Advertisement

Catching Uncertainty of Wind: A Blend of Sieve Bootstrap and Regime Switching Models for Probabilistic Short-Term Forecasting of Wind Speed

  • Yulia R. GelEmail author
  • Vyacheslav Lyubchich
  • S. Ejaz Ahmed
Chapter
Part of the Fields Institute Communications book series (FIC, volume 78)

Abstract

Although clean and sustainable wind energy has long been recognized as one of the most attractive electric power sources, generation of wind power is still much easier than its integration into liberalized electricity markets. One of the key obstacles on the way of wider implementation of wind energy is its highly volatile and intermittent nature. This has boosted an interest in developing a fully probabilistic forecast of wind speed, aiming to assess a variety of related uncertainties. Nonetheless, most of the available methodology for constructing a future predictive density for wind speed are based on parametric distributional assumptions on the observed wind data, and such conditions are often too restrictive and infeasible in practice. In this paper we propose a new nonparametric data-driven approach to probabilistic wind speed forecasting, adaptively combining sieve bootstrap and regime switching models. Our new bootstrapped regime switching (BRS) model delivers highly competitive, sharp and calibrated ensembles of wind speed forecasts, governed by various states of wind direction, and imposes minimal requirements on the observed wind data. The proposed methodology is illustrated by developing probabilistic wind speed forecasts for a site in the Washington State, USA.

Keywords

Renewable energy Resampling Power grid Predictive density Sustainability Nonparametrics 

Notes

Acknowledgements

The authors would like to thank the Bonneville Power Administration and the Oregon State University Energy Resources Research Laboratory, particularly, Stel Walker, for the generosity in providing the wind speed and direction data. We would like to thank William Weimin Yoo and Kimihiro Noguchi for the help at the initial stage of this project. Research of Ejaz Ahmed is supported in part by the Grant from the Natural Sciences and Engineering Research Council of Canada, and Yulia R. Gel is supported in part by the National Science Foundation Grant DMS1514808.

References

  1. 1.
    Abramowski, J., & Posorski, R. (2000). Wind energy in developing countries. DEWI Magazine, 16, 46–53.Google Scholar
  2. 2.
    Agrawal, M. R., Boland, J., & Ridley, B. (2013). Analysis of wind farm output: Estimation of volatility using high-frequency data. Environmental Modeling & Assessment, 18(4), 481–492.CrossRefGoogle Scholar
  3. 3.
    Alexiadis, M. C., Dokopoulos, P. S., & Sahsamanoglou, H. S. (1999). Wind speed and power forecasting based on spatial correlation models. IEEE Transactions on Energy Conversion, 14(3), 836–842.CrossRefGoogle Scholar
  4. 4.
    Alonso, A. M., Peña, D., & Romo, J. (2002). Forecasting time series with sieve bootstrap. Journal of Statistical Planning and Inference, 100, 1–11.MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Anastasiades, G., & McSharry, P. (2013). Quantile forecasting of wind power using variability indices. Energies, 6(2), 662–695.CrossRefGoogle Scholar
  6. 6.
    Bos, R., De Waele, S., & Broersen, P. M. T. (2002). Autoregressive spectral estimation by application of the Burg algorithm to irregularly sampled data. IEEE Transactions on Instrumentation and Measurement, 51(6), 1289–1294.CrossRefGoogle Scholar
  7. 7.
    Bühlmann, P. (1997). Sieve bootstrap for time series. Bernoulli, 3(2), 123–148.MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Bühlmann, P. (2002). Bootstraps for time series. Statistical Science, 17(1), 52–72.MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Chen, B., Gel, Y. R., Balakrishna, N., & Abraham, B. (2011). Computationally efficient bootstrap prediction intervals for returns and volatilities in ARCH and GARCH processes. Journal of Forecasting, 30(1), 51–71.MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Costa, A., Crespo, A., Navarro, J., Lizcano, G., Madsen, H., & Feitosa, E. (2008). A review on the young history of the wind power short-term prediction. Renewable and Sustainable Energy Reviews, 12(6), 1725–1744.CrossRefGoogle Scholar
  11. 11.
    Efron, B. (1982). The jackknife, the bootstrap and other resampling plans (Vol. 38). Society of Industrial and Applied Mathematics CBMS-NSF Monographs.Google Scholar
  12. 12.
    Epstein, E. S. (1969). A scoring system for probability forecasts of ranked categories. Journal of Applied Meteorology, 8(6), 985–987.CrossRefGoogle Scholar
  13. 13.
    Erdogan, E., Ma, S., Beygelzimer, A., & Rish, I. (2004). Statistical models for unequally spaced time series. In Proceedings of the Fifth SIAM International Conference on Data Mining, SIAM, pp. 626–630.Google Scholar
  14. 14.
    Gel, Y., Raftery, A. E., & Gneiting, T. (2004). Calibrated probabilistic mesoscale weather field forecasting: The geostatistical output perturbation method. Journal of the American Statistical Association, 99(467), 575–583.MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Gneiting, T., & Raftery, A. E. (2007). Strictly proper scoring rules, prediction, and estimation. Journal of the American Statistical Association, 102(477), 359–378.MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Gneiting, T., Raftery, A. E., Westveld, A. H, I. I. I., & Goldman, T. (2005). Calibrated probabilistic forecasting using ensemble model output statistics and minimum CRPS estimation. Monthly Weather Review, 133(5), 1098–1118.CrossRefGoogle Scholar
  17. 17.
    Gneiting, T., Larson, K., Westrick, K., Genton, M. G., & Aldrich, E. (2006). Calibrated probabilistic forecasting at the Stateline wind energy center: The regime-switching space-time method. Journal of the American Statistical Association, 101(475), 968–979.MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Gray, B. R., Lyubchich, V., Gel, Y. R., Rogala, J. T., Robertson, D. M., & Wei, X. (2016). Estimation of river and stream temperature trends under haphazard sampling. Statistical Methods & Applications, 25(1), 89–105.Google Scholar
  19. 19.
    Hamill, T. M. (2001). Interpretation of rank histograms for verifying ensemble forecasts. Monthly Weather Review, 129(3), 550–560.CrossRefGoogle Scholar
  20. 20.
    Hering, A. S., & Genton, M. G. (2010). Powering up with space-time wind forecasting. Journal of the American Statistical Association, 105(489), 92–104.MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Jeon, J., & Taylor, J. W. (2012). Using conditional kernel density estimation for wind power density forecasting. Journal of the American Statistical Association, 107(497), 66–79.MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Juban, J., Siebert, N., & Kariniotakis, G. N. (2007). Probabilistic short-term wind power forecasting for the optimal management of wind generation. In Proceedings of 2007 IEEE Lausanne Power Tech, pp. 683–688.Google Scholar
  23. 23.
    Kreiss, J. P., & Franke, J. (1992). Bootstrapping stationary autoregressive moving-average models. Journal of Time Series Analysis, 13(4), 297–317.MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Larson, K. A., & Westrick, K. (2006). Short-term wind forecasting using off-site observations. Wind Energy, 9(1–2), 55–62.CrossRefGoogle Scholar
  25. 25.
    Lau, A., & McSharry, P. (2010). Approaches for multi-step density forecasts with application to aggregated wind power. The Annals of Applied Statistics, 4(3), 1311–1341.MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Lyubchich, V., Gray, B. R., & Gel, Y. R. (2015). Multilevel random slope approach and nonparametric inference for river temperature, under haphazard sampling. In Machine learning and data mining approaches to climate science (pp. 137–145). Cham: Springer.Google Scholar
  27. 27.
    McCulloch, R. E., & Tsay, R. S. (1994). Statistical analysis of economic time series via Markov switching models. Journal of Time Series Analysis, 15(5), 523–539.MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Monteiro, C., Bessa, R., Miranda, V., Botterud, A., Wang, J., & Conzelmann, G. (2009). Wind power forecasting: State-of-the-art 2009. Tech. Rep. ANL/DIS-10-1, Decision and Information Sciences Division, Argonne National Laboratory (ANL).Google Scholar
  29. 29.
    Murphy, A. H. (1969). On the "ranked probability score". Journal of Applied Meteorology, 8(6), 988–989.CrossRefGoogle Scholar
  30. 30.
    Palomares-Salas, J. C., de la Rosa, J. J. G., Ramiro, J. G., Melgar, J., Agüera, A., & Moreno, A. (2009). Comparison of models for wind speed forecasting. In Proceedings of The International Conference on Computational Science (ICCS).Google Scholar
  31. 31.
    Pinson, P. (2012). Very-short-term probabilistic forecasting of wind power with generalized logit-normal distributions. Journal of the Royal Statistical Society: Series C (Applied Statistics), 61(4), 555–576.MathSciNetCrossRefGoogle Scholar
  32. 32.
    Pinson, P. (2013). Wind energy: Forecasting challenges for its operational management. Statistical Science, 28(4), 564–585.MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Pinson, P., & Kariniotakis, G. (2010). Conditional prediction intervals of wind power generation. IEEE Transactions on Power Systems, 25(4), 1845–1856.CrossRefGoogle Scholar
  34. 34.
    Pinson, P., & Madsen, H. (2012). Adaptive modelling and forecasting of offshore wind power fluctuations with Markov-switching autoregressive models. Journal of Forecasting, 31(4), 281–313.MathSciNetCrossRefGoogle Scholar
  35. 35.
    Politis, D. N. (2003). The impact of bootstrap methods on time series analysis. Statistical Science, 18(2), 219–230.MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Tascikaraoglu, A., & Uzunoglu, M. (2014). A review of combined approaches for prediction of short-term wind speed and power. Renewable and Sustainable Energy Reviews, 34, 243–254.CrossRefGoogle Scholar
  37. 37.
    Wald, M. L. (2008). The energy challenge: Wind energy bumps into power grid’s limits. New York: New York Times.Google Scholar
  38. 38.
    Wan, C., Xu, Z., Pinson, P., Dong, Z. Y., & Wong, K. P. (2014). Optimal prediction intervals of wind power generation. IEEE Transactions on Power Systems, 29(3), 1166–1174.CrossRefGoogle Scholar
  39. 39.
    Wang, X., Guo, P., & Huang, X. (2011). A review of wind power forecasting models. Energy Procedia, 12, 770–778.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Yulia R. Gel
    • 1
    Email author
  • Vyacheslav Lyubchich
    • 2
  • S. Ejaz Ahmed
    • 3
  1. 1.University of Texas at DallasRichardsonUSA
  2. 2.University of Maryland Center for Environmental ScienceCambridgeUSA
  3. 3.Brock UniversitySaint CatharinesCanada

Personalised recommendations