Skip to main content

HIV-1 Biology at the Protein Level

  • Chapter
  • First Online:
HIV-1 Proteomics
  • 493 Accesses

Abstract

The study of HIV-1 proteins has been critical to our understanding of HIV-1 biology. This review provides a primer on HIV-1 biochemistry, its evolution, its results, and the proteins, both viral and cellular in HIV-1 particles. The importance and roles of virion proteins in HIV-1 replication are summarized. In addition to viral proteins, HIV-1 virions contain cellular proteins that can provide clues to important virus-host interactions and lead to antiviral therapies. This review discusses practical issues in the study of cellular proteins that are incorporated into HIV-1 virions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rosenberg N, Jolicoeur P. Retroviral pathogenesis. 1997 [cited]. http://www.ncbi.nlm.nih.gov/books/NBK19378/

  2. Rosenberg N, Jolicoeur P. Retroviral pathogenesis. In: Coffin J, Hughes S, Varmus H, editors. Retroviruses. Plainview, NY: Cold Spring Harbor Laboratory Press; 1997. p. 475–583.

    Google Scholar 

  3. Weiss SH, Goedert JJ, Sarngadharan MG, Bodner AJ, Gallo RC, Blattner WA. Screening test for HTLV-III (AIDS agent) antibodies. Specificity, sensitivity, and applications. JAMA. 1985;253(2):221–5.

    Article  CAS  PubMed  Google Scholar 

  4. Barre-Sinoussi F, Chermann JC, Rey F, Nugeyre MT, Chamaret S, Gruest J, et al. Isolation of a T-lymphotropic retrovirus from a patient at risk for acquired immune deficiency syndrome (AIDS). Science. 1983;220(4599):868–71.

    Article  CAS  PubMed  Google Scholar 

  5. Yarchoan R, Klecker RW, Weinhold KJ, Markham PD, Lyerly HK, Durack DT, et al. Administration of 3′-azido-3′-deoxythymidine, an inhibitor of HTLV-III/LAV replication, to patients with AIDS or AIDS-related complex. Lancet. 1986;1(8481):575–80.

    Article  CAS  PubMed  Google Scholar 

  6. Brook I. Approval of zidovudine (AZT) for acquired immunodeficiency syndrome. A challenge to the medical and pharmaceutical communities. JAMA. 1987;258(11):1517.

    Article  CAS  PubMed  Google Scholar 

  7. Wlodawer A, Erickson JW. Structure-based inhibitors of HIV-1 protease. Annu Rev Biochem. 1993;62:543–85.

    Article  CAS  PubMed  Google Scholar 

  8. Pear R. Aids blood test to be available in 2 to 6 weeks. The New York Times [cited]. 1985.http://www.nytimes.com/1985/03/03/us/aids-blood-test-to-be-available-in-2-to-6-weeks.html

  9. Finzi D, Hermankova M, Pierson T, Carruth LM, Buck C, Chaisson RE, et al. Identification of a reservoir for HIV-1 in patients on highly active antiretroviral therapy. Science. 1997;278(5341):1295–300.

    Article  CAS  PubMed  Google Scholar 

  10. Savarino A. A historical sketch of the discovery and development of HIV-1 integrase inhibitors. Expert Opin Investig Drugs. 2006;15(12):1507–22.

    Article  CAS  PubMed  Google Scholar 

  11. Garg H, Viard M, Jacobs A, Blumenthal R. Targeting HIV-1 gp41-induced fusion and pathogenesis for anti-viral therapy. Curr Top Med Chem. 2011;11(24):2947–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Allen DW. Zone electrophoresis of the proteins of avian myeloblastosis virus. Biochim Biophys Acta. 1967;133(1):180–3.

    Article  CAS  PubMed  Google Scholar 

  13. Duesberg PH, Robinson HL, Robinson WS, Huebner RJ, Turner HC. Proteins of Rous sarcoma virus. Virology. 1968;36(1):73–86.

    Article  CAS  PubMed  Google Scholar 

  14. Franker CK, Gruca M. Structural protein of the Friend virion. Virology. 1969;37(3):489–92.

    Article  CAS  PubMed  Google Scholar 

  15. Swanstrom R, Wills JW. Synthesis, assembly, and processing of viral proteins. In: Coffin J, Hughes S, Varmus H, editors. Retroviruses. Plainview, NY: Cold Spring Harbor Laboratory Press; 1997. p. 263–334.

    Google Scholar 

  16. Swanstrom R, Wills JW. Synthesis, assembly, and processing of viral proteins. [Internet]. 1997 [cited]. http://www.ncbi.nlm.nih.gov/books/NBK19456/

  17. Delelis O, Lehmann-Che J, Saib A. Foamy viruses—a world apart. Curr Opin Microbiol. 2004;7(4):400–6.

    Article  CAS  PubMed  Google Scholar 

  18. Temin HM, Mizutani S. RNA-dependent DNA polymerase in virions of Rous sarcoma virus. Nature. 1970;226(5252):1211–3.

    Article  CAS  PubMed  Google Scholar 

  19. Baltimore D. RNA-dependent DNA, polymerase in virions of RNA tumour viruses. Nature. 1970;226(5252):1209–11.

    Article  CAS  PubMed  Google Scholar 

  20. Pederson T. Turning a PAGE: the overnight sensation of SDS-polyacrylamide gel electrophoresis. FASEB J. 2008;22(4):949–53.

    Article  CAS  PubMed  Google Scholar 

  21. Vogt VM, Simon MN. Mass determination of Rous sarcoma virus virions by scanning transmission electron microscopy. J Virol. 1999;73(8):7050–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Karn J, Stoltzfus CM. Transcriptional and posttranscriptional regulation of HIV-1 gene expression. Cold Spring Harb Perspect Med. 2012;2(2):a006916.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Petropoulos C. Retroviral taxonomy, protein structures, sequences, and genetic maps. 1997 [cited]. http://www.ncbi.nlm.nih.gov/books/NBK19417/

  24. Petropoulos C. Retroviral taxonomy, protein structures, sequences, and genetic maps. In: Coffin J, Hughes S, Varmus H, editors. Retroviruses. Plainview, NY: Cold Spring Harbor Laboratory Press; 1997. p. 757–805.

    Google Scholar 

  25. Malim MH, Emerman M. HIV-1 accessory proteins—ensuring viral survival in a hostile environment. Cell Host Microbe. 2008;3(6):388–98.

    Article  CAS  PubMed  Google Scholar 

  26. Trono D. HIV accessory proteins: leading roles for the supporting cast. Cell. 1995;82:189–92.

    Article  CAS  PubMed  Google Scholar 

  27. Sundquist WI, Krausslich HG. HIV-1 assembly, budding, and maturation. Cold Spring Harb Perspect Med. 2012;2(7):a006924.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Zhu P, Chertova E, Bess Jr J, Lifson JD, Arthur LO, Liu J, et al. Electron tomography analysis of envelope glycoprotein trimers on HIV and simian immunodeficiency virus virions. Proc Natl Acad Sci U S A. 2003;100(26):15812–158127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ganser-Pornillos BK, Yeager M, Sundquist WI. The structural biology of HIV assembly. Curr Opin Struct Biol. 2008;18(2):203–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wang B. Viral factors in non-progression. Front Immunol. 2013;4:355.

    PubMed  PubMed Central  Google Scholar 

  31. Muller B, Tessmer U, Schubert U, Krausslich HG. Human immunodeficiency virus type 1 Vpr protein is incorporated into the virion in significantly smaller amounts than gag and is phosphorylated in infected cells. J Virol. 2000;74(20):9727–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kondo E, Gottlinger HG. A conserved LXXLF sequence is the major determinant in p6gag required for the incorporation of human immunodeficiency virus type 1 Vpr. J Virol. 1996;70(1):159–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Sova P, Volsky DJ, Wang L, Chao W. Vif is largely absent from human immunodeficiency virus type 1 mature virions and associates mainly with viral particles containing unprocessed gag. J Virol. 2001;75(12):5504–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Park J, Morrow CD. Overexpression of the gag-pol precursor from human immunodeficiency virus type 1 proviral genomes results in efficient proteolytic processing in the absence of virion production. J Virol. 1991;65(9):5111–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Lee SK, Potempa M, Swanstrom R. The choreography of HIV-1 proteolytic processing and virion assembly. J Biol Chem. 2012;287(49):40867–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Coffin J, Hughes S, Varmus H. Retroviruses. Plainview, NY: Cold Spring Harbor Press; 1997.

    Google Scholar 

  37. Carlson LA, Briggs JA, Glass B, Riches JD, Simon MN, Johnson MC, et al. Three-dimensional analysis of budding sites and released virus suggests a revised model for HIV-1 morphogenesis. Cell Host Microbe. 2008;4(6):592–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Coren LV, Thomas JA, Chertova E, Sowder 2nd RC, Gagliardi TD, Gorelick RJ, et al. Mutational analysis of the C-terminal gag cleavage sites in human immunodeficiency virus type 1. J Virol. 2007;81(18):10047–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chukkapalli V, Ono A. Molecular determinants that regulate plasma membrane association of HIV-1 Gag. J Mol Biol. 2011;410(4):512–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bell NM, Lever AM. HIV Gag polyprotein: processing and early viral particle assembly. Trends Microbiol. 2013;21(3):136–44.

    Article  CAS  PubMed  Google Scholar 

  41. Bukrinsky MI, Haffar OK. HIV-1 nuclear import: in search of a leader. Front Biosci. 1999;4:D772–81.

    CAS  PubMed  Google Scholar 

  42. Checkley MA, Luttge BG, Freed EO. HIV-1 envelope glycoprotein biosynthesis, trafficking, and incorporation. J Mol Biol. 2011;410(4):582–608.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Tedbury PR, Ablan SD, Freed EO. Global rescue of defects in HIV-1 envelope glycoprotein incorporation: implications for matrix structure. PLoS Pathog. 2013;9(11), e1003739.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Ganser-Pornillos BK, Yeager M, Pornillos O. Assembly and architecture of HIV. Adv Exp Med Biol. 2012;726:441–65.

    Article  CAS  PubMed  Google Scholar 

  45. Craigie R, Bushman FD. HIV DNA integration. Cold Spring Harb Perspect Med. 2012;2(7):a006890.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Hu WS, Hughes SH. HIV-1 reverse transcription. Cold Spring Harb Perspect Med. 2012;2(10):a006882.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Sakuragi J. Morphogenesis of the infectious HIV-1 virion. Front Microbiol. 2011;2:242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Adamson CS, Salzwedel K, Freed EO. Virus maturation as a new HIV-1 therapeutic target. Expert Opin Ther Targets. 2009;13(8):895–908.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Malim MH, Bieniasz PD. HIV restriction factors and mechanisms of evasion. Cold Spring Harb Perspect Med. 2012;2(5):a006940.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Strebel K, Luban J, Jeang KT. Human cellular restriction factors that target HIV-1 replication. BMC Med. 2009;7:48.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Towers GJ. The control of viral infection by tripartite motif proteins and cyclophilin A. Retrovirology. 2007;4:40.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Sastri J, Campbell EM. Recent insights into the mechanism and consequences of TRIM5alpha retroviral restriction. AIDS Res Hum Retroviruses. 2011;27(3):231–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Luban J, Cyclophilin A. TRIM5, and resistance to human immunodeficiency virus type 1 infection. J Virol. 2007;81(3):1054–61.

    Article  CAS  PubMed  Google Scholar 

  54. Cartier C, Sivard P, Tranchat C, Decimo D, Desgranges C, Boyer V. Identification of three major phosphorylation sites within HIV-1 capsid. Role of phosphorylation during the early steps of infection. J Biol Chem. 1999;274(27):19434–40.

    Article  CAS  PubMed  Google Scholar 

  55. Misumi S, Inoue M, Dochi T, Kishimoto N, Hasegawa N, Takamune N, et al. Uncoating of human immunodeficiency virus type 1 requires prolyl isomerase Pin1. J Biol Chem. 2010;285(33):25185–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Datta SA, Temeselew LG, Crist RM, Soheilian F, Kamata A, Mirro J, et al. On the role of the SP1 domain in HIV-1 particle assembly: a molecular switch? J Virol. 2011;85(9):4111–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Mirambeau G, Lyonnais S, Gorelick RJ. Features, processing states, and heterologous protein interactions in the modulation of the retroviral nucleocapsid protein function. RNA Biol. 2010;7(6):724–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Thomas JA, Gorelick RJ. Nucleocapsid protein function in early infection processes. Virus Res. 2008;134(1–2):39–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Rein A, Datta SA, Jones CP, Musier-Forsyth K. Diverse interactions of retroviral Gag proteins with RNAs. Trends Biochem Sci. 2011;36(7):373–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Levin JG, Mitra M, Mascarenhas A, Musier-Forsyth K. Role of HIV-1 nucleocapsid protein in HIV-1 reverse transcription. RNA Biol. 2010;7(6):754–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Meng B, Lever AM. Wrapping up the bad news: HIV assembly and release. Retrovirology. 2013;10:5.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Welker R, Hohenberg H, Tessmer U, Huckhagel C, Krausslich HG. Biochemical and structural analysis of isolated mature cores of human immunodeficiency virus type 1. J Virol. 2000;74(3):1168–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Fujita M, Otsuka M, Nomaguchi M, Adachi A. Multifaceted activity of HIV Vpr/Vpx proteins: the current view of their virological functions. Rev Med Virol. 2010;20(2):68–76.

    Article  CAS  PubMed  Google Scholar 

  64. Martin-Serrano J. The role of ubiquitin in retroviral egress. Traffic. 2007;8:1297–303.

    Article  CAS  PubMed  Google Scholar 

  65. Ott DE, Coren LV, Sowder II RC, Adams J, Schubert U. Retroviruses have differing requirements for proteasome function in the budding process. J Virol. 2003;77(6):3384–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Gurer C, Berthoux L, Luban J. Covalent modification of human immunodeficiency virus type 1 p6 by SUMO-1. J Virol. 2005;79(2):910–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Radestock B, Morales I, Rahman SA, Radau S, Glass B, Zahedi RP, et al. Comprehensive mutational analysis reveals p6Gag phosphorylation to be dispensable for HIV-1 morphogenesis and replication. J Virol. 2013;87(2):724–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Votteler J, Neumann L, Hahn S, Hahn F, Rauch P, Schmidt K, et al. Highly conserved serine residue 40 in HIV-1 p6 regulates capsid processing and virus core assembly. Retrovirology. 2011;11.

    Google Scholar 

  69. Pettit SC, Clemente JC, Jeung JA, Dunn BM, Kaplan AH. Ordered processing of the human immunodeficiency virus type 1 GagPol precursor is influenced by the context of the embedded viral protease. J Virol. 2005;79(16):10601–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Louis JM, Clore GM, Gronenborn AM. Autoprocessing of HIV-1 protease is tightly coupled to protein folding. Nat Struct Biol. 1999;6(9):868–75.

    Article  CAS  PubMed  Google Scholar 

  71. Pettit SC, Simsic J, Loeb DD, Everitt L, Hutchison CAD, Swanstrom R. Analysis of retroviral protease cleavage sites reveals two types of cleavage sites and the structural requirements of the P1 amino acid. J Biol Chem. 1991;266(22):14539–47.

    CAS  PubMed  Google Scholar 

  72. Daniels SI, Davis DA, Soule EE, Stahl SJ, Tebbs IR, Wingfield P, et al. The initial step in human immunodeficiency virus type 1 GagProPol processing can be regulated by reversible oxidation. PLoS ONE. 2010;5(10), e13595.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Jayappa KD, Ao Z, Yang M, Wang J, Yao X. Identification of critical motifs within HIV-1 integrase required for importin alpha3 interaction and viral cDNA nuclear import. J Mol Biol. 2011;410(5):847–62.

    Article  CAS  PubMed  Google Scholar 

  74. Wilen CB, Tilton JC, Doms, RW. HIV: cell binding and entry. Cold Spring Harb Perspect Med. 2012;2(8):pii: a006866.

    Google Scholar 

  75. Garg H, Blumenthal R. Role of HIV Gp41 mediated fusion/hemifusion in bystander apoptosis. Cell Mol Life Sci. 2008;65(20):3134–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Postler TS, Desrosiers RC. The tale of the long tail: the cytoplasmic domain of HIV-1 gp41. J Virol. 2013;87(1):2–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Chan WE, Lin HH, Chen SS. Wild-type-like viral replication potential of human immunodeficiency virus type 1 envelope mutants lacking palmitoylation signals. J Virol. 2005;79(13):8374–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Strebel K. HIV accessory proteins versus host restriction factors. Curr Opin Virol. 2013;3(6):692–9.

    Article  CAS  PubMed  Google Scholar 

  79. Zhao RY, Li G, Bukrinsky MI. Vpr-host interactions during HIV-1 viral life cycle. J Neuroimmune Pharmacol. 2011;6(2):216–29.

    Article  PubMed  Google Scholar 

  80. Fassati A. HIV infection of non-dividing cells: a divisive problem. Retrovirology. 2006;3:74.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Koppensteiner H, Brack-Werner R, Schindler M. Macrophages and their relevance in human immunodeficiency virus type I infection. Retrovirology. 2012;9:82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Kogan M, Rappaport J. HIV-1 accessory protein Vpr: relevance in the pathogenesis of HIV and potential for therapeutic intervention. Retrovirology. 2011;8:25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Bukovsky AA, Dorfman T, Weimann A, Gottlinger HG. Nef association with human immunodeficiency virus type 1 virions and cleavage by the viral protease. J Virol. 1997;71(2):1013–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Foster JL, Denial SJ, Temple BR, Garcia JV. Mechanisms of HIV-1 Nef function and intracellular signaling. J Neuroimmune Pharmacol. 2011;6(2):230–46.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Vermeire J, Vanbillemont G, Witkowski W, Verhasselt B. The Nef-infectivity enigma: mechanisms of enhanced lentiviral infection. Curr HIV Res. 2011;9(7):474–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Seelamgari A, Maddukuri A, Berro R, de la Fuente C, Kehn K, Deng L, et al. Role of viral regulatory and accessory proteins in HIV-1 replication. Front Biosci. 2004;9:2388–413.

    Article  CAS  PubMed  Google Scholar 

  87. Rabson AB, Graves BJ. Synthesis and processing of viral RNA. In: Coffin J, Hughes S, Varmus H, editors. Retroviruses. Plainview, NY: Cold Spring Harbor Press; 1997.

    Google Scholar 

  88. Rabson AB, Graves BJ. Synthesis and processing of viral RNA. 1997 [cited]. http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=21433339

  89. Cantin R, Methot S, Tremblay MJ. Plunder and stowaways: incorporation of cellular proteins by enveloped viruses. J Virol. 2005;79(11):6577–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Ott DE. Cellular proteins detected in HIV-1. Rev Med Virol. 2008;18:159–75.

    Article  CAS  PubMed  Google Scholar 

  91. Linde ME, Colquhoun DR, Mohien CU, Kole T, Aquino V, Cotter R, et al. The conserved set of host proteins incorporated into HIV-1 virions suggests a common egress pathway in multiple cell types. J Proteome Res. 2013;12(5):2045–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Chertova E, Chertov O, Coren LV, Roser JD, Trubey CM, Bess Jr JW, et al. Proteomic and biochemical analysis of purified human immunodeficiency virus type 1 produced from infected monocyte-derived macrophages. J Virol. 2006;80(18):9039–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Ott DE. Purification of HIV-1 virions by subtilisin digestion or CD45 immunoaffinity depletion for biochemical studies. Methods Mol Biol. 2009;485:15–25.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David E. Ott Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science + Business Media New York

About this chapter

Cite this chapter

Ott, D.E. (2016). HIV-1 Biology at the Protein Level. In: Graham, D., Ott, D. (eds) HIV-1 Proteomics. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-6542-7_2

Download citation

Publish with us

Policies and ethics