Skip to main content

Mitigation of Acrylamide Formation in Highly Consumed Foods

  • Chapter
  • First Online:
Global Food Security and Wellness

Abstract

Acrylamide (AA) (CAS number 79-06-1) (CH2=CH–CO–NH2), a white, odorless, toxic crystalline compound is produced mainly for the synthesis of nontoxic polyacrylamide, which is used as a flocculent in water treatment, and as a binder in pulp and paper processing. AA affects the nervous system even at low levels, causing hallucinations and drowsiness (IARC 1994). Human health effects associated with consumption of small amounts of AA over long periods of time are not known (Bent et al. 2012). AA vapors irritate the eyes and skin and cause paralysis of the cerebrospinal system (Kotsiou et al. 2011). Chronic exposure results in neurotoxicity in animals and humans, and AA has been found to be carcinogenic to laboratory animals. As a result, AA has been classified as “probably carcinogenic to humans” (Group 2A) by the International Agency for Research on Cancer (IARC 1994).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amrein T, Schönbächler B, Escher F, Amadò R (2004) Acrylamide in gingerbread: critical factors for formation and possible ways for reduction. J Agric Food Chem 52:4282–4288

    Article  CAS  Google Scholar 

  • Aziz A (2004) Reduction of acrylamide formation in cooked starchy foods. US 20040086597 A1

    Google Scholar 

  • Baardseth P, Blom H, Enersen G, Skrede G, Slinde E, Sundt T, Thomassen T (2004) Reduction of acrylamide formation in cereal-based food processing. WO200i 28276 A2

    Google Scholar 

  • Bagdonaite K, Derler K, Murkovic M (2008) Determination of Acrylamide during Roasting of Coffee. J Agric Food Chem 56:6081–6086

    Article  CAS  Google Scholar 

  • Banchero M, Pellegrino G, Manna L (2013) Supercritical fluid extraction as a potential mitigation strategy for the reduction of acrylamide level in coffee. J Food Eng 115:292–297

    Article  CAS  Google Scholar 

  • Bassama J, Brat P, Boulanger R, Gunata Z, Bohuon P (2012) Modeling deep-fat frying for control of acrylamide reaction in plantain. J Food Eng 113(1):156–166

    Article  CAS  Google Scholar 

  • Becalski A, Lau BPY, Lewis D, Seaman SW (2003) Acrylamide in foods: occurrence, sources, and modeling. J Agric Food Chem 51:802–808

    Article  CAS  Google Scholar 

  • Becalski A, Lau BPY, Lewis D, Seaman SW, Hayward S, Sahagian M et al (2004) Acrylamide in French fries: influence of free amino acids and sugars. J Agric Food Chem 52:3801–3806

    Article  CAS  Google Scholar 

  • Bent G, Maragh P, Dasgupta T (2012) Acrylamide in Caribbean foods – residual levels and their relation to reducing sugar and asparagine content. Food Chem 133:451–457

    Article  CAS  Google Scholar 

  • Biedermann M, Biedermann-Brem S, Noti A, Grob K (2002) Methods for determining the potential of acrylamide formation and its elimination in raw materials for food preparation, such as potatoes. Mitt Lebensmittelunters Hyg 93:653–667

    CAS  Google Scholar 

  • Blank I, Robert F, Goldmann T, Pollien P, Varga N, Devaud S, Saucy F, Huynh-Ba T, Stadler R (2005) Mechanisms of acrylamide formation – maillard-induced transformation of asparagine. In: Friedman M, Mottram D (eds) Chemistry and safety of acrylamide in food, 561st edn. Springer, New York, NY, pp 171–189

    Chapter  Google Scholar 

  • Borrelli R, Fogliano V (2005) Bread crust melanoidins as potential prebiotic ingredients. Mol Nutr Food Res 49:673–678

    Article  CAS  Google Scholar 

  • Brathen E, Knutsen SH (2005) Effect of temperature and time on the formation of acrylamide in starch-based and cereal model systems, flat breads and bread. Food Chem 92:693–700

    Article  CAS  Google Scholar 

  • Budolfsen G, Jensen M, Heldt-Hansen HP, Stringer MA (2008) Asparaginases and method of preparing a heat-treated product. US7396670.

    Google Scholar 

  • Califano A, Calvelo A (1987) Adjustment of surface concentration of reducing sugars before frying of potato strips. J Food Process Preserv 12:1–9

    Article  Google Scholar 

  • Capuano E, Fogliano V (2011) Acrylamide and 5-hydroxymethylfurfural (HMF): a review on metabolism, toxicity, occurrence in food and mitigation strategies. Lebensmittel-Wissenschaft und-Technologie 44:793–810

    Article  CAS  Google Scholar 

  • Chen YH, Xia EQ, Xu XR, Ling WH, Li S, Wu S, Deng GF, Zou ZF, Zhou J, Li HB (2012) Evaluation of acrylamide in food from China by a LC/MS/MS method. Int J Environ Res Public Health 9(11):4150–4158

    Article  CAS  Google Scholar 

  • Claeys W, De Vleeschouwer K, Hendrickx M (2005) Effect of amino acids on acrylamide formation and elimination kinetics. Biotechnology 21:1525–1530

    CAS  Google Scholar 

  • Claus A, Carle R, Schieber A (2008) Acrylamide in cereal products: a review. J Cereal Sci 47:118–133

    Article  CAS  Google Scholar 

  • Corrigan P (2005) Method for reducing acrylamide in foods, foods having reduced levels of acrylamide, and article of commerce. US20050079254

    Google Scholar 

  • De Vleeschouwer K, Plancken I, Van Loey A, Hendrickx M (2007) Kinetics of acrylamide formation/elimination reactions as affected by water activity. Biotechnol Prog 2:722–728

    Google Scholar 

  • EC (2006) European Union Acrylamide Monitoring Database. Available at: http://irmm.jrc.ec.europa.eu/activities/acrylamide/Pages/database.aspx

  • EFSA (2011) Scientific report of EFSA - results on acrylamide levels in food from monitoring years 2007-2009 and exposure assessment. EFSA J 9:2133

    Article  Google Scholar 

  • Elder V, Fulcher J, Leung H (2006) Method for reducing acrylamide formation in thermally processed foods. US20060127534

    Google Scholar 

  • FDA (2006) Survey data on acrylamide in food: individual food products. Available at: http://www.fda.gov/Food/FoodSafety/FoodContaminantsAdulteration/ChemicalContaminants/acrylamide/ucm053549.html

  • Friedman M, Levin CE (2008) Review of methods for the reduction of dietary contents and toxicity of acrylamide. J Agric Food Chem 56:6113–6140

    Article  CAS  Google Scholar 

  • Gerenda SJ, Heuser F, Sattelmacher B (2007) Influence of nitrogen and potassium supply on contents of acrylamide precursors in potato tubers and on acrylamide accumulation in French fries. J Plant Nutr 30:1499–1516

    Article  Google Scholar 

  • Gertz C, Klostermann S (2002) Analysis of acrylamide and mechanisms of its formation in deep fried products. Eur J Lipid Sci Technol 104:762–771

    Article  CAS  Google Scholar 

  • Gökmen V, Palazoglu TK (2008) Acrylamide formation in foods during thermal processing with a focus on frying. Food Bioprocess Technol 1:35–42

    Article  Google Scholar 

  • Gökmen V, Senyuva HZ (2006) A simplified approach for the kinetic characterization of acrylamide formation in fructose-asparagine model system. Food Addit Contam 23(4):348–354

    Article  Google Scholar 

  • Granda C, Moreira R, Tichy SE (2004) Reduction of acrylamide formation in potato chips by low-temperature vacuum frying. J Food Sci 68:405–411

    Article  Google Scholar 

  • Granvogl M, Schieberle P (2006) Thermally generated 3-amminopropionammide as a transient intermediate in the formation of acrylamide. J Agric Food Chem 54:5933–5938

    Article  CAS  Google Scholar 

  • Haase NU, Matthäus B, Vosmann K (2003) Minimierungsansätze zur Acrylamid-Bildung in pflanzlichen Lebensmitteln-aufgezeigt am Beispiel von Kartoffelchips. Dtsch Lebensmitt Rundsch 99:87–90

    CAS  Google Scholar 

  • Hogervorst JG, Schouten LJ, Konings EJ, Goldbohm RA, van den Brandt PA (2007) A prospective study of dietary acrylamide intake and the risk of endometrial, ovarian, and breast cancer. Cancer Epidemiol Biomarkers Prev 16:2304–2313

    Article  CAS  Google Scholar 

  • Hogervorst JG, Schouten LJ, Konings EJ, Goldbohm RA, van den Brandt PA (2008) Dietary acrylamide intake and the risk of renal cell, bladder, and prostate cancer. Am J Clin Nutr 87:1428–1438

    CAS  Google Scholar 

  • Hogervorst JGF, Schouten LJ, Konings EJM, Goldbohm RA, van den Brandt PA (2009) Lung cancer risk in relation to dietary acrylamide intake. J Natl Cancer Inst 101:651–662

    Article  CAS  Google Scholar 

  • IARC (International Agency for Research on Cancer) (1994) Acrylamide. IARC Monogr Eval Carcinog Risks Hum 60:389

    Google Scholar 

  • Jung MY, Choi DS, Ju JW (2003) A novel technique for limitation of acrylamide formation in fried and baked corn chips and in French fries. J Food Sci 68:1287–1290

    Article  CAS  Google Scholar 

  • Kim C, Eun-Sun H, Lee H (2005) Reducing acrylamide in fried snack products by adding amino acids. J Food Sci 70:C354–C358

    Article  CAS  Google Scholar 

  • Kolek E, Simko P, Simon P (2006) Inhibition of acrylamide formation in asparagine/D-glucose model system by NaCl addition. Eur Food Res Tech 224:283–284

    Article  CAS  Google Scholar 

  • Kotsiou K, Tasioula-Margari M, Capuano E, Fogliano V (2011) Effect of standard phenolic compounds and olive oil phenolic extracts on acrylamide formation in an emulsion system. Food Chem 124:242–247

    Article  CAS  Google Scholar 

  • Lindermeier M, Hofmann T (2004) Influence of baking conditions and precursor supplementation on the amounts of the antioxidant pronyl-L-lysine in bakery products. J Agric Food Chem 52:350–354

    Article  Google Scholar 

  • Lindsay R, Jang S (2005a) Chemical intervention strategies for substantial suppression of acrylamide formation in fried potato products. In: Friedman M, Mottram D (eds) Chemistry and safety of acrylamide in food. Springer, New York, NY, pp 393–404

    Chapter  Google Scholar 

  • Lindsay RC, Jang SJ (2005b) Chemical intervention strategies for substantial suppression of acrylamide formation in fried potato products. Adv Exp Med Biol 561:393–404

    Article  CAS  Google Scholar 

  • Lineback D, Wenzl T, Ostermann O, DeLaCalle B, Anklam E, Taeymans D (2005) Overview of acrylamide monitoring databases. J AOAC Int 88:246–252

    CAS  Google Scholar 

  • Lineback D, Coughlin JR, Stadler RH (2012) Acrylamide in foods: a review of the science and future considerations. Annu Rev Food Sci Technol 3:15–35

    Article  CAS  Google Scholar 

  • Mariotti S, Pedreschi F, Carrasco J, Granby K (2011) Patented techniques for acrylamide mitigation in high-temperature processed foods. Recent Pat Food Nutr Agric 2011(3):158–171

    Article  Google Scholar 

  • Medeiros R, Mestdagh F, De Meulanaer B (2012) Acrylamide formation in fried potato products – present and future, a critical review on mitigation strategies. Food Chem 133:1138–1154

    Article  Google Scholar 

  • Mottram DS, Wedzicha BL, Dodson A (2002) Acrylamide is formed in the Maillard reaction. Nature 419:448–449

    Article  CAS  Google Scholar 

  • Mucci LA, Dickman PW, Steineck G, Adami HO, Augustsson K (2003) Dietary acrylamide and cancer of the large bowel, kidney, and bladder: absence of an association in a population-based study in Sweden. Br J Cancer 88(1):84–89

    Article  CAS  Google Scholar 

  • Muttucumaru N, Halford NG, Elmore JS, Dodson AT, Parry M, Shewry PR (2006) Formation of high levels of acrylamide during the processing of flour derived from sulfate-deprived wheat derived from sulfate-deprived wheat. J Agric Food Chem 54:8951–8955

    Article  CAS  Google Scholar 

  • Oku K, Kurose M, Ogawa T, Kubota M, Chaen H, Fukuda S, Tsujisaka Y (2005) Suppressive effect of trehalose on acrylamide formation form asparagine and reducing saccharides. Biosci Biotech Biochem 69:1520–1526

    Article  CAS  Google Scholar 

  • Pedreschi F (2012) Frying of potatoes: physical, chemical, and microstructural changes. Dry Technol 30:707–725

    Article  CAS  Google Scholar 

  • Pedreschi F, Kaack K, Granby K (2004) Reduction of acrylamide formation in potato slices during frying. Lebensmittel-Wissenschaft und-Technologie 37:679–685

    Article  CAS  Google Scholar 

  • Pedreschi F, Kaack K, Granby K, Troncoso E (2007) Acrylamide reduction under different pre-treatments in French fries. J Food Eng 79:1287–1294

    Article  CAS  Google Scholar 

  • Pedreschi F, Segtnan VH, Knutsen SH (2010) On-line monitoring of fat, dry matter and acrylamide contents in potato chips using near infrared interactance and visual reflectance imaging. Food Chem 121:616–620

    Article  CAS  Google Scholar 

  • Pedreschi F, Mariotti M, Kit G, Risum J (2011) Acrylamide diminishing in potato chips by using commercial asparaginase in combination with conventional blanching. Lebensmittel-Wissenschaft und-Technologie 44:1473–1476

    Article  CAS  Google Scholar 

  • Pedreschi F, Bunger A, Skurtys O, Allen P, Rojas X (2012) Grading of potato chips according to their sensory quality determined by color. Food Bioprocess Tech 5:2401–2408

    Article  Google Scholar 

  • Perez-Locas C, Yaylayan VA (2008) Isotope labeling studies on the formation of 5-(hydroxymethyl)-2-furaldehyde (HMF) from sucrose by pyrolysis-GC/MS. J Agric Food Chem 56:6717–6723

    Article  Google Scholar 

  • Rommens CM, Ye J, Richael C, Swords K (2007) K Improving potato storage and processing characteristics through all-native DNA transformation. J Agric Food Chem 54:9882–9887

    Article  Google Scholar 

  • Rosén J, Hellenäs KE (2002) Analysis of acrylamide in cooked foods by liquid chromatography tandem mass spectrometry. Analyst 127:880–882

    Article  Google Scholar 

  • Rydberg P, Eriksson S, Tareke E, Karlsson P, Ehrenberg L, Tornqvist M (2003) Investigations of factors that influence the acrylamide content of heated foodstuffs. J Agric Food Chem 51:7012–7018

    Article  CAS  Google Scholar 

  • Schouten L, Hogervorst J, Konings E, Goldbohm R, van den Brandt P (2009) Dietary acrylamide intake and the risk of head-neck and thyroid cancers: results from the Netherlands Cohort Study. Am J Epidemiol 170:873–884

    Article  Google Scholar 

  • Smith E, Oehme F (1991) Acrylamide and polyacrylamide: a review of production, use, environmental fate and neurotoxicity. Rev Environ Health 9:215–228

    Article  CAS  Google Scholar 

  • Stadler R, Scholz G (2004) Acrylamide: an update on current knowledge in analysis, levels in food, mechanisms of formation, and potential strategies of control. Nutr Rev 62:449–467

    Article  Google Scholar 

  • Stadler RH, Blank I, Varga N, Robert F, Hau J, Guy A, Robert P, Riediker MC (2002) Acrylamide from Maillard reaction products. Nature 419:449–450

    Article  CAS  Google Scholar 

  • Stadler R, Robert F, Riediker S, Varga N, Davidek T, Devaud S, Goldmann T, Blank I (2004) In-depth mechanistic study on the formation of acrylamide and other vinylogous compounds by the Maillard reaction. J Agric Food Chem 52:5550–5558

    Article  CAS  Google Scholar 

  • Taeymans D, Wood J, Ashby P, Blank I, Studer A, Stadler R, Gonde P, Van Eijck P, Lalljie S, Lingert H, Lindblom M, Matisek R, Muller D, O’Brien J, Thompson S, Silvani D, Whitmore T (2004) A review of acrylamide: an industry perspective on research, analysis, formation, and control. Crit Rev Food Sci Nutr 44:323–347

    Article  CAS  Google Scholar 

  • Tareke E, Rydberg P, Karlsson P, Eriksson S, Tornqvist M (2002) Analysis of acrylamide, a carcinogen formed in heated foodstuffs. J Agric Food Chem 50:4998–5006

    Article  CAS  Google Scholar 

  • Van Boekel M, Fogliano V, Pellegrini N, Stanton C, Scholz G, Lalljie S, Somoza V, Knorr D, Jasti P, Eisenbrand G (2010) A review on the beneficial aspects of food processing. Mol Nutr Food Res 54:1215–1247

    Article  Google Scholar 

  • Vattem DA, Shetty K (2003) Acrylamide in food: a model for mechanism of formation and its reduction. Innov Food Sci Emerg Technol 4:331–338

    Article  CAS  Google Scholar 

  • Wilson K, Mucci L, Rosner B, Willet W (2010) A prospective study on dietary acrylamide intake and the risk for breast, endometrial, and ovarian cancers. Cancer Epidemiol Biomarkers Prev 19:2503–2515

    Article  CAS  Google Scholar 

  • Yaylayan VA, Wnorowski A, Pérez Locas C (2003) Why asparagine needs carbohydrates to generate acrylamide? J Agric Food Chem 51:1753–1757

    Article  CAS  Google Scholar 

  • Zhang Y, Zhang Y (2007) Formation and reduction of acrylamide in Maillard reaction: a review based on the current state of knowledge. Crit Rev Food Sci Nutr 47:521–542

    Article  CAS  Google Scholar 

  • Zyzak D, Sanders RA, Stojanovic M, Tallmadge DH, Ebehart L, Ewald DK, Gruber DC, Morsch TR, Strothers MA, Rizzi GP, Villagran MD (2003) Acrylamide formation mechanism in heated foods. J Agric Food Chem 51:4782–4787

    Article  CAS  Google Scholar 

  • Zyzak V, Sanders R, Stojanovic M, Gruber D, Yau Tak Lin P, Martínez-Serna MD, Howie J, Schafermeyer R (2004) Method for reducing acrylamide in foods, foods having reduced levels of acrylamide, and article of commerce. US20040058046

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge financial support from the FONDECYT Project No 1110510. I appreciate the collaboration in the designing of the structure of this book chapter of Farina Galvez.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franco Pedreschi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this chapter

Cite this chapter

Pedreschi, F., Mariotti, M.S. (2017). Mitigation of Acrylamide Formation in Highly Consumed Foods. In: Barbosa-Cánovas, G., et al. Global Food Security and Wellness. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-6496-3_19

Download citation

Publish with us

Policies and ethics