Skip to main content

Cellular and Molecular Aging

  • Chapter
  • First Online:
  • 1488 Accesses

Abstract

As a clinical researcher whose area of expertise is Geriatric Pelvic Medicine, the physical changes that go along with increasing age is incredibly interesting to me. However, from a more practical perspective, the biology of aging, although fascinating, is not something that I would be pushed to address in a routine clinical or administrative situation. All that notwithstanding, questions, presumptions, and theories surrounding the definition of aging are inescapable. In fact, more often than I like to admit, I will find myself getting side tracked and drifting off into deep thought about what “aging really means,” or what patients do I consider “old”? Are they really “old”? Which ones might I consider “young” and compare my assessments to their actual chronological age in years? Perhaps, the most frustrating piece of all, is that, almost invariably, after I come out of my intensely contemplative trance on” “aging,” that I end up with more questions than answers.

with Introduction by David A. Gordon.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Cutler RG. Evolutionary perspective of human longevity. In: Hazzard WR, Andres R, Bierman EL, et al., editors. Principles of geriatric medicine and gerontology. 2nd ed. New York: McGraw-Hill; 1985. p. 16.

    Google Scholar 

  2. Kung HC, Hoyert DL, Xu JQ, Murphy SL. Deaths: final data for 2005, vol. 56. Hyattsville: National Center for Health Statistics; 2008.

    Google Scholar 

  3. Perls TT, Alpert L, Fretts RC. Middle-aged mothers live longer. Nature. 1997;389(6647):133.

    Article  CAS  PubMed  Google Scholar 

  4. Yeap BB. Are declining testosterone levels a major risk factor for ill-health in aging men? Int J Import Res. 2008;21(1):24–36.

    Article  Google Scholar 

  5. Sohal RS, Weindruch R. Oxidative stress, calorie restriction, and aging. Science 1996;273(5271):59–63.

    Google Scholar 

  6. Yu BP, Masoro EJ, McMahan CA. Nutritional influence on aging of Fischer 344 rats: I. Physical, metabolic and longevity characteristics. J Gerontol. 1985;40(6):657–70.

    Article  CAS  PubMed  Google Scholar 

  7. McCarter R, Masoro FJ, Yu IP. Does food restriction retard aging by reducing the metabolic rate? Am J Physiol. 1985;248(4 Pt 1):E488–90.

    CAS  PubMed  Google Scholar 

  8. Lefevere M, Redman LM, Heibronn LK, et al. Calorie restriction alone with exercise improves CVD risk in healthy nonobese individuals. Atheroscirosis 2009;203(1):206–16.

    Google Scholar 

  9. Shock NW, Greation RC, Andres R, et al. editors. Normal human aging: the Baltimore longitudinal study of aging. Washington: U.S. Department of Health and Human Services; 1981.

    Google Scholar 

  10. Lefevre M, Redman LM, Heilbronn LK, et al. Caloric restriction and with exercise improves CVD risk in healthy non-obese individuals. Atherosclerosis. 2009;203(1):206–13.

    Article  CAS  PubMed  Google Scholar 

  11. Gompertz B. On the nature of the function expressive of the law of human mortality and on a new mode of determining life contingencies. Philos Trans R Soc Lond. 1825;115:513.

    Article  Google Scholar 

  12. Shock NW, Greulich RC, Andres R, et al., editors. Normal human aging: the Baltimore longitudinal study of aging. Washington: U.S. Department of Health and Human Services; 1984.

    Google Scholar 

  13. Riggs BL, Melton III LJ. Involutional osteoporosis. N Engl J Med. 1986;314(26):1676–86.

    Article  CAS  PubMed  Google Scholar 

  14. Florini JR, editor. Composition and function of cells and tissues. In: Handbook of biochemistry in aging. Boca Raton: CRC Press; 1981.

    Google Scholar 

  15. Kirkwood TB. Human senescence. Bioessays. 1996;18(12):1009–16.

    Article  CAS  PubMed  Google Scholar 

  16. Kaeberlin M, Mcvey M, Guarente L. Using yeast to discover the fountain of youth. Sci Aging Knowl Environ. 2001.

    Google Scholar 

  17. Dudas SP, Arking R. A coordinate upregulation of antioxidant gene activities is associated with the delayed onset of senescence in a long-lived strain of Drosophilia. J Gerontol A Biol Sci Med Sci. 1995;50(3):B117–27.

    Article  CAS  PubMed  Google Scholar 

  18. Strehler BL. Time, cells, and aging. 2nd ed. New York: Academic; 1977.

    Google Scholar 

  19. Bjorksten J. Cross linkage and the aging process. In: Rothstein M, editor. Theoretical aspects of aging. New York: Academic; 1974. p. 43.

    Google Scholar 

  20. Kohn RR. Aging of animals: possible mechanisms. In: Principles of mammalian aging. 2nd ed. Englewood Cliffs: Prentice-Hall; 1978.

    Google Scholar 

  21. Herbig U, Ferreira M, Condel L, Carey D, Sedivy JM. Cellular senescence in aging primates. Science. 2006;311(5765):1257.

    Article  CAS  PubMed  Google Scholar 

  22. Jeyapalan JC, Ferreira M, Sedivy JM, Herbig U. Accumulation of senescent cells in mitotic tissue of aging primates. Mech Ageing Dev. 2007;128(1):36–44.

    Article  CAS  PubMed  Google Scholar 

  23. Sedelnikova OA, Horikawa I, Zimonjic DB, Popescu NC, Bonner WM, Barrett JC. Senescing human cells and ageing mice accumulate DNA lesions with unrepairable double-strand breaks. Nat Cell Biol. 2004;6(2):168–70.

    Article  CAS  PubMed  Google Scholar 

  24. Migliaccio E, Giorgio M, Mele S, et al. The p66shc adaptor protein controls oxidative stress response and life span in mammals. Nature. 1999;402(6759):309–13.

    Article  CAS  PubMed  Google Scholar 

  25. De Benedictis G, Rose G, Carrieri G, et al. Mitochondrial DNA inherited variants are associated with successful aging and longevity in humans. FASEB J. 1999;13(12):1532–6.

    PubMed  Google Scholar 

  26. Ozawa T, Tanaka M, Ikebe S, Ohno K, Kondo T, Mizuno Y. Quantitative determination of deleted mitochondrial DNA relative to normal DNA in parkinsonian striatum by a kinetic PCR analysis. Biochem Biophys Res Commun. 1990;172(2):483–9.

    Article  CAS  PubMed  Google Scholar 

  27. Poulton J, Deadman ME, Ramacharan S, Gardiner RM. Germ-line deletions of mtDNA in mitochondria] myopathy. Am J Hum Genet. 1991;48(4):649–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Katsumata K, Hayakawa M, Tanaka M, Sugiyama S, Ozawa T. Fragmentation of human heart mitochondrial DNA associated with premature aging. Biochem Biophys Res Commun. 1994;202(1):102–10.

    Article  CAS  PubMed  Google Scholar 

  29. Ozawa T. Mitochondrial cardiomyopathy. Herz 1994;19(2):105–118, 125.

    Google Scholar 

  30. Trifunovic A, Wredenberg A, Falkenberg M, et al. Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature. 2004;429(6990):417–23.

    Article  CAS  PubMed  Google Scholar 

  31. Hart RW, Setlow RB. Correlation between deoxyribonucleic acid excision-repair and life-span in a number of mammalian species. Proc Natl Acad Sci U S A. 1974;71(6):2169–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Intano GW, Cho EJ, McMahan CA, Walter CA. Age-related -base excision repair activity in mouse brain and liver nuclear extracts. J Gerontol A Biol Sci Med Sci. 2003;58(3):B205–11.

    Article  Google Scholar 

  33. Hanawalt PC, Gee P, Ho L. DNA repair in differentiating cells in relation to aging. In: Finch CE, Johnson TE, editors. Molecular biology of aging. UCLA symposia on molecular and cellular biology, vol. 123. New York: Alan R. Liss; 1990. p. 45.

    Google Scholar 

  34. Lu T, Pan Y, Kao S-Y, et al. Gene regulation and DNA damage in the ageing human brain. Nature. 2004;429(6994):883–91.

    Article  CAS  PubMed  Google Scholar 

  35. Orgel LE. The maintenance of the accuracy of protein synthesis and its relevance to aging. Proc Natl Acad Sci U S A. 1963;49:517.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kristal BS, Yu BP. An emerging hypothesis: synergistic induction of aging by free radicals and Maillard reactions. J Gerontol. 1992;47(4):B107–14.

    Google Scholar 

  37. Brown WT. Genetic diseases of premature aging as models of senescence. Annu Rev Gerontol Geriatr. 1990;10:23–42.

    CAS  PubMed  Google Scholar 

  38. Stevnsner T, Muftuoglu M, Aamann MD, Bohr VA. The role of Cockayne Syndrome group B (CSB) protein in base excision repair and aging. Mech Ageing Dev. 2008;129(7–8):441–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Cristofalo VJ, Allen RG, Pignolo RJ, Martin BG, Beck JC. Relationship between donor age and the replicative lifespan of human cells in culture: a reevaluation. Proc Natl Acad Sci U S A. 1998;95(18):10614–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ressler S, Bartkova J, Niederegger H, et al. p16INK4A is a robust in vivo biomarker of cellular aging in human skin. Aging Cell. 2006;5(5):379–89.

    Article  CAS  PubMed  Google Scholar 

  41. Ozer HL, Banga SS, Dasgupta T, et al. SV40-mediated immortalization of human fibroblasts. Exp Gerontol. 1996;31(1–2):303–10.

    Article  CAS  PubMed  Google Scholar 

  42. Alcorta DA, Xiong Y, Phelps D, Hannon G, Beach D, Barrett JC. Involvement of the cyclin-dependent kinase inhibitor p16 (INK4a) in replicative senescence of normal human fibroblasts. Proc Natl Acad Sci U S A. 1996;93(24):13742–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Reznikoff CA, Yeager TR, Belair CD, Savelieva E, Puthenveettil JA, Stadler WM. Elevated p16 at senescence and loss of p16 at immortalization in human papillomavirus 16 E6, but not E7, transformed human uroepithelial cells. Cancer Res. 1996;56(13):2886–90.

    CAS  PubMed  Google Scholar 

  44. Dechat T, Shimi T, Adam SA, et al. Alterations in mitosis and cell cycle progression caused by a mutant lamin A known to accelerate human aging. Proc Natl Acad Sci U S A. 2007;104(12):4955–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Liu B, Wang J, Chan KM, et al. Genomic instability in laminopathy-based premature aging. Nat Med. 2005;11(7):780–5.

    Article  CAS  PubMed  Google Scholar 

  46. Melov S, Hinerfeld D, Esposito L, Wallace DC. Multi-organ characterization of mitochondrial genomic rearrangements in ad libitum and caloric restricted mice show striking somatic mitochondrial DNA rearrangements with age. Nucleic Acids Res. 1997;25(5):974–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Larsen PL, Clarke CF. Extension of life-span in Caenorhabditis elegans by a diet lacking coenzyme Q. Science. 2002;295(5552):120–3.

    Article  CAS  PubMed  Google Scholar 

  48. Civitarese AE, Carling S, Heilbronn LK, et al. Calorie restriction increases muscle mitochondrial biogenesis in healthy humans. PLoS Med. 2007;4(3):e76.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Walburg HE. Radiation-induced life-shortening and premature aging. Adv Radiat Biol. 1975;5:145.

    Article  Google Scholar 

  50. Capri M, Salvioli S, Sevini F, et al. The genetics of human longevity. Ann NY Acad Sci. 2006;1067:252–63.

    Article  CAS  PubMed  Google Scholar 

  51. Serrano M, Lin AW, McCurrach ME, Beach D, Lowe SW. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell. 1997;88(5):593–602.

    Article  CAS  PubMed  Google Scholar 

  52. Severino J, Allen RG, Balin S, Balin A, Cristofalo VJ. Is beta-galactosidase staining a marker of senescence in vitro and in vivo? Exp Cell Res. 2000;257(1):162–71.

    Article  CAS  PubMed  Google Scholar 

  53. Litaker JR, Pan J, Cheung Y, et al. Expression profile of senescence-associated beta-galactosidase and activation of telomerase in human ovarian surface epithelial cells undergoing immortalization. Int J Oncol. 1998;13(5):951–6.

    CAS  PubMed  Google Scholar 

  54. Untergasser G, Gander R, Rumpold H, Heinrich E, Plas E, Berger P. TGF-beta cytokines increase senescence-associated betagalactosidase activity in human prostate basal cells by supporting differentiation processes, but not cellular senescence. Exp Gerontol. 2003;38(10):1179–88.

    Article  CAS  PubMed  Google Scholar 

  55. Harley CB. Telomere loss: mitotic clock or genetic timebomb? Mutat Res. 1991;256(2–6):271–82.

    Article  CAS  PubMed  Google Scholar 

  56. Bryan TM, Englezou A, Gupta J, Bacchetti S, Reddel RR. Telomere elongation in immortal human cells without detectable telomerase activity. EMBO J. 1995;14(17):4240–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Broccoli D, Young JW, de Lange T. Telomerase activity in normal and malignant hematopoietic cells. Proc Natl Acad Sci U S A. 1995;92(20):9082–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Woo J, Tang NL, Suen E, Leung JC, Leung PC. Telomeres and frailty. Mech Ageing Dev. 2008;129(l1):642–8.

    Article  CAS  PubMed  Google Scholar 

  59. Rudolph KL, Chang S, Lee HW, et al. Longevity, stress response, and cancer in aging telomerase-deficient mice. Cell. 1999;96(5):701–12.

    Article  CAS  PubMed  Google Scholar 

  60. Lunetta KL, D’Agostiono Sr RB, Karasik D, et al. Genetic correlates of longevity and selected age –related phenotypes: a genome-wide association study in the Framingham Study. BMC Med Genet. 2007;8 Suppl 1:S13.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Di Bona D, Vasto S, Capurso C, et al. Effect of interleukin-6 polymorphisms on human longevity: a systematic review and metanalysis. Ageing Res Rev. 2009;8(1):36–42.

    Article  PubMed  Google Scholar 

  62. Hindorff LA, Rice KM, Lange LA, et al. Common variants in the CPR gene in relation to longevity and cause-specific mortality in older adults: the Cardiovascular Health Study. Atherosclerosis. 2008;197(2):922–30.

    Article  CAS  PubMed  Google Scholar 

  63. Partidge L, Gems D, Withers DJ. Sex and death: what is the connection? Cell. 2005;120(4):461–72.

    Article  Google Scholar 

  64. Maisonneuve E, Ezraty B, Dukan S. Protein aggregates: an aging factor involved in cell death. J Bacteriol. 2008;190(18):6070–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Sedelnikova OA, Horikawa I, Redon C, et al. Delayed kinetics of DNA double-strand break processing in normal and pathological aging. Aging Cell. 2008;7(1):89–100.

    Article  CAS  PubMed  Google Scholar 

  66. d’Adda di Fagagna F, Reaper PM, Clay-Farrace L, et al. A DNA damage checkpoint response in telomere-initiated senescence. Nature 2003;426(6963):194–8.

    Google Scholar 

  67. Muller M. Cellular senescence: molecular mechanisms, in vivo significance, and redbox considerations. Antioxid Redbox Signal. 2009;11(1):59–98.

    Article  CAS  Google Scholar 

  68. Partridge L, Gems D. Benchmarks for ageing studies. Nature. 2007;450(7167):165–7.

    Article  CAS  PubMed  Google Scholar 

  69. Pearson KJ, Baur JA, Lewis KN, et al. Resveratrol delays age-related deterioration and mimics transcriptional aspects of dietary restriction without extending life span. Cell Metab. 2008;8(2):157–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Wright WE, Brasiskyte D, Piatyszek MA, Shay JW. Experimental elongation of telomeres extends the lifespan of immortal x normal cell hybrids. EMBO J. 1996;15(7):1734–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Petersen S, Saretzki G, Zglinicki Tv. Preferential accumulation of single-stranded regions in telomeres of human fibroblasts. Exp Cell Res 1998;239:152–60.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rai, P., Troen, B.R. (2017). Cellular and Molecular Aging. In: Gordon, D., Katlic, M. (eds) Pelvic Floor Dysfunction and Pelvic Surgery in the Elderly. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-6554-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6554-0_3

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-6552-6

  • Online ISBN: 978-1-4939-6554-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics