Ambrus JL et al (1975) Causes of death in cancer patients. J Med 6(1):61–64
CAS
PubMed
Google Scholar
Nguyen LV et al (2012) Cancer stem cells: an evolving concept. Nat Rev Cancer 12(2):133–143
CAS
PubMed
Google Scholar
Greaves M (2013) Cancer stem cells as ‘units of selection’. Evol Appl 6(1):102–108
PubMed
CrossRef
Google Scholar
Magee JA, Piskounova E, Morrison SJ (2012) Cancer stem cells: impact, heterogeneity, and uncertainty. Cancer Cell 21(3):283–296
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Fidler IJ (2003) The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nat Rev Cancer 3(6):453–458
CAS
PubMed
CrossRef
Google Scholar
Nguyen DX, Bos PD, Massague J (2009) Metastasis: from dissemination to organ-specific colonization. Nat Rev Cancer 9(4):274–284
CAS
PubMed
CrossRef
Google Scholar
Comen E, Norton L (2012) Self-seeding in cancer. Recent Results Cancer Res 195:13–23
PubMed
CrossRef
Google Scholar
Comen E, Norton L, Massague J (2011) Clinical implications of cancer self-seeding. Nat Rev Clin Oncol 8(6):369–377
PubMed
Google Scholar
Norton L, Massague J (2006) Is cancer a disease of self-seeding? Nat Med 12(8):875–878
CAS
PubMed
CrossRef
Google Scholar
Houten L, Reilley AA (1980) An investigation of the cause of death from cancer. J Surg Oncol 13(2):111–116
CAS
PubMed
CrossRef
Google Scholar
Valastyan S, Weinberg RA (2011) Tumor metastasis: molecular insights and evolving paradigms. Cell 147(2):275–292
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Chambers AF, Groom AC, MacDonald IC (2002) Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer 2(8):563–572
CAS
PubMed
CrossRef
Google Scholar
Thiery JP et al (2009) Epithelial-mesenchymal transitions in development and disease. Cell 139(5):871–890
CAS
PubMed
CrossRef
Google Scholar
Carter AM, Pijnenborg R (2011) Evolution of invasive placentation with special reference to non-human primates. Best Pract Res Clin Obstet Gynaecol 25(3):249–257
PubMed
CrossRef
Google Scholar
Guo S, Dipietro LA (2010) Factors affecting wound healing. J Dent Res 89(3):219–229
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Semenza GL (2000) HIF-1: mediator of physiological and pathophysiological responses to hypoxia. J Appl Physiol 88(4):1474–1480
CAS
PubMed
Google Scholar
Humphries A, Wright NA (2008) Colonic crypt organization and tumorigenesis. Nat Rev Cancer 8(6):415–424
CAS
PubMed
CrossRef
Google Scholar
Solanas G, Batlle E (2011) Control of cell adhesion and compartmentalization in the intestinal epithelium. Exp Cell Res 317(19):2695–2701
CAS
PubMed
CrossRef
Google Scholar
Friedl P, Wolf K (2003) Tumour-cell invasion and migration: diversity and escape mechanisms. Nat Rev Cancer 3(5):362–374
CAS
PubMed
CrossRef
Google Scholar
Sailem H et al (2014) Cross-talk between Rho and Rac GTPases drives deterministic exploration of cellular shape space and morphological heterogeneity. Open Biol 4:130132
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
Sanz-Moreno V et al (2008) Rac activation and inactivation control plasticity of tumor cell movement. Cell 135(3):510–523
CAS
PubMed
CrossRef
Google Scholar
Wilkinson S, Paterson HF, Marshall CJ (2005) Cdc42-MRCK and Rho-ROCK signalling cooperate in myosin phosphorylation and cell invasion. Nat Cell Biol 7(3):255–261
CAS
PubMed
CrossRef
Google Scholar
Semenza GL (2003) Targeting HIF-1 for cancer therapy. Nat Rev Cancer 3(10):721–732
CAS
PubMed
CrossRef
Google Scholar
Elson DA et al (2000) Coordinate up-regulation of hypoxia inducible factor (HIF)-1alpha and HIF-1 target genes during multi-stage epidermal carcinogenesis and wound healing. Cancer Res 60(21):6189–6195
CAS
PubMed
Google Scholar
Gatenby RA, Gillies RJ (2004) Why do cancers have high aerobic glycolysis? Nat Rev Cancer 4(11):891–899
CAS
PubMed
CrossRef
Google Scholar
Hsu PP, Sabatini DM (2008) Cancer cell metabolism: Warburg and beyond. Cell 134(5):703–707
CAS
PubMed
CrossRef
Google Scholar
Sleeman JP et al (2012) Concepts of metastasis in flux: the stromal progression model. Semin Cancer Biol 22(3):174–186
CAS
PubMed
CrossRef
Google Scholar
Jo M et al (2009) Reversibility of epithelial-mesenchymal transition (EMT) induced in breast cancer cells by activation of urokinase receptor-dependent cell signaling. J Biol Chem 284(34):22825–22833
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Jones S et al (2008) Comparative lesion sequencing provides insights into tumor evolution. Proc Natl Acad Sci U S A 105(11):4283–4288
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Navin N et al (2011) Tumour evolution inferred by single-cell sequencing. Nature 472(7341):90–94
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Yachida S et al (2010) Distant metastasis occurs late during the genetic evolution of pancreatic cancer. Nature 467(7319):1114–1117
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Campbell PJ et al (2010) The patterns and dynamics of genomic instability in metastatic pancreatic cancer. Nature 467(7319):1109–1113
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Wu X et al (2012) Clonal selection drives genetic divergence of metastatic medulloblastoma. Nature 482(7386):529–533
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Gerlinger M et al (2012) Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med 366(10):883–892
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Awad MM et al (2013) Acquired resistance to crizotinib from a mutation in CD74-ROS1. N Engl J Med 368(25):2395–2401
CAS
PubMed
CrossRef
Google Scholar
Nguyen DX, Massague J (2007) Genetic determinants of cancer metastasis. Nat Rev Genet 8(5):341–352
CAS
PubMed
CrossRef
Google Scholar
Klein CA (2009) Parallel progression of primary tumours and metastases. Nat Rev Cancer 9(4):302–312
CAS
PubMed
CrossRef
Google Scholar
Kim MY et al (2009) Tumor self-seeding by circulating cancer cells. Cell 139(7):1315–1326
PubMed
PubMed Central
CrossRef
Google Scholar
Giancotti FG (2013) Mechanisms governing metastatic dormancy and reactivation. Cell 155(4):750–764
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Kleffel S, Schatton T (2013) Tumor dormancy and cancer stem cells: two sides of the same coin? Adv Exp Med Biol 734:145–179
CAS
PubMed
CrossRef
Google Scholar
Yu Y, Zhu Z (2013) Cell dormancy and tumor refractory. Anticancer Agents Med Chem 13(2):199–202
CAS
PubMed
CrossRef
Google Scholar
Barkan D, Green JE, Chambers AF (2010) Extracellular matrix: a gatekeeper in the transition from dormancy to metastatic growth. Eur J Cancer 46(7):1181–1188
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Aktipis CA, Maley CC, Pepper JW (2012) Dispersal evolution in neoplasms: the role of disregulated metabolism in the evolution of cell motility. Cancer Prev Res (Phila) 5(2):266–275
CrossRef
Google Scholar
Chen J et al (2011) Solving the puzzle of metastasis: the evolution of cell migration in neoplasms. PLoS One 6(4), e17933
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Mazzone M et al (2009) Heterozygous deficiency of PHD2 restores tumor oxygenation and inhibits metastasis via endothelial normalization. Cell 136(5):839–851
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Hockel M et al (1996) Association between tumor hypoxia and malignant progression in advanced cancer of the uterine cervix. Cancer Res 56(19):4509–4515
CAS
PubMed
Google Scholar
Brizel DM et al (1996) Tumor oxygenation predicts for the likelihood of distant metastases in human soft tissue sarcoma. Cancer Res 56(5):941–943
CAS
PubMed
Google Scholar
Fukumura D, Jain RK (2007) Tumor microvasculature and microenvironment: targets for anti-angiogenesis and normalization. Microvasc Res 74(2-3):72–84
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Hurwitz H et al (2004) Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med 350(23):2335–2342
CAS
PubMed
CrossRef
Google Scholar
Mackey JR et al (2012) Controlling angiogenesis in breast cancer: a systematic review of anti-angiogenic trials. Cancer Treat Rev 38(6):673–688
CAS
PubMed
CrossRef
Google Scholar
Ebos JM et al (2009) Accelerated metastasis after short-term treatment with a potent inhibitor of tumor angiogenesis. Cancer Cell 15(3):232–239
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Aktipis CA (2004) Know when to walk away: contingent movement and the evolution of cooperation. J Theor Biol 231(2):249–260
PubMed
CrossRef
Google Scholar
Aktipis CA (2011) Is cooperation viable in mobile organisms? Simple Walk Away rule favors the evolution of cooperation in groups. Evol Hum Behav 32(4):263–276
PubMed
PubMed Central
CrossRef
Google Scholar
Nesse RM (2007) Runaway social selection for displays of partner value and altruism. Biol Theory 2(2):143–155
CrossRef
Google Scholar
Holmgren L, O’Reilly MS, Folkman J (1995) Dormancy of micrometastases: balanced proliferation and apoptosis in the presence of angiogenesis suppression. Nat Med 1(2):149–153
CAS
PubMed
CrossRef
Google Scholar
Kitano H (2004) Biological robustness. Nat Rev Genet 5(11):826–837
CAS
PubMed
CrossRef
Google Scholar
Tian T et al (2011) The origins of cancer robustness and evolvability. Integr Biol (Camb) 3(1):17–30
CAS
CrossRef
Google Scholar
Loeb LA (2011) Human cancers express mutator phenotypes: origin, consequences and targeting. Nat Rev Cancer 11(6):450–457
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Corcoran RB et al (2010) BRAF gene amplification can promote acquired resistance to MEK inhibitors in cancer cells harboring the BRAF V600E mutation. Sci Signal 3(149):ra84
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Willis L et al (2010) Breast cancer dormancy can be maintained by small numbers of micrometastases. Cancer Res 70(11):4310–4317
CAS
PubMed
CrossRef
Google Scholar
Ratcliff WC et al (2012) Experimental evolution of multicellularity. Proc Natl Acad Sci U S A 109(5):1595–1600
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Sprouffske K et al (2013) An evolutionary explanation for the presence of cancer nonstem cells in neoplasms. Evol Appl 6(1):92–101
PubMed
CrossRef
Google Scholar
Cordner R, Black KL, Wheeler CJ (2013) Exploitation of adaptive evolution in glioma treatment. CNS Oncol 2(2):171–179
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Bonavia R et al (2011) Heterogeneity maintenance in glioblastoma: a social network. Cancer Res 71(12):4055–4060
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Pyonteck SM et al (2012) Deficiency of the macrophage growth factor CSF-1 disrupts pancreatic neuroendocrine tumor development. Oncogene 31(11):1459–1467
CAS
PubMed
CrossRef
Google Scholar
Lifsted T et al (1998) Identification of inbred mouse strains harboring genetic modifiers of mammary tumor age of onset and metastatic progression. Int J Cancer 77(4):640–644
CAS
PubMed
CrossRef
Google Scholar
Allinen M et al (2004) Molecular characterization of the tumor microenvironment in breast cancer. Cancer Cell 6(1):17–32
CAS
PubMed
CrossRef
Google Scholar
Mueller BM et al (1992) Expression of tissue factor by melanoma cells promotes efficient hematogenous metastasis. Proc Natl Acad Sci U S A 89(24):11832–11836
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Kaplan RN et al (2005) VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 438(7069):820–827
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Kreso A et al (2013) Variable clonal repopulation dynamics influence chemotherapy response in colorectal cancer. Science 339(6119):543–548
CAS
PubMed
CrossRef
Google Scholar
Araten DJ et al (2005) A quantitative measurement of the human somatic mutation rate. Cancer Res 65(18):8111–8117
CAS
PubMed
CrossRef
Google Scholar
Elmore E, Kakunaga T, Barrett JC (1983) Comparison of spontaneous mutation rates of normal and chemically transformed human skin fibroblasts. Cancer Res 43(4):1650–1655
CAS
PubMed
Google Scholar
Kruglyak S et al (1998) Equilibrium distributions of microsatellite repeat length resulting from a balance between slippage events and point mutations. Proc Natl Acad Sci U S A 95(18):10774–10778
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Ushijima T et al (2003) Fidelity of the methylation pattern and its variation in the genome. Genome Res 13(5):868–874
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Bhattacharyya NP et al (1994) Mutator phenotypes in human colorectal carcinoma cell lines. Proc Natl Acad Sci U S A 91(14):6319–6323
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Kinzler KW, Vogelstein B (1996) Lessons from hereditary colorectal cancer. Cell 87(2):159–170
CAS
PubMed
CrossRef
Google Scholar
Lengauer C, Kinzler KW, Vogelstein B (1997) Genetic instability in colorectal cancers. Nature 386(6625):623–627
CAS
PubMed
CrossRef
Google Scholar
Issa JP (2004) CpG island methylator phenotype in cancer. Nat Rev Cancer 4(12):988–993
CAS
PubMed
CrossRef
Google Scholar
Landan G et al (2012) Epigenetic polymorphism and the stochastic formation of differentially methylated regions in normal and cancerous tissues. Nat Genet 44(11):1207–1214
CAS
PubMed
CrossRef
Google Scholar
Wright NA, Alison M (1984) The biology of epithelial cell populations. Oxford science publications, Oxford, Oxfordshire, New York: Clarendon Press; Oxford University Press
Google Scholar
Charpin C et al (1988) Multiparametric evaluation (SAMBA) of growth fraction (monoclonal Ki67) in breast carcinoma tissue sections. Cancer Res 48(15):4368–4374
CAS
PubMed
Google Scholar
Vakkala M et al (1999) Apoptosis during breast carcinoma progression. Clin Cancer Res 5(2):319–324
CAS
PubMed
Google Scholar
Friberg S, Mattson S (1997) On the growth rates of human malignant tumors: implications for medical decision making. J Surg Oncol 65(4):284–297
CAS
PubMed
CrossRef
Google Scholar
Simons BD, Clevers H (2011) Strategies for homeostatic stem cell self-renewal in adult tissues. Cell 145(6):851–862
CAS
PubMed
CrossRef
Google Scholar
Beerenwinkel N et al (2007) Genetic progression and the waiting time to cancer. PLoS Comput Biol 3(11), e225
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
Bozic I et al (2010) Accumulation of driver and passenger mutations during tumor progression. Proc Natl Acad Sci U S A 107(43):18545–18550
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Mascre G et al (2012) Distinct contribution of stem and progenitor cells to epidermal maintenance. Nature 489(7415):257–262
CAS
PubMed
CrossRef
Google Scholar
Anderson AR et al (2006) Tumor morphology and phenotypic evolution driven by selective pressure from the microenvironment. Cell 127(5):905–915
CAS
PubMed
CrossRef
Google Scholar
Yuan Y et al (2012) Quantitative image analysis of cellular heterogeneity in breast tumors complements genomic profiling. Sci Transl Med 4(157):157ra143
PubMed
CrossRef
Google Scholar
Aktipis CA, Nesse RM (2013) Evolutionary foundations for cancer biology. Evol Appl 6(1):144–159
PubMed
PubMed Central
CrossRef
Google Scholar
Pienta KJ et al (2013) The cancer diaspora: metastasis beyond the seed and soil hypothesis. Clin Cancer Res 19(21):5849–5855
PubMed
CrossRef
Google Scholar
Potter NE et al (2013) Single-cell mutational profiling and clonal phylogeny in cancer. Genome Res 23(12):2115–2125
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Livet J et al (2007) Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system. Nature 450(7166):56–62
CAS
PubMed
CrossRef
Google Scholar
Dupuy AJ et al (2005) Mammalian mutagenesis using a highly mobile somatic Sleeping Beauty transposon system. Nature 436(7048):221–226
CAS
PubMed
CrossRef
Google Scholar
White RM et al (2008) Transparent adult zebrafish as a tool for in vivo transplantation analysis. Cell Stem Cell 2(2):183–189
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Yu M et al (2013) Circulating breast tumor cells exhibit dynamic changes in epithelial and mesenchymal composition. Science 339(6119):580–584
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Pantel K et al (1996) Frequency and prognostic significance of isolated tumour cells in bone marrow of patients with non-small-cell lung cancer without overt metastases. Lancet 347(9002):649–653
CAS
PubMed
CrossRef
Google Scholar
Zong C et al (2012) Genome-wide detection of single-nucleotide and copy-number variations of a single human cell. Science 338(6114):1622–1626
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Drummond AJ et al (2012) Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol Biol Evol 29(8):1969–1973
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Sottoriva A et al (2013) Single-molecule genomic data delineate patient-specific tumor profiles and cancer stem cell organization. Cancer Res 73(1):41–49
CAS
PubMed
CrossRef
Google Scholar
Lee JM et al (2013) Feasibility and safety of sequential research-related tumor core biopsies in clinical trials. Cancer 119(7):1357–1364
CAS
PubMed
CrossRef
Google Scholar
Overman MJ et al (2013) Use of research biopsies in clinical trials: are risks and benefits adequately discussed? J Clin Oncol 31(1):17–22
PubMed
CrossRef
Google Scholar
Peppercorn J (2013) Toward improved understanding of the ethical and clinical issues surrounding mandatory research biopsies. J Clin Oncol 31(1):1–2
PubMed
CrossRef
Google Scholar
Ikushima H, Miyazono K (2010) TGFb signalling: a complex web in cancer progression. Nat Rev Cancer 10:415–424
CAS
PubMed
CrossRef
Google Scholar
Massagué J (2008) TGFb in cancer. Cell 134:215–230
PubMed
PubMed Central
CrossRef
CAS
Google Scholar
Shi Y, Massagué J (2003) Mechanisms of TGF-b signaling from cell membrane to the nucleus. Cell 113:685–700
CAS
PubMed
CrossRef
Google Scholar
Feng XH, Derynck R (2005) Specificity and versatility in TGF-b signaling through Smads. Annu Rev Cell Dev Biol 21:659–693
CAS
PubMed
CrossRef
Google Scholar
Derynck R, Zhang YE (2003) Smad-dependent and Smad-independent pathways in TGF-b family signalling. Nature 425:577–584
CAS
PubMed
CrossRef
Google Scholar
Moustakas A, Heldin CH (2005) Non-Smad TGF-b signals. J Cell Sci 118:3573–3584
CAS
PubMed
CrossRef
Google Scholar
Gherardi E et al (2006) Structural basis of hepatocyte growth factor/scatter factor and MET signalling. Proc Natl Acad Sci U S A 103:4046–4051
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Kirchhofer D et al (2004) Structural and functional basis of the serine protease-like hepatocyte growth factor β-chain in Met binding and signaling. J Biol Chem 279:39915–39924
CAS
PubMed
CrossRef
Google Scholar
Birchmeier C, Birchmeier W, Gherardi E, Vande Woude GF (2003) Met, metastasis, motility and more. Nat Rev Mol Cell Biol 4:915.925
CrossRef
CAS
Google Scholar
Weidner KM et al (1996) Interaction between Gab1 and the c.Met receptor tyrosine kinase is responsible for epithelial morphogenesis. Nature 384:173–176
CAS
PubMed
CrossRef
Google Scholar
Lai AZ, Abella JV, Park M (2009) Crosstalk in Met receptor oncogenesis. Trends Cell Biol 19:542–551
CAS
PubMed
CrossRef
Google Scholar
Trusolino L, Bertotti A, Comoglio PM (2010) MET signalling: principles and functions in development, organ regeneration and cancer. Nat Rev Mol Cell Biol 11:834–848
CAS
PubMed
CrossRef
Google Scholar
Maroun CR, Naujokas MA, Holgado-Madruga M, Wong AJ, Park M (2000) The tyrosine phosphatase SHP.2 is required for sustained activation of extracellular signal-regulated kinase and epithelial morphogenesis downstream from the met receptor tyrosine kinase. Mol Cell Biol 20:8513–8525
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Paliouras GN, Naujokas MA, Park M (2009) Pak4, a novel Gab1 binding partner, modulates cell migration and invasion by the Met receptor. Mol Cell Biol 29:3018.3032
PubMed Central
CrossRef
CAS
Google Scholar
Schaeper U et al (2000) Coupling of Gab1 to c.Met, Grb2, and Shp2 mediates biological responses. J Cell Biol 149:1419–1432
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Schaeper U et al (2007) Distinct requirements for Gab1 in Met and EGF receptor signaling in vivo. Proc Natl Acad Sci U S A 104:15376–15381
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Beenken A, Mohammadi M (2009) The FGF family: biology, pathophysiology and therapy. Nat Rev Drug Discov 8:235–253
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Eswarakumar VP, Lax I, Schlessinger J (2005) Cellular signaling by fibroblast growth factor receptors. Cytokine Growth Factor Rev 16:139–149
CAS
PubMed
CrossRef
Google Scholar
Mohammadi M, Olsen SK, Ibrahimi OA (2005) Structural basis for fibroblast growth factor receptor activation. Cytokine Growth Factor Rev 16:107–137
CAS
PubMed
CrossRef
Google Scholar
Turner N, Grose R (2010) Fibroblast growth factor signalling: from development to cancer. Nat Rev Cancer 10:116–129
CAS
PubMed
CrossRef
Google Scholar
Cao Y, Cao R, Hedlund EM (2008) R regulation of tumor angiogenesis and metastasis by FGF and PDGF signaling pathways. J Mol Med 86(7):785–789
CAS
PubMed
CrossRef
Google Scholar
Cao R, Björndahl MA, Religa P, Clasper S, Garvin S, Galter D et al (2004) PDGF-BB induces intratumoral lymphangiogenesis and promotes lymphatic metastasis. Cancer Cell 6(4):333–345
CAS
PubMed
CrossRef
Google Scholar
Jechlinger M, Sommer A, Moriggl R, Seither P, Kraut N, Capodiecci P et al (2006) Autocrine PDGFR signaling promotes mammary cancer metastasis. J Clin Invest 116(6):1561–1570
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Pollak M (2008) Insulin and insulin-like growth factor signalling in neoplasia. Nat Rev Cancer 8:915–928
CAS
PubMed
CrossRef
Google Scholar
Pollak MN, Schernhammer ES, Hankinson SE (2004) Insulin-like growth factors and neoplasia. Nat Rev Cancer 4:505–518
CAS
PubMed
CrossRef
Google Scholar
Ullrich A et al (1985) Human insulin receptor and its relationship to the tyrosine kinase family of oncogenes. Nature 313:756–761
CAS
PubMed
CrossRef
Google Scholar
Belfiore A, Frasca F, Pandini G, Sciacca L, Vigneri R (2009) Insulin receptor isoforms and insulin receptor/insulin-like growth factor receptor hybrids in physiology and disease. Endocr Rev 30:586–623
CAS
PubMed
CrossRef
Google Scholar
LeRoith D (2000) Insulin-like growth factor I receptor signaling-overlapping or redundant pathways? Endocrinology 141:1287–1288
CAS
PubMed
Google Scholar
Xue C et al (2006) Epidermal growth factor receptor overexpression results in increased tumor cell motility in vivo coordinately with enhanced intravasation and metastasis. Cancer Res 66:192–197
CAS
PubMed
CrossRef
Google Scholar
Lo HW, Hsu SC, Xia W et al (2007) Epidermal growth factor receptor cooperates with signal transducer and activator of transcription 3 to induce epithelial-mesenchymal transition in cancer cells via up-regulation of TWIST gene expression. Cancer Res 67:9066–9076
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Peinado H, Olmeda D, Cano A (2007) Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype? Nat Rev Cancer 7:415–428
CAS
PubMed
CrossRef
Google Scholar
Thiery JP, Sleeman JP (2006) Complex networks orchestrate epithelialmesenchymal transitions. Nat Rev Mol Cell Biol 7:131–142
CAS
PubMed
CrossRef
Google Scholar
Grunert S, Jechlinger M, Beug H (2003) Diverse cellular and molecular mechanisms contribute to epithelial plasticity and metastasis. Nat Rev Mol Cell Biol 4:657–665
PubMed
CrossRef
CAS
Google Scholar
Polyak K, Weinberg RA (2009) Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nat Rev Cancer 9:265–273
CAS
PubMed
CrossRef
Google Scholar
Wang W et al (2006) The activity status of cofilin is directly related to invasion, intravasation, and metastasis of mammary tumors. J Cell Biol 173:395–404
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Kurisu S, Suetsugu S, Yamazaki D, Yamaguchi H, Takenawa T (2005) Rac-WAVE2 signaling is involved in the invasive and metastatic phenotypes of murine melanoma cells. Oncogene 24:1309–1319
CAS
PubMed
CrossRef
Google Scholar
Wang W et al (2004) Identification and testing of a gene expression signature of invasive carcinoma cells within primary mammary tumors. Cancer Res 64:8585–8594
CAS
PubMed
CrossRef
Google Scholar
Gregory PA, Bert AG, Paterson EL et al (2008) The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat Cell Biol 10:593–601
CAS
PubMed
CrossRef
Google Scholar
Korpal M, Lee ES, Hu G, Kang Y (2008) The miR-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2. J Biol Chem 283:14910–14914
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Burk U, Schubert J, Wellner U et al (2008) A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells. EMBO Rep 9:582–589
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Park SM, Gaur AB, Lengyel E, Peter ME (2008) The miR-200 family determines the epithelial phenotype of cancer cells by targeting the Ecadherin repressors ZEB1 and ZEB2. Genes Dev 22:894–907
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Wellner U, Schubert J, Burk UC et al (2009) The EMT-activator ZEB1 promotes tumorigenicity by repressing stemness-inhibiting microRNAs. Nat Cell Biol 11:1487–1495
CAS
PubMed
CrossRef
Google Scholar
Friedl P, Wolf K (2010) Plasticity of cell migration: a multiscale tuning model. J Cell Biol 188:11–19
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Wang W, Eddy R, Condeelis J (2007) The cofilin pathway in breast cancer invasion and metastasis. Nat Rev Cancer 7:429–440
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Olson MF, Sahai E (2008) The actin cytoskeleton in cancer cell motility. Clin Exp Metastasis 26:273–287
PubMed
CrossRef
Google Scholar
Gupton SL, Gertler FB (2007) Filopodia: the fingers that do the walking. Sci STKE 2007(400):re5
PubMed
CrossRef
Google Scholar
Vignjevic D, Montagnac G (2008) Reorganisation of the dendritic actin network during cancer cell migration and invasion. Semin Cancer Biol 18:12–22
CAS
PubMed
CrossRef
Google Scholar
Buccione R, Caldieri G, Ayala I (2009) Invadopodia: specialized tumor cell structures for the focal degradation of the extracellular matrix. Cancer Metastasis Rev 28:137–149
PubMed
CrossRef
Google Scholar
Vega FM, Ridley AJ (2008) Rho GTPases in cancer cell biology. FEBS Lett 582:2093–2101
CAS
PubMed
CrossRef
Google Scholar
Sahai E, Marshall CJ (2002) RHO-GTPases and cancer. Nat Rev Cancer 2:133–142
PubMed
CrossRef
Google Scholar
Jaffe AB, Hall A (2005) Rho GTPases: biochemistry and biology. Annu Rev Cell Dev Biol 21:247–269
CAS
PubMed
CrossRef
Google Scholar
Etienne-Manneville S, Hall A (2002) Rho GTPases in cell biology. Nature 420:629–635
CAS
PubMed
CrossRef
Google Scholar
Burridge K, Wennerberg K (2004) Rho and Rac take center stage. Cell 116:167–179
CAS
PubMed
CrossRef
Google Scholar
Narumiya S, Tanji M, Ishizaki T (2009) Rho signaling, ROCK and mDia1, in transformation, metastasis and invasion. Cancer Metastasis Rev 28:65–76
CAS
PubMed
CrossRef
Google Scholar
Hall A (2005) Rho GTPases and the control of cell behaviour. Biochem Soc Trans 33:891–895
CAS
PubMed
CrossRef
Google Scholar
Ridley AJ (2006) Rho GTPases and actin dynamics in membrane protrusions and vesicle trafficking. Trends Cell Biol 16:522–529
CAS
PubMed
CrossRef
Google Scholar
Zondag GC, Evers EE, ten Klooster JP, Janssen L, van der Kammen RA, Collard JG (2000) Oncogenic Ras downregulates Rac activity, which leads to increased Rho activity and epithelial-mesenchymal transition. J Cell Biol 149:775–782
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Hordijk PL, ten Klooster JP, van der Kammen RA, Michiels F, Oomen LC, Collard JG (1997) Inhibition of invasion of epithelial cells by Tiam1-Rac signaling. Science 278:1464–1466
CAS
PubMed
CrossRef
Google Scholar
Sander EE, ten Klooster JP, van Delft S, van der Kammen RA, Collard JG (1999) Rac downregulates Rho activity: reciprocal balance between both GTPases determines cellular morphology and migratory behavior. J Cell Biol 147:1009–1022
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Pertz O, Hodgson L, Klemke RL, Hahn KM (2006) Spatiotemporal dynamics of RhoA activity in migrating cells. Nature 440:1069–1072
CAS
PubMed
CrossRef
Google Scholar
Ridley AJ, Paterson HF, Johnston CL, Diekmann D, Hall A (1992) The small GTP-binding protein rac regulates growth factor-induced membrane ruffling. Cell 70:401–410
CAS
PubMed
CrossRef
Google Scholar
Cozzolino M, Stagni V, Spinardi L et al (2003) p120 catenin is required for growth factor-dependent cell motility and scattering in epithelial cells. Mol Biol Cell 14:1964–1977
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Anastasiadis PZ (1773) p120-ctn: a nexus for contextual signaling via Rho GTPases. Biochim Biophys Acta 2007:34–46
Google Scholar
Bellovin DI, Bates RC, Muzikansky A, Rimm DL, Mercurio AM (2005) Altered localization of p120 catenin during epithelial to mesenchymal transition of colon carcinoma is prognostic for aggressive disease. Cancer Res 65:10938–10945
CAS
PubMed
CrossRef
Google Scholar
Pinner S, Sahai E (2008) PDK1 regulates cancer cell motility by antagonizing inhibition of ROCK1 by RhoE. Nat Cell Biol 10:127–137
CAS
PubMed
CrossRef
Google Scholar
Wicki A, Lehembre F, Wick N, Hantusch B, Kerjaschki D, Christofori G (2006) Tumor invasion in the absence of epithelial-mesenchymal transition: podoplanin-mediated remodeling of the actin cytoskeleton. Cancer Cell 9:261–272
CAS
PubMed
CrossRef
Google Scholar
Wicki A, Christofori G (2007) The potential role of podoplanin in tumour invasion. Br J Cancer 96:1–5
CAS
PubMed
CrossRef
Google Scholar
Schacht V, Dadras SS, Johnson LA, Jackson DG, Hong YK, Detmar M (2005) Up-regulation of the lymphatic marker podoplanin, a mucin-type transmembrane glycoprotein, in human squamous cell carcinomas and germ cell tumors. Am J Pathol 166:913–921
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Atsumi N, Ishii G, Kojima M, Sanada M, Fujii S, Ochiai A (2008) Podoplanin, a novel marker of tumor-initiating cells in human squamous cell carcinoma A431. Biochem Biophys Res Commun 373:36–41
CAS
PubMed
CrossRef
Google Scholar
Scholl FG, Gamallo C, Vilaro S, Quintanilla M (1999) Identification of PA2.26 antigen as a novel cell-surface mucin-type glycoprotein that induces plasma membrane extensions and increased motility in keratinocytes. J Cell Sci 112:4601–4613
CAS
PubMed
Google Scholar
Poujade M, Grasland-Mongrain E, Hertzog A et al (2007) Collective migration of an epithelial monolayer in response to a model wound. Proc Natl Acad Sci U S A 104:15988–15993
CAS
PubMed
PubMed Central
CrossRef
Google Scholar
Wolf K, Wu YI, Liu Y et al (2007) Multi-step pericellular proteolysis controls the transition from individual to collective cancer cell invasion. Nat Cell Biol 9:893–904
CAS
PubMed
CrossRef
Google Scholar
De Wever O, Mareel M (2003) Role of tissue stroma in cancer cell invasion. J Pathol 200:429–447
PubMed
CrossRef
CAS
Google Scholar
Hicklin DJ, Ellis LM (2005) Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis. J Clin Oncol 23:1011–1027
CAS
PubMed
CrossRef
Google Scholar
Wissmann C, Detmar M (2006) Pathways targeting tumor lymphangiogenesis. Clin Cancer Res 12:6865–6868
CAS
PubMed
CrossRef
Google Scholar
Mantovani A, Sica A et al (2004) The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol 25:677–686
CAS
PubMed
CrossRef
Google Scholar
Mantovani A, Romero P, Palucka AK et al (2008) Tumour immunity: effector response to tumour and role of the microenvironment. Lancet 371:771–783
CAS
PubMed
CrossRef
Google Scholar
Talmadge JE, Donkor M, Scholar E (2007) Inflammatory cell infiltration of tumors: Jekyll or Hyde. Cancer Metastasis Rev 26:373–400
PubMed
CrossRef
Google Scholar
Lewis CE, Pollard JW (2006) Distinct role of macrophages in different tumor microenvironments. Cancer Res 66:605–612
CAS
PubMed
CrossRef
Google Scholar
Condeelis J, Pollard JW (2006) Macrophages: obligate partners for tumor cell migration, invasion, and metastasis. Cell 124:263–266
CAS
PubMed
CrossRef
Google Scholar
Wyckoff JB, Wang Y, Lin EY et al (2007) Direct visualization of macrophage-assisted tumor cell intravasation in mammary tumors. Cancer Res 67:2649–2656
CAS
PubMed
CrossRef
Google Scholar
De Wever O, Demetter P, Mareel M et al (2008) Stromal myofibroblasts are drivers of invasive cancer growth. Int J Cancer 123:2229–2238
PubMed
CrossRef
CAS
Google Scholar
Krishnamachary B et al (2006) Hypoxia-inducible factor-1-dependent repression of E-cadherin in von Hippel-Lindau tumor suppressor-null renal cell carcinoma mediated by TCF3, ZFHX1A, and ZFHX1B. Cancer Res 66:2725–2731
Google Scholar
Sahlgren C et al (2008) Notch signaling mediates hypoxia-induced tumor cell migration and invasion. Proc Natl Acad Sci U S A 105(17):6392–6397
Google Scholar
Evans AJ et al (2007) VHL promotes E2 box-dependent E-cadherin transcription by HIF-mediated regulation of SIP1 and snail. Mol Cell Biol 27:157–169
Google Scholar
Staller P et al (2003) Chemokine receptor CXCR4 downregulated by von Hippel-Lindau tumour suppressor pVHL. Nature 425:307–311
Google Scholar
Ceradini DJ et al (2004) Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nature Med 10:858–864
Google Scholar
Barriga EH, Maxwell PH, Reyes AE, Mayor R. The hypoxia factor Hif-1α controls neural crest chemotaxis and epithelial to mesenchymal transition. J Cell Biol. 2013 May 27;201(5):759-76. doi: 10.1083/jcb.201212100. PubMed PMID: 23712262; PubMed Central PMCID: PMC3664719.
Google Scholar