Diagnostic Checking for Weibull Autoregressive Conditional Duration Models

  • Yao ZhengEmail author
  • Yang Li
  • Wai Keung Li
  • Guodong Li
Part of the Fields Institute Communications book series (FIC, volume 78)


We derive the asymptotic distribution of residual autocorrelations for the Weibull autoregressive conditional duration (ACD) model, and this leads to a portmanteau test for the adequacy of the fitted Weibull ACD model. The finite-sample performance of this test is evaluated by simulation experiments and a real data example is also reported.


Autoregressive conditional duration model Weibull distribution Model diagnostic checking Residual autocorrelation 

Mathematics Subject Classification (2010)

Primary 62M10 91B84 Secondary 37M10 



We are grateful to the co-editor and two anonymous referees for their valuable comments and constructive suggestions that led to the substantial improvement of this paper.


  1. 1.
    Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics, 31, 307–327.MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Engle, R. F. (1982). Autoregression conditional heteroscedasticity with estimates of the variance of U.K. inflation. Econometrica, 50, 987–1008.MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Engle, R. F., & Russell, J. R. (1998). Autoregressive conditional duration: A new model for irregularly spaced transaction data. Econometrica, 66, 1127–1162.MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Francq, C., & Zakoian, J. M. (2004). Maximum likelihood estimation of pure GARCH and ARMA-GARCH processes. Bernoulli, 10, 605–637.MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Li, W. K., & Mak, T. K. (1994). On the squared residual autocorrelations in non-linear time series with conditoinal heteroskedasticity. Journal of Time Series Analysis, 15, 627–636.MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Li, W. K., & Yu, P. L. H. (2003). On the residual autocorrelation of the autoregressive conditional duration model. Economic Letters, 79, 169–175.MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Ljung, G. M., & Box, G. E. P. (1978). On a measure of lack of fit in time series models. Biometrika, 65, 297–303.CrossRefzbMATHGoogle Scholar
  8. 8.
    McLeod, A. I., & Li, W. K. (1983). Diagnostic checking ARMA time series models using squared residual autocorrelations. Journal of Time Series Analysis, 4, 269–273.MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Tsay, R. S. (2010). Analysis of financial time series (3rd ed.). New York: Wiley.CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Statistics and Actuarial ScienceUniversity of Hong KongPokfulam RoadHong Kong

Personalised recommendations