Advertisement

Introduction

  • Zdravko GalićEmail author
Chapter
Part of the SpringerBriefs in Computer Science book series (BRIEFSCOMPUTER)

Abstract

Information flow processing applications need to process a huge volume of continuous data streams. They are pushing traditional database, data warehousing and data mining technologies beyond their limits due to their massively increasing data volumes and demands for real-time processing. This chapter gives an overview of query processing in data stream management systems (DSMS) and the most influential academic prototypes, as well as available commercial products. Furthermore, this chapter also provides an outline of the basic concepts of spatio-temporal knowledge discovery from data streams, including a list of relevant data stream mining academic prototypes and commercial products.

Keywords

Data streams Data stream management systems Spatio-temporal data streams Data stream mining Knowledge discovery 

References

  1. 1.
    Abadi, D.J., Carney, D., Çetintemel, U., Cherniack, M., Convey, C., Lee, S., Stonebraker, M., Tatbul, N., Zdonik, S.B.: Aurora: a new model and architecture for data stream management. VLDB J. 12(2), 120–139 (2003)CrossRefGoogle Scholar
  2. 2.
    Abadi, D.J., Ahmad, Y., Balazinska, M., Çetintemel, U., Cherniack, M., Hwang, J.H., Lindner, W., Maskey, A., Rasin, A., Ryvkina, E., Tatbul, N., Xing, Y., Zdonik, S.B.: The design of the Borealis stream processing engine. In: CIDR. pp. 277–289 (2005)Google Scholar
  3. 3.
    Aberer, K., Franklin, M.J., Nishio, S. (eds.): In: Proceedings of the 21st International Conference on Data Engineering, ICDE 2005, 5–8 April 2005, Tokyo, Japan. IEEE Computer Society (2005)Google Scholar
  4. 4.
    Ahmad, Y., Çetintemel, U.: Data stream management architectures and prototypes. In: Liu and Özsu [39], pp. 639–643Google Scholar
  5. 5.
    Aitchison, A.: Pro Spatial with SQL Server 2012. Apress Media LLC, New York (2012)Google Scholar
  6. 6.
    de Almeida, V.T., Güting, R.H., Behr, T.: Querying moving objects in SECONDO. In: Mobile Data Management. pp. 47–51. IEEE Computer Society (2006)Google Scholar
  7. 7.
    Arasu, A., Babu, S., Widom, J.: The CQL continuous query language: semantic foundations and query execution. Int J Large Databases 15(2), 121–142 (2006)Google Scholar
  8. 8.
    Arasu, A., Babcock, B., Babu, S., Cieslewicz, J., Datar, M., Ito, K., Motwani, R., Srivastava, U., Widom, J.: STREAM: The Stanford data stream management system. Technical Report 2004-20, Stanford InfoLab (2004). http://ilpubs.stanford.edu:8090/641/
  9. 9.
    Babcock, B., Babu, S., Datar, M., Motwani, R., Widom, J.: Models and issues in data stream systems. In: Popa, L., Abiteboul, S., Kolaitis, P.G. (eds.) PODS. pp. 1–16. ACM (2002)Google Scholar
  10. 10.
    Ballard, C., Brandt, O., Devaraju, B., Farrell, D., Foster, K., Howard, C., Nicholls, P., Pasricha, A., Rea, R., Schulz, N., Shimada, T., Thorson, J., Tucker, S., Uleman, R.: IBM InfoSphere Streams: Accelerating Deployments with Analytic Accelerators. IBM (2014)Google Scholar
  11. 11.
    Bifet, A., Holmes, G., Pfahringer, B., Kranen, P., Kremer, H., Jansen, T., Seidl, T.: MOA: massive online analysis, a framework for stream classification and clustering. J. Mach. Learn. Res. Proc. Track 11, 44–50 (2010)Google Scholar
  12. 12.
    Bockermann, C.: The stream framework. http://www-ai.cs.uni-dortmund.de/SOFTWARE/streams/index.html (2015)
  13. 13.
    Bockermann, C., Blom, H.: Processing data streams with the RapidMiner streams plugin. http://www.jwall.org/streams/doc/rapidminer.html (2015)
  14. 14.
    Cai, Y.D., Clutter, D., Pape, G., Han, J., Welge, M., Auvil, L.: MAIDS: Mining alarming incidents from data streams. In: Weikum, G., König, A.C., Deßloch, S. (eds.) SIGMOD Conference. pp. 919–920. ACM (2004)Google Scholar
  15. 15.
    Chakravarthy, S., Jiang, Q.: Stream Data Processing: A Quality of Service Perspective - Modeling, Scheduling, Load Shedding, and Complex Event Processing, Advances in Database Systems, vol. 36. Kluwer (2009)Google Scholar
  16. 16.
    Chandrasekaran, S., Cooper, O., Deshpande, A., Franklin, M.J., Hellerstein, J.M., Hong, W., Krishnamurthy, S., Madden, S., Raman, V., Reiss, F., Shah, M.A.: TelegraphCQ: Continuous dataflow processing for an uncertain world. In: CIDR (2003)Google Scholar
  17. 17.
    Chen, C.X.: Spatio-temporal query languages. In: Shekhar and Xiong [54], pp. 1125–1128Google Scholar
  18. 18.
    Cugola, G., Margara, A.: Processing flows of information: From data stream to complex event processing. ACM Comput. Surv. 44(3), 15:1–15:60 (2012)Google Scholar
  19. 19.
    Frentzos, E., Pelekis, N., Ntoutsi, I., Theodoridis, Y.: Mobility, Data Mining and Privacy - Geographic Knowledge Discovery, chap. Trajectory Database Systems, pp. 151–187. Springer, Berlin (2008)Google Scholar
  20. 20.
    Galić, Z.: Geospatial Databases. Golden Marketing-Tehnička knjiga, Zagreb (2006). [in Croatian]Google Scholar
  21. 21.
    Galić, Z., Mešković, E., Križanović, K., Baranović, M.: Oceanus: a spatio-temporal data stream system prototype. In: Proceedings of the Third ACM SIGSPATIAL International Workshop on GeoStreaming. pp. 109–115. IWGS ’12, ACM, New York, NY, USA (2012). http://doi.acm.org/10.1145/2442968.2442982
  22. 22.
    Galić, Z., Baranović, M., Križanović, K., Mešković, E.: Geospatial data streams: Formal framework and implementation. Data & Knowledge Engineering 91, 1–16 (2014). http://dx.doi.org/10.1016/j.datak.2014.02.002
  23. 23.
    Gama, J.: Knowledge Discovery from Data Streams, 1st edn. Chapman & Hall/CRC, Boca Raton, FL, USA (2010)CrossRefzbMATHGoogle Scholar
  24. 24.
    Gedik, B., Andrade, H., Wu, K.L., Yu, P.S., Doo, M.: Spade: the system s declarative stream processing engine. In: Wang, J.T.L. (ed.) SIGMOD Conference. pp. 1123–1134. ACM (2008)Google Scholar
  25. 25.
    Golab, L., Özsu, M.T.: Data Stream Management.Synthesis Lectures on Data Management. Morgan Claypool Publishers, San Rafael, CA (2010)zbMATHGoogle Scholar
  26. 26.
    Gudmundsson, J., Laube, P., Wolle, T.: Computational movement analysis. In: Springer Handbook of Geographic Information, pp. 725–741. Springer-Verlag, Berlin Heidelberg (2012)Google Scholar
  27. 27.
    Güting, R.H., de Almeida, V.T., Ansorge, D., Behr, T., Ding, Z., Höse, T., Hoffmann, F., Spiekermann, M., Telle, U.: SECONDO: An extensible DBMS platform for research prototyping and teaching. In: Aberer et al. [3], pp. 1115–1116Google Scholar
  28. 28.
    Güting, R.H., Schneider, M.: Moving Objects Databases. Morgan Kaufmann, San Francisco, CA (2005)zbMATHGoogle Scholar
  29. 29.
    Hammad, M.A., Mokbel, M.F., Ali, M.H., Aref, W.G., Catlin, A.C., Elmagarmid, A.K., Eltabakh, M.Y., Elfeky, M.G., Ghanem, T.M., Gwadera, R., Ilyas, I.F., Marzouk, M.S., Xiong, X.: Nile: A query processing engine for data streams. In: Özsoyoglu, Z.M., Zdonik, S.B. (eds.) ICDE. p. 851. IEEE Computer Society (2004)Google Scholar
  30. 30.
    Han, H., il Jin, S.: A main memory based spatial DBMS: Kairos. In: Lee, S.G., Peng, Z., Zhou, X., Moon, Y.S., Unland, R., Yoo, J. (eds.) DASFAA (2). Lecture Notes in Computer Science, vol. 7239, pp. 234–242. Springer (2012)Google Scholar
  31. 31.
    Han, J., Kamber, M., Pei, J.: Data Mining: Concepts and Techniques, 3rd edn. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA (2011)zbMATHGoogle Scholar
  32. 32.
    Hansson, J., Xiong, M.: Real-time transaction processing. In: Liu and Özsu [39], pp. 2344–2348Google Scholar
  33. 33.
    InfoLab: HERMES. http://hermes-mod.java.net (2015)
  34. 34.
    Johnson, T., Lakshmanan, L.V.S., Ng, R.T.: The 3w model and algebra for unified data mining. In: El Abbadi, A., Brodie, M.L., Chakravarthy, S., Dayal, U., Kamel, N., Schlageter, G., Whang, K.Y. (eds.) VLDB. pp. 21–32. Morgan Kaufmann (2000)Google Scholar
  35. 35.
    Kang, W., Son, S.H., Stankovic, J.A.: Design, implementation, and evaluation of a QoS-aware real-time embedded database. IEEE Trans. Comput. 61(1), 45–59 (2012)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Koubarakis, M., Sellis, T.K., Frank, A.U., Grumbach, S., Güting, R.H., Jensen, C.S., Lorentzos, N.A., Manolopoulos, Y., Nardelli, E., Pernici, B., Schek, H.J., Scholl, M., Theodoulidis, B., Tryfona, N. (eds.): Spatio-Temporal Databases: The CHOROCHRONOS Approach, Lecture Notes in Computer Science, vol. 2520. Springer (2003)Google Scholar
  37. 37.
    Krämer, J., Seeger, B.: Semantics and implementation of continuous sliding window queries over data streams. ACM Trans. Database Syst. 34(1) (2009)Google Scholar
  38. 38.
    Lindström, J.: Real time database systems. In: Wah, B.W. (ed.) Wiley Encyclopedia of Computer Science and Engineering. Wiley, New York (2008)Google Scholar
  39. 39.
    Liu, L., Özsu, M.T. (eds.): Encyclopedia of Database Systems. Springer, US (2009)zbMATHGoogle Scholar
  40. 40.
    Meng, X., Chen, J.: Moving Objects Management: Models. Techniques and Applications. Tsinghua University Press and Springer-Verlag, Beijing and Berlin Heidelberg (2010)CrossRefGoogle Scholar
  41. 41.
    Miller, J., Raymond, M., Archer, J., Adem, S., Hansel, L., Konda, S., Luti, M., Zhao, Y., Teredesai, A., Ali, M.H.: An extensibility approach for spatio-temporal stream processing using Microsoft StreamInsight. In: Pfoser, D., Tao, Y., Mouratidis, K., Nascimento, M.A., Mokbel, M.F., Shekhar, S., Huang, Y. (eds.) SSTD. Lecture Notes in Computer Science, vol. 6849, pp. 496–501. Springer (2011)Google Scholar
  42. 42.
    Mokbel, M.F., Xiong, X., Hammad, M.A., Aref, W.G.: Continuous query processing of spatio-temporal data streams in PLACE. GeoInformatica 9(4), 343–365 (2005)CrossRefGoogle Scholar
  43. 43.
    Morales, G.D.F., Bifet, A.: SAMOA: scalable advanced massive online analysis. J. Mach. Learn. Res. 16, 149–153 (2015). http://dl.acm.org/citation.cfm?id=2789277
  44. 44.
    Murray, C.: Oracle Spatial and Graph Developer’s Guide. Oracle (2014)Google Scholar
  45. 45.
    Nori, A.: Mobile and embedded databases. IEEE Data Eng. Bull. 30(3), 3–12 (2007)MathSciNetGoogle Scholar
  46. 46.
    Obe, R., Hsu, L., Ramsey, P.: PostGIS in Action. Manning Publications, Greenwich, CT (2012)Google Scholar
  47. 47.
  48. 48.
    PipelineDB: PipelineDB. www.pipelinedb.com (2015)
  49. 49.
    Renso, C., Trasarti, R.: Understanding human mobility using mobility data mining. Mobility Data-Modeling. Management, and Understanding, pp. 127–147. Cambridge University Press, New York (2013)Google Scholar
  50. 50.
    Rundensteiner, E.A., Ding, L., Sutherland, T.M., Zhu, Y., Pielech, B., Mehta, N.: CAPE: Continuous query engine with heterogeneous-grained adaptivity. In: Nascimento, M.A., Özsu, M.T., Kossmann, D., Miller, R.J., Blakeley, J.A., Schiefer, K.B. (eds.) VLDB. pp. 1353–1356. Morgan Kaufmann (2004)Google Scholar
  51. 51.
    Shekhar, S., Chawla, S.: Spatial Databases-A Tour. Prentice Hall, Upper Saddle River, NJ (2003)Google Scholar
  52. 52.
    Shekhar, S., Xiong, H. (eds.): Encyclopedia of GIS. Springer, New York (2008)Google Scholar
  53. 53.
    Shekhar, S., Vatsavai, R.R., Celik, M.: Spatial and spatiotemporal data mining: Recent advances. In: Next Generation of Data Mining, (1st edn.) pp. 549–584. Chapman & Hall/CRC (2008)Google Scholar
  54. 54.
    Shekhar, S., Evans, M.R., Kang, J.M., Mohan, P.: Identifying patterns in spatial information: a survey of methods. Wiley Interdisc. Rew. Data. Min. Knowl. Discov. 1(3), 193–214 (2011)CrossRefGoogle Scholar
  55. 55.
    Stonebraker, M., Çetintemel, U.: “One size fits all”: an idea whose time has come and gone. In: Aberer et al. [3], pp. 2–11Google Scholar
  56. 56.
    Stonebraker, M., Çetintemel, U., Zdonik, S.B.: The 8 requirements of real-time stream processing. SIGMOD Record 34(4), 42–47 (2005)CrossRefGoogle Scholar
  57. 57.
  58. 58.
    Thakkar, H., Zaniolo, C.: Introducing Stream Mill: User-Guide to the Data Stream Management System, its Expressive Stream Language ESL, and the Data Stream Mining Workbench SMM. Computer Science Department, UCLA (October (2010)Google Scholar
  59. 59.
    Thakkar, H., Laptev, N., Mousavi, H., Mozafari, B., Russo, V., Zaniolo, C.: SMM: A data stream management system for knowledge discovery. In: Abiteboul, S., Böhm, K., Koch, C., Tan, K.L. (eds.) ICDE. pp. 757–768. IEEE Computer Society (2011)Google Scholar
  60. 60.
    TIBCO Software Inc.: TIBCO StreamBase. http://www.streambase.com (2016)
  61. 61.
    Trasarti, R., Giannotti, F., Nanni, M., Pedreschi, D., Renso, C.: A query language for mobility data mining. IJDWM 7(1), 24–45 (2011)Google Scholar
  62. 62.
    Vatsavai, R.R., Shekhar, S., Burk, T.E., Bhaduri, B.L.: *Miner: a spatial and spatiotemporal data mining system. In: Aref, W.G., Mokbel, M.F., Schneider, M. (eds.) GIS. p. 86. ACM (2008)Google Scholar
  63. 63.
    Xiong, X., Mokbel, M.F., Aref, W.G.: Spatio-temporal database. In: Shekhar and Xiong [54], pp. 1114–1115Google Scholar
  64. 64.
    Zhang, C.: gStream. http://powerranger.cse.unt.edu/gstream (2013)
  65. 65.
    Zhang, C., Huang, Y., Griffin, T.: Querying geospatial data streams in SECONDO. In: Agrawal, D., Aref, W.G., Lu, C.T., Mokbel, M.F., Scheuermann, P., Shahabi, C., Wolfson, O. (eds.) GIS. pp. 544–545. ACM (2009)Google Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  1. 1.Faculty of Electrical Engineering and ComputingUniversity of ZagrebZagrebCroatia

Personalised recommendations