Spatio-Temporal Data Stream Clustering

  • Zdravko GalićEmail author
Part of the SpringerBriefs in Computer Science book series (BRIEFSCOMPUTER)


Spatio-temporal data streams are huge amounts of data pertaining to time and position of moving objects. Mining such amount of data is a challenging problem, since the possibility to extract useful information from this peculiar kind of data is crucial in many RFIP application scenarios. Moreover, spatio-temporal data streams pose interesting challenges for their proper representation, thus making the mining process harder than for classical data. In this chapter we deal with a specific spatio-temporal data stream class, namely trajectory streams that collect data pertaining to spatial and temporal position of mobile objects.


Knowledge discovery Spatio-temporal data streams Data stream clustering Trajectory streams Trajectory clustering 


  1. 1.
    Aggarwal, C.C., Han, J., Wang, J., Yu, P.S.: A framework for clustering evolving data streams. In: VLDB. pp. 81–92 (2003).
  2. 2.
    Anagnostopoulos, A., Vlachos, M., Hadjieleftheriou, M., Keogh, E.J., Yu, P.S.: Global distance-based segmentation of trajectories. In: Eliassi-Rad, T., Ungar, L.H., Craven, M., Gunopulos, D. (eds.) Proceedings of the Twelfth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Philadelphia, PA, USA, August 20–23. pp. 34–43. ACM, New York (2006).
  3. 3.
    Andersson, M., Gudmundsson, J., Laube, P., Wolle, T.: Reporting leaders and followers among trajectories of moving point objects. GeoInformatica 12(4), 497–528 (2008).
  4. 4.
    Andrienko, G.L., Andrienko, N.V., Bak, P., Keim, D.A., Kisilevich, S., Wrobel, S.: A conceptual framework and taxonomy of techniques for analyzing movement. J. Vis. Lang. Comput. 22(3), 213–232 (2011).
  5. 5.
    Ankerst, M., Breunig, M.M., Kriegel, H., Sander, J.: OPTICS: ordering points to identify the clustering structure. In: Delis, A., Faloutsos, C., Ghandeharizadeh, S. (eds.) SIGMOD 1999, Proceedings ACM SIGMOD International Conference on Management of Data, June 1–3, 1999, Philadelphia, Pennsylvania, USA. pp. 49–60. ACM Press, New York (1999).
  6. 6.
    Ankerst, M., Breunig, M.M., Kriegel, H., Sander, J.: OPTICS: ordering points to identify the clustering structure. In: Delis, A., Faloutsos, C., Ghandeharizadeh, S. (eds.) SIGMOD 1999, Proceedings ACM SIGMOD International Conference on Management of Data, June 1–3, 1999, Philadelphia, Pennsylvania, USA. pp. 49–60. ACM Press, New York (1999).
  7. 7.
    Arumugam, S., Jermaine, C.: Closest-point-of-approach join for moving object histories. In: Liu, L., Reuter, A., Whang, K., Zhang, J. (eds.) Proceedings of the 22nd International Conference on Data Engineering, ICDE 2006, 3–8 April 2006, Atlanta, GA, USA. p. 86. IEEE Computer Society, New York (2006).
  8. 8.
    Bahmani, B., Moseley, B., Vattani, A., Kumar, R., Vassilvitskii, S.: Scalable K-Means++. PVLDB 5(7), 622–633 (2012)Google Scholar
  9. 9.
    Benkert, M., Gudmundsson, J., Hübner, F., Wolle, T.: Reporting flock patterns. Comput. Geometry 41(3), 111–125 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Cao, F., Ester, M., Qian, W., Zhou, A.: Density-based clustering over an evolving data stream with noise. In: Ghosh, J., Lambert, D., Skillicorn, D.B., Srivastava, J. (eds.) Proceedings of the Sixth SIAM International Conference on Data Mining, April 20–22, 2006, Bethesda, MD, USA. pp. 328–339. SIAM (2006).
  11. 11.
    Carneiro, C., Alp, A., de Macêdo, J.A.F., Spaccapietra, S.: Advanced data mining method for discovering regions and trajectories of moving objects: “ciconia ciconia" scenario. In: Bernard, L., Friis-Christensen, A., Pundt, H. (eds.) The European Information Society: Taking Geoinformation Science One Step Further, Proceedings of the 11th AGILE Conference, Lecture Notes in Geoinformation and Cartography, Girona, Spain, 5–8 May, 2008. pp. 201–224. Springer, Heidelberg (2008).
  12. 12.
    Chen, L., Ng, R.T.: On the marriage of lp-norms and edit distance. In: Nascimento, M.A., Özsu, M.T., Kossmann, D., Miller, R.J., Blakeley, J.A., Schiefer, K.B. (eds.) (e)Proceedings of the Thirtieth International Conference on Very Large Data Bases, Toronto, Canada, August 31–September 3 2004. pp. 792–803. Morgan Kaufmann (2004).
  13. 13.
    Costa, G., Manco, G., Masciari, E.: Dealing with trajectory streams by clustering and mathematical transforms. J. Intell. Inf. Syst. 42(1), 155–177 (2014).
  14. 14.
    Dodge, S., Weibel, R., Lautenschütz, A.K.: Towards a taxonomy of movement patterns. Inf. Vis. 7(3–4), 240–252 (2008)CrossRefGoogle Scholar
  15. 15.
    de Andrade Silva, J., Faria, E.R., Barros, R.C., Hruschka, E.R., de Carvalho, A.C.P.L.F., Gama, J.: Data stream clustering: A survey. ACM Comput. Surv. 46(1),  13 (2013).
  16. 16.
    Elnekave, S., Last, M., Maimon, O., Ben-Shimol, Y., Einsiedler, H.J., Friedman, M., Siebert, M.: Discovering regular groups of mobile objects using incremental clustering. In: 5th Workshop on Positioning, Navigation and Communication, WPNC 2008, Leibniz Universität Hannover, Hannover, Germany, March 27, 2008. pp. 197–205. IEEE, New York (2008).
  17. 17.
    Ester, M., Kriegel, H., Sander, J., Xu, X.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: Simoudis, E., Han, J., Fayyad, U.M. (eds.) Proceedings of the Second International Conference on Knowledge Discovery and Data Mining (KDD-96), Portland, Oregon, USA. pp. 226–231. AAAI Press, Massachusetts (1996).
  18. 18.
    Folino, G., Spezzano, G.: SPARROW: A spatial clustering algorithm using swarm intelligence. In: Hamza, M.H. (ed.) The 21st IASTED International Multi-Conference on Applied Informatics (AI 2003), February 10–13, 2003, Innsbruck, Austria. pp. 50–55. IASTED/ACTA Press, Canada (2003)Google Scholar
  19. 19.
    Gama, J.: Knowledge Discovery from Data Streams. Chapman and Hall/CRC Data Mining and Knowledge Discovery Series, CRC Press, Florida (2010).
  20. 20.
    Giannotti, F., Nanni, M., Pedreschi, D., Pinelli, F., Renso, C., Rinzivillo, S., Trasarti, R.: Unveiling the complexity of human mobility by querying and mining massive trajectory data. VLDB J. 20(5), 695–719 (2011).
  21. 21.
    Grosan, C., Abraham, A.: Intelligent Systems: A Modern Approach, 1st edn. Springer Publishing Company, Incorporated, Heidelberg (2011)Google Scholar
  22. 22.
    Han, J., Lee, J.G., Kamber, M.: An overview of clustering methods in geographic data analysis. In: Miller, H.J., Han, J. (eds.) Geographic Data Mining and Knowledge Discovery, 2nd edn. pp. 149–187. CRC Press, Boca Raton (2009)Google Scholar
  23. 23.
    Han, J., Kamber, M., Pei, J.: Data Mining: Concepts and Techniques, 3rd edn. Morgan Kaufmann Publishers Inc., San Francisco (2011)zbMATHGoogle Scholar
  24. 24.
    Jensen, C.S., Lin, D., Ooi, B.C.: Continuous clustering of moving objects. IEEE Trans. Knowl. Data Eng. 19(9), 1161–1174 (2007).
  25. 25.
    Jeung, H., Yiu, M.L., Jensen, C.S.: Trajectory pattern mining. In: Zheng, Y., Zhou, X. (eds.) Computing with Spatial Trajectories, pp. 143–177. Springer, Heidelberg (2011).
  26. 26.
    Jeung, H., Yiu, M.L., Zhou, X., Jensen, C.S., Shen, H.T.: Discovery of convoys in trajectory databases. PVLDB 1(1), 1068–1080 (2008).
  27. 27.
    Jeung, H., Yiu, M.L., Zhou, X., Jensen, C.S., Shen, H.T.: Discovery of convoys in trajectory databases. CoRR (2010).
  28. 28.
    Kalnis, P., Mamoulis, N., Bakiras, S.: On discovering moving clusters in spatio-temporal data. In: Medeiros, C.B., Egenhofer, M.J., Bertino, E. (eds.) Advances in Spatial and Temporal Databases, 9th International Symposium, SSTD 2005, Angra dos Reis, Brazil, August 22–24, 2005, Proceedings. Lecture Notes in Computer Science, vol. 3633, pp. 364–381. Springer (2005).
  29. 29.
    Kranen, P., Assent, I., Baldauf, C., Seidl, T.: The ClusTree: indexing micro-clusters for anytime stream mining. Knowl. Inf. Syst. 29(2), 249–272 (2011).
  30. 30.
    Lee, J., Han, J., Whang, K.: Trajectory clustering: a partition-and-group framework. In: Chan, C.Y., Ooi, B.C., Zhou, A. (eds.) Proceedings of the ACM SIGMOD International Conference on Management of Data, Beijing, China, June 12–14, 2007. pp. 593–604. ACM (2007).
  31. 31.
    Li, Z., Han, J., Ji, M., Tang, L.A., Yu, Y., Ding, B., Lee, J., Kays, R.: MoveMine: Mining moving object data for discovery of animal movement patterns. ACM TIST 2(4), 37 (2011).
  32. 32.
    Li, Z., Lee, J., Li, X., Han, J.: Incremental clustering for trajectories. In: Kitagawa, H., Ishikawa, Y., Li, Q., Watanabe, C. (eds.) Database Systems for Advanced Applications, 15th International Conference, DASFAA 2010, Tsukuba, Japan, April 1–4, 2010, Proceedings, Part II. Lecture Notes in Computer Science, vol. 5982, pp. 32–46. Springer (2010).
  33. 33.
    Liu, H., Schneider, M.: Similarity measurement of moving object trajectories. In: Proceedings of the Third ACM SIGSPATIAL International Workshop on GeoStreaming. pp. 19–22. IWGS ’12, ACM, New York, NY, USA (2012).
  34. 34.
    Lloyd, S.P.: Least squares quantization in PCM. IEEE Trans. Inf. Theory 28(2), 129–136 (1982).
  35. 35.
    Nanni, M., Pedreschi, D.: Time-focused clustering of trajectories of moving objects. J. Intell. Inf. Syst. 27(3), 267–289 (2006).
  36. 36.
    Oppenheim, A.V., Schafer, R.W.: Discrete-time Signal Processing, 3rd edn. Pearson Education Limited, Essex, UK (2009)zbMATHGoogle Scholar
  37. 37.
    Pelekis, N., Kopanakis, I., Kotsifakos, E.E., Frentzos, E., Theodoridis, Y.: Clustering trajectories of moving objects in an uncertain world. In: Wang, W., Kargupta, H., Ranka, S., Yu, P.S., Wu, X. (eds.) ICDM 2009, The Ninth IEEE International Conference on Data Mining, Miami, Florida, USA, 6–9 December 2009. pp. 417–427. IEEE Computer Society (2009).
  38. 38.
    Pelekis, N., Theodoridis, Y.: Mobility Data Management and Exploration. Springer (2014).
  39. 39.
    Püschel, M., Rötteler, M.: Fourier transform for the spatial quincunx lattice. In: Proceedings of the 2005 International Conference on Image Processing, ICIP 2005, Genoa, Italy, September 11–14, 2005. pp. 494–497. IEEE (2005).
  40. 40.
    Tang, L.A., Zheng, Y., Yuan, J., Han, J., Leung, A., Peng, W., Porta, T.F.L.: A framework of traveling companion discovery on trajectory data streams. ACM TIST 5(1), 3 (2013).
  41. 41.
    Theodoridis, S., Koutroumbas, K.: Pattern Recognition, 4th edn. Academic Press, Burlington, MA, USA (2008)zbMATHGoogle Scholar
  42. 42.
    Vieira, M.R., Tsotras, V.J.: Spatio-Temporal Databases—Complex Motion Pattern Queries. Springer Briefs in Computer Science, Springer, Heidelberg (2013).
  43. 43.
    Vlachos, M., Gunopulos, D., Kollios, G.: Discovering similar multidimensional trajectories. In: Agrawal, R., Dittrich, K.R. (eds.) Proceedings of the 18th International Conference on Data Engineering, San Jose, CA, USA, February 26—March 1, 2002. pp. 673–684. IEEE Computer Society (2002).
  44. 44.
    Wang, W., Yang, J., Muntz, R.R.: STING: A statistical information grid approach to spatial data mining. In: Jarke, M., Carey, M.J., Dittrich, K.R., Lochovsky, F.H., Loucopoulos, P., Jeusfeld, M.A. (eds.) VLDB’97, Proceedings of 23rd International Conference on Very Large Data Bases, August 25–29, 1997, Athens, Greece. pp. 186–195. Morgan Kaufmann (1997),
  45. 45.
    Wu, F., Lei, T.K.H., Li, Z., Han, J.: MoveMine 2.0: Mining object relationships from movement data. PVLDB 7(13), 1613–1616 (2014).
  46. 46.
    Yanwei, Y., Qin, W., Xiaodong, W.: Continuous clustering trajectory stream of moving objects. Commun. China 10(9), 120–129 (2013).
  47. 47.
    Yi, B., Jagadish, H.V., Faloutsos, C.: Efficient retrieval of similar time sequences under time warping. In: Urban, S.D., Bertino, E. (eds.) Proceedings of the Fourteenth International Conference on Data Engineering, Orlando, Florida, USA, February 23–27, 1998. pp. 201–208. IEEE Computer Society (1998).
  48. 48.
    Yu, Y., Wang, Q., Wang, X., Wang, H., He, J.: Online clustering for trajectory data stream of moving objects. Comput. Sci. Inf. Syst. 10(3), 1293–1317 (2013).
  49. 49.
    Zhang, T., Ramakrishnan, R., Livny, M.: BIRCH: an efficient data clustering method for very large databases. In: Jagadish, H.V., Mumick, I.S. (eds.) Proceedings of the 1996 ACM SIGMOD International Conference on Management of Data, Montreal, Quebec, Canada, June 4–6, 1996. pp. 103–114. ACM Press (1996).
  50. 50.
    Zhao, X., Xu, W.: A new measurement method to calculate similarity of moving object spatio-temporal trajectories by compact representation. Int. J. Comput. Intell. Syst. 4(6), 1140–1147 (2011).

Copyright information

© The Author(s) 2016

Authors and Affiliations

  1. 1.Faculty of Electrical Engineering and ComputingUniversity of ZagrebZagrebCroatia

Personalised recommendations