BMC Immunol 13:1Google Scholar
  47. 47.
    Spiegel K, Sheridan JF, Van Cauter E (2002) Effect of sleep deprivation on response to immunization. J Am Med Assoc 288(12):1471–1472CrossRefGoogle Scholar
  48. 48.
    Ford ES et al (2013) Sleep duration and body mass index and waist circumfrenece among US adults. Obesity 22(2):598–607CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Gangwisch JE (2014) A review of evidence for the link between sleep duration and hypertension. Am J Hypertens 27(10):1235–1242CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Gallicchio L, Kalesan B (2009) Sleep duration and mortality: a systematic review and meta-analysis. J Sleep Res 18(2):148–158CrossRefPubMedGoogle Scholar
  51. 51.
    Cappuccio FP et al (2010) Sleep duration and all-cause mortality: a systematic review and meta-analysis of prospective studies. Sleep 33(5):585–592CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Moraes W et al (2013) Association between body mass index and sleep duration assessed by objective methods in a representative sample of the adult population. Sleep Med 14(4):312–318CrossRefPubMedGoogle Scholar
  53. 53.
    Lauderdale DS et al (2009) Cross-sectional and longitudinal associations between objectively measured sleep duration and body mass index. Am J Epidemiol 170(7):805–813CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Taheri S et al (2007) Correlates of serum C-reactive protein (CRP)—no association with sleep duration or sleep disordered breathing. Sleep 30(8):991–996CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Liukkonen T et al (2007) C-reactive protein levels and sleep disturbances: observations based on the Northern Finland 1966 Birth Cohort study. Psychosomatic Med 69(8):756–761Google Scholar
  56. 56.
    Dowd JB, Goldman N, Weinstein M (2011) Sleep duration, sleep quality and biomarkers of inflammation in a Taiwanese population. Ann Epidemiol 21(11):799–806CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Patel SR et al (2009) Sleep duration and biomarkers of inflammation. Sleep 32(2):200–204CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Frankel BL et al (1976) Recorded and reported sleep in chronic primary insomnia. Arch Gen Psychiatry 33:615–623CrossRefPubMedGoogle Scholar
  59. 59.
    Means MK et al (2003) Accuracy of sleep perceptions among insomnia sufferers and normal sleepers. Sleep Med 4:285–296CrossRefPubMedGoogle Scholar
  60. 60.
    Lauderdale DS et al (2008) Sleep duration: How well do self-reports reflect objective measures? The CARDIA sleep study. Epidemiology 19(6):838–845CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Patel SR et al (2004) Sleep duration and biomarkers of inflammation. Sleep 32(2):200–204CrossRefGoogle Scholar
  62. 62.
    Prather AA et al (2012) Sleep and antibody response to Hepatitis B vaccination. Sleep 35(8):1063–1069PubMedPubMedCentralGoogle Scholar
  63. 63.
    Patel SR et al (2012) A prospective study of sleep duration and psneumonia risk on women. Sleep 35(1):97–101CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Vgontzas AN et al (2002) Chronic insomnia is associated with a shift of interleukin-6 and tumor necrosis factor secretion from nighttime to daytime. Metabolism 51(7):887–892CrossRefPubMedGoogle Scholar
  65. 65.
    Burgos I et al (2006) Increased nocturnal interleukin-6 excretion in patients with primary insomnia: a pilot study. Brain Behav Immun 20(3):246–253CrossRefPubMedGoogle Scholar
  66. 66.
    Laugsand LE et al (2012) Insomnia and high-sensitivity C-reactive protein: the HUNT study, Norway. Psychosomatic Med 74(5):543–553CrossRefGoogle Scholar
  67. 67.
    Vgontzas AN et al (2013) Insomnia with objective short sleep duration: the most biologically severe phenotype of the disorder. Sleep Med Rev 17:241–254CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Prather AA et al (2009) Normative variation in self-reported sleep quality and sleep debt is associated with stimulated pro-inflammatory cytokine production. Biol Psychol 82(1):12–17CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Okun ML, Coussons-Read M, Hall M (2009) Disturbed sleep is associated with increased C-reactive protein in young women. Brain Behav Immun 23(3):351–354CrossRefPubMedGoogle Scholar
  70. 70.
    Prather AA et al (2013) Gender differences in prospective associations of self-reported sleep quality with biomarkers of systemic inflammation and coagulation: findings from the heart and soul study. J Psychiatr Res 47(9):1228–1235CrossRefPubMedGoogle Scholar
  71. 71.
    Buysse DJ (2005) Insomnia state of the science: an evolutionary, evidence-based assessment. Sleep 28(9):1045–1046PubMedGoogle Scholar
  72. 72.
    Wilson SJ et al (2010) British Association for Psychopharmacology consensus statement on evidence-based treatment of insomnia, parasomnias, and circadian rhythm disorders. J Psychopharmacol 24(11):1577–1601CrossRefPubMedGoogle Scholar
  73. 73.
    Irwin MR et al (2014) Cognitive behavioral therapy vs Tai Chi for late life insomnia and inflammatory risk: a randomized controlled comparative efficacy trial. Sleep 37(9):1543–1552CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Chen HY et al (2008) Cognitive-behavioral therapy for sleep disturbance in patients undergoing peritoneal dialysis: a pilot randomized controlled trial. J Kidney Dis 52(3):314–323CrossRefGoogle Scholar
  75. 75.
    Savard S et al (2005) Randomized study on the efficacy of cognitive-behavioral therapy for insomnia secondary to breast cancer, part II: immunologic effects. J Clin Oncol 23(25):6097–6106CrossRefPubMedGoogle Scholar
  76. 76.
    Haack M et al (2013) Increasing sleep duration to lower beat-to-beat blood pressure: a pilot study. J Sleep Res 22(3):295–304CrossRefPubMedGoogle Scholar
  77. 77.
    Fragiadaki K et al (2012) Sleep disturbances and interleukin 6 receptor inhibition in rheumatoid arthritis. J Rheumatol 39(1):60–62CrossRefPubMedGoogle Scholar
  78. 78.
    Heffner KL et al (2012) Sleep disturbances and older adults’ inflammatory responses to acute stress. Am J Geriatr Psychiatry 20(9):744–752CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Norah Simpson
    • 1
  • Monika Haack
    • 2
  • Janet M. Mullington
    • 2
    Email author
  1. 1.Department of Psychiatry and Behavioral SciencesStanford University Medical CenterPalo AltoUSA
  2. 2.Neurology, Beth Israel Deaconess Medical Center and Harvard Medical SchoolBostonUSA

Personalised recommendations