Skip to main content

Dietary Phosphorus and Bone Disease

  • Chapter
  • First Online:
  • 755 Accesses

Part of the book series: Nutrition and Health ((NH))

Abstract

The intake of phosphorus from foods, both inorganic and organic sources, may exert an adverse effect on the homeostatic regulation of calcium as well as of phosphate if it is too high or too low. This effect is especially true when the ratio of dietary calcium to dietary phosphorus is below 0.5–1 or greater than 1.5–1. These skewed dietary ratios stimulate hormonal responses of parathyroid hormone (PTH) and fibroblast growth factor-23 (FGF-23) that result from altered serum concentrations of ionic calcium (Ca2+) and ionic phosphate (Pi2−). Skeletal responses to these hormones result in changes in bone, both cortical and cancellous, that may contribute to suboptimal structure and function. When phosphorus intake is too high, phosphate-induced bone loss may if the abnormal dietary intake pattern becomes prolonged; these conditions are referred to as hyperparathyroid-induced osteopenia or osteoporosis. High phosphorus intakes are of less concern in those individuals with reasonably healthy renal function because of the normal responses of FGF-23 and PTH that promptly act following meals. In those with declining renal function, as well as in chronic renal failure, concerns of bone loss from high phosphate intakes remain.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Moshfegh AJ, Goldman J, Ahuja JK, et al. What we eat in America. USDA/Agricultural Research Service. U.S. Government; 2009.

    Google Scholar 

  2. Chapuy M-C, Arlot ME, Duboeuf F, et al. Vitamin D3 and calcium to prevent fractures in elderly women. New Engl J Med. 1992;327:1627–37.

    Article  Google Scholar 

  3. Ontjes D. Chapter 6. Hormone actions in the regulation of calcium and phosphorus metabolism. In: Anderson JJB, et al., editors. Diet, nutrients, and bone health. Boca Raton: CRC Press; 2012.

    Google Scholar 

  4. Bonewald LF. The amazing osteocyte. J Bone Miner Res. 2011;26:229–38.

    Article  CAS  PubMed  Google Scholar 

  5. Juppner H, Wolf W, Slusky IB. FGF-23: more than a regulator of renal phosphate handling. J Bone Miner Res. 2010;25:2091–7.

    Article  CAS  PubMed Central  Google Scholar 

  6. Quarles LD. Skeletal secretion of FGF-23 regulates phosphate and vitamin D metabolism. Nat Rev Endocrinol. 2012;8:276–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Garner SC, Anderson JJB. Chapter 4: Skeletal tissues and mineralization. In: Anderson JJB et al., editors. Diet, nutrients, and bone health. Boca Raton: CRC Press; 2012.

    Google Scholar 

  8. Anderson JJB. Potential health concerns of dietary phosphorus: cancer, obesity, and hypertension. Anna N Y Acad Sci. 2013;1301:1–8.

    Article  CAS  Google Scholar 

  9. Dempster DW. New concepts in bone remodeling. In: Seibel MJ, Robins SP, Bilezikian JP, editors. Dynamics of bone and cartilage metabolism. San Diego: Academic Press; 1999. p. 261–73.

    Google Scholar 

  10. Silverberg SJ, Shane E, Clemens TL, et al. The effect of oral phosphate administration on major indices of skeletal metabolism in normal subjects. J Bone Miner Res. 1986;1:383–8.

    Article  CAS  PubMed  Google Scholar 

  11. Moe SM, Zidehsarai MP, Chambers MA, et al. Vegetarian compared with meat dietary protein source and phosphorus homeostasis in chronic kidney disease. Clin J Am Soc Nephrol. 2011;6:257–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Berndt T, Kumar R. Novel mechanisms in the regulation of phosphorus homeostasis. Phys Chem Chem Phys. 2008;24:17–25.

    Google Scholar 

  13. Albright F, Bauer W, Claflin D, et al. Studies in parathyroid physiology. III. The effect of phosphate ingestion in clinical hyperparathyroidism. J Clin Invest. 1932;11:411–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ben-Dov IZ, Galitzer H, Lavi-Moshayoff V, et al. The parathyroid is a target organ for FGF23 in rats. J Clin Invest. 2007;117:4003–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Gutierrez O, Isakova T, Rhee E, et al. Fibroblast growth factor-23 mitigates hyperphosphatemia but accentuates calcitriol deficiency in chronic kidney disease. J Am Soc Nephrol. 2005;16:2205–15.

    Article  CAS  PubMed  Google Scholar 

  16. Calvo MS, Park YK. Changing phosphorus content of the U.S. diet: potential for adverse effects on bone. J Nutr. 1996;126(Suppl):1168S–80.

    CAS  PubMed  Google Scholar 

  17. Harnack L, Stang J, Story M. Drink consumption among US children and adolescents: nutritional consequences. J Am Diet Assoc. 1999;99:436–41.

    Article  CAS  PubMed  Google Scholar 

  18. Uribarri J, Calvo MS. Hidden sources of phosphorus in the typical American diet. Does it matter in nephrology? Semin Dial. 2003;16:186–8.

    Article  PubMed  Google Scholar 

  19. Calvo MS, Uribarri J. Public health impact of dietary phosphorus excess on bone and cardiovascular health in the general population. Am J Clin Nutr. 2013;98:6–15.

    Article  CAS  PubMed  Google Scholar 

  20. Adatorwovor R, Roggenkamp K, Anderson JJB. Intakes of calcium and phosphorus and calculated calcium-to-phosphorus ratios of older adults: NHANES 2005–2006 data. Nutrients. 2015;7:9633–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Institute of Medicine. Dietary reference intakes: calcium and vitamin D. Washington, DC: The National Academies Press; 2011.

    Google Scholar 

  22. Reiss E, Canterbury JM, Bercovitz MA, Kaplan EL. The role of phosphate in the secretion of parathyroid hormone in man. J Clin Invest. 1970;49:146–9.

    Article  Google Scholar 

  23. Laflamme GH, Jowsey J. Bone and soft tissue changes with oral phosphate supplements. J Clin Invest. 1972;52:2834–40.

    Article  Google Scholar 

  24. Goldsmith RS, Jowsey J, Dube WJ, et al. Effects of phosphorus supplementation on serum parathyroid hormone and bone morphology in osteoporosis. J Clin Endocrinol Metab. 1976;43:523–32.

    Article  CAS  PubMed  Google Scholar 

  25. Calvo MS, Kumar R, Heath III H. Elevated secretion and action of parathyroid hormone in young adults ingesting high phosphorus, low calcium foods assembled from ordinary foods. J Clin Endocrinol Metab. 1988;66:823–9.

    Article  CAS  PubMed  Google Scholar 

  26. Calvo MS, Kumar R, Heath III H. Persistently elevated parathyroid hormone secretion and action in young women after four weeks of ingesting high phosphorus, low calcium diets. J Clin Endocrinol Metab. 1990;70:1334–40.

    Article  CAS  Google Scholar 

  27. Brixen K, Nielsen HK, Charles P, Mosekilde L. Effects of a short course of oral phosphate treatment on serum parathyroid hormone (1–84) and biochemical markers of bone turnover: a dose–response study. Calcif Tissue Int. 1992;51:276–81.

    Article  CAS  PubMed  Google Scholar 

  28. Karkkainen M, Lamberg-Allardt C. An acute intake of phosphate increases parathyroid hormone secretion and inhibits bone formation in young women. J Bone Miner Res. 1996;11:1905–12.

    Article  CAS  PubMed  Google Scholar 

  29. Kemi VE, Rita HJ, Karkkainen MUM, et al. Habitual high phosphorus intakes and foods with phosphate additives negatively affect serum parathyroid hormone concentration: a cross-sectional study on healthy premenopausal women. Publ Health Nutr. 2009;12:1885–92.

    Article  Google Scholar 

  30. Kemi VE, Karkkainen MUM, Hannu J, et al. Low calcium:phosphorus ratio in habitual diets affects serum parathyroid hormone concentration and calcium metabolism in healthy women with adequate calcium intake. Br J Nutr. 2010;103:561–8.

    Article  CAS  PubMed  Google Scholar 

  31. Whalen JP. Lessons from the animal kingdom. Clin Imaging. 2010;34:409–10. [Editorial].

    Article  PubMed  Google Scholar 

  32. De Boer IH, Rue TC, Kestenbaum B. Serum phosphorus concentrations in the Third National Health and Nutrition Examination Survey (NHANES III). Am J Kidney Dis. 2009;53:399–407.

    Article  PubMed  Google Scholar 

  33. Giachelli CM. The emerging role of phosphate in vascular calcification. Kidney Int. 2009;75:890–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bolland MJ, Barber PA, Doughty RN, et al. Vascular events in healthy older women receiving calcium supplementation: randomized controlled trial. BMJ. 2008;336:262–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Prentice RL, Pettinger MB, Jackson RD, et al. Health risks and benefits from calcium and vitamin D supplementation: women’s health initiative clinical trial and cohort study. Osteoporos Int. 2013;24:567–80.

    Article  CAS  PubMed  Google Scholar 

  36. Bailey RL, Dodd KW, Goldman JA, et al. Estimation of total usual calcium and vitamin D intakes in the United States. J Nutr. 2010;140:817–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Barger-Lux MJ, Heaney RP. Effects of calcium restriction on metabolic characteristics of premenopausal women. J Clin Endocrinol Metab. 1993;76:103–10107.

    CAS  PubMed  Google Scholar 

  38. Anderson JJB, Adatorwovor R, Roggenkamp K, Suchindran CM. Lack of influence of calcium-to-phosphorus ratio on hip and lumbar bone mineral density in older Americans: NHANES 2005–2006 cross-sectional data. J Clin Endocrinol Metab.

    Google Scholar 

  39. Iida-Klein A, Lu SS, Kapadia R, et al. Short-term continuous infusion of human parathyroid 1–34 fragment is catabolic with decreased trabecular connectivity density accompanied by hypercalcemia in C57BL/J6 mice. J Endocrinol. 2005;186:549–57.

    Article  CAS  PubMed  Google Scholar 

  40. Pettifor JM, Marie PJ, Sly MR, et al. The effect of differing dietary calcium and phosphorus contents on mineral metabolism and bone histomorphometry in young vitamin-D replete baboons. Calcif Tissue Int. 1984;36:668–76.

    Article  CAS  PubMed  Google Scholar 

  41. Braithwaite V, Jarjou LMA, Goldberg GR, et al. Follow-up study of Gambian children with rickets-like bone deformities and elevated plasma FGF23: possible aetiologic factors. Bone. 2012;50:218–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Cosman F, Morgan DC, Nieves JW, et al. Resistance to bone resorbing effects of PTH in black women. J Bone Miner Res. 1997;12:958–66.

    Article  CAS  PubMed  Google Scholar 

  43. Cosman F, Nieves J, Dempster D, Lindsay R. Vitamin D economy in blacks. J Bone Miner Res. 2007;22 Suppl 2:V34–8.

    Article  CAS  PubMed  Google Scholar 

  44. Bell RR, Draper HH, Tzeng DYM, et al. Physiologic response of human adults to foods containing phosphate additives. J Nutr. 1977;107:42–50.

    CAS  PubMed  Google Scholar 

  45. Krook L, Lowe JL. Nutritional secondary hyperparathyroidism in the horse. Pathol Vet. 1964;1 Suppl 1:1–98.

    Google Scholar 

  46. Saville PD, Krook L, Gustafsson PO, et al. Nutritional secondary hyperparathyroidism in a dog. Morphologic and radioisotope studies with treatment. Cornell Vet. 1969;59:155–67.

    CAS  PubMed  Google Scholar 

  47. Krook L, Lutwak L, Henrikson PT, et al. Reversibility of nutritional osteoporosis. Physico-chemical data on bones from an experimental study of dogs. J Nutr. 1971;101:233–46.

    CAS  PubMed  Google Scholar 

  48. Krook L, Barrett RB, Usui K, Wolfe RE. Nutritional secondary hyperparathyroidism in the cat. Cornel Vet. 1963;53:224–40.

    CAS  Google Scholar 

  49. Sie T-L, Draper HH, Bell RR. Hypocalcemia, hyperparathyroidism and bone resorption in rats induced by dietary phosphate. J Nutr. 1974;104:1195–201.

    CAS  PubMed  Google Scholar 

  50. Huttunen MM, Tillman I, Viljakainen HT, et al. High dietary phosphate intake reduces bone strength in the growing rat skeleton. J Bone Miner Res. 2007;21:83–92.

    Google Scholar 

  51. Krook L, Barrett RB. Simian bone disease—a secondary hyperparathyroidism. Cornell Vet. 1962;52:459–92.

    CAS  PubMed  Google Scholar 

  52. Jowsey J, Reiss E, Canterbury JM. Long-term effects of high phosphate intake on parathyroid hormone levels and bone metabolism. Acta Orthop Scand. 1974;45:801–8.

    Article  CAS  PubMed  Google Scholar 

  53. Anderson MP, Hunt RD, Griffiths HF, et al. Long-term effect of low dietary calcium-phosphate ratio on the skeleton of Cebus albifrons monkeys. J Nutr. 1977;107:834–9.

    CAS  PubMed  Google Scholar 

  54. Wesseling K, Bakkaloglu S, Salusky I. Chronic kidney disease mineral and bone disorder in children. Pediatr Nephrol. 2008;23:195–207.

    Article  PubMed  Google Scholar 

  55. Anderson JJB, Klemmer PJ, Sell Watts ML, Garner SC, Calvo MS. Chapter 30. Phosphorus. In: Bowmn BA, Russell RM, editors. Present knowledge in nutrition. 9th ed. Washington, DC: ILSI Press/International Life Sciences Institute; 2006.

    Google Scholar 

Download references

Acknowledgments

Comments on this manuscript by Sanford C. Garner and Philip J. Klemmer are greatly appreciated. We also thank Liza Cahoon of the UNC Health Sciences Laboratory for her assistance with references.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John J. B. Anderson PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this chapter

Cite this chapter

Anderson, J.J.B., Dempster, D.W. (2017). Dietary Phosphorus and Bone Disease. In: Gutiérrez, O., Kalantar-Zadeh, K., Mehrotra, R. (eds) Clinical Aspects of Natural and Added Phosphorus in Foods. Nutrition and Health. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-6566-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6566-3_15

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-6564-9

  • Online ISBN: 978-1-4939-6566-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics