Cell Biology of Tactile Afferents

  • Rebecca P. Seal
  • Ellen A. LumpkinEmail author


This chapter reviews our current understanding of the cellular and molecular basis of sensory transduction and neurotransmission in mammalian tactile afferents. Recent advances from in vitro studies and rodent models have provided important insights into the cell biology of tactile afferents. The chapter covers fundamental mechanisms of mechanotransduction in cells, how these mechanisms relate to C-tactile afferents, and mechanisms of neurotransmission in these neurons.


Lanceolate ending C-tactile afferent C-LTMR MrgB4 Mechanotransduction channel Peizo2 Tether Vesicular glutamate transporter 



Research in the authors’ laboratories is supported by the National Institutes of Health (R01NS073119 and 5R21NS084191).


  1. Banks RW et al (2013) Glutamatergic modulation of synaptic-like vesicle recycling in mechanosensory lanceolate nerve terminals of mammalian hair follicles. J Physiol 591:2523–2540CrossRefPubMedPubMedCentralGoogle Scholar
  2. Brumovsky PR (2013) VGLUTs in peripheral neurons and the spinal cord: time for a review. ISRN Neurol 2013:829753CrossRefPubMedPubMedCentralGoogle Scholar
  3. Brumovsky P, Villar MJ, Hokfelt T (2006) Tyrosine hydroxylase is expressed in a subpopulation of small dorsal root ganglion neurons in the adult mouse. Expert Neurol 200:153–165CrossRefGoogle Scholar
  4. Chalfie M (2009) Neurosensory mechanotransduction. Nat Rev Mol Cell Biol 10:44–52CrossRefPubMedGoogle Scholar
  5. Coste B et al (2010) Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels. Science 330:55–60CrossRefPubMedPubMedCentralGoogle Scholar
  6. Delfini MC et al (2013) TAFA4, a chemokine-like protein, modulates injury-induced mechanical and chemical pain hypersensitivity in mice. Cell Rep 5:378–388CrossRefPubMedGoogle Scholar
  7. Dong X, Han S, Zylka MJ, Simon MI, Anderson DJ (2001) A diverse family of GPCRs expressed in specific subsets of nociceptive sensory neurons. Cell 106:619–632CrossRefPubMedGoogle Scholar
  8. Faucherre A, Nargeot J, Mangoni ME, Jopling C (2013) piezo2b regulates vertebrate light touch response. J Neurosci 33:17089–17094CrossRefPubMedGoogle Scholar
  9. Fettiplace R, Kim KX (2014) The physiology of mechanoelectrical transduction channels in hearing. Physiol Rev 94:951–986CrossRefPubMedPubMedCentralGoogle Scholar
  10. Fremeau RT Jr, Voglmaier S, Seal RP, Edwards RH (2004) VGLUTs define subsets of excitatory neurons and suggest novel roles for glutamate. Trend Neurosci 27:98–103CrossRefPubMedGoogle Scholar
  11. Harkany T et al (2004) Endocannabinoid-independent retrograde signaling at inhibitory synapses in layer 2/3 of neocortex: involvement of vesicular glutamate transporter 3. J Neurosci 24:4978–4988CrossRefPubMedGoogle Scholar
  12. Hu J, Chiang LY, Koch M, Lewin GR (2010) Evidence for a protein tether involved in somatic touch. EMBO 29:855–867CrossRefGoogle Scholar
  13. Ikeda R et al (2014) Merkel cells transduce and encode tactile stimuli to drive Abeta-afferent impulses. Cell 157:664–675CrossRefPubMedPubMedCentralGoogle Scholar
  14. Kawashima Y, Kurima K, Pan B, Griffith AJ, Holt JR (2015) Transmembrane channel-like (TMC) genes are required for auditory and vestibular mechanosensation. Pflugers Arch 467(1):85–94CrossRefPubMedGoogle Scholar
  15. Kim SE, Coste B, Chadha A, Cook B, Patapoutian A (2012) The role of Drosophila Piezo in mechanical nociception. Nature 483:209–212CrossRefPubMedPubMedCentralGoogle Scholar
  16. Kung C (2005) A possible unifying principle for mechanosensation. Nature 436:647–654CrossRefPubMedGoogle Scholar
  17. Kung C, Martinac B, Sukharev S (2010) Mechanosensitive channels in microbes. Annu Rev Microbiol 64:313–329CrossRefPubMedGoogle Scholar
  18. Kwan KY, Glazer JM, Corey DP, Rice FL, Stucky CL (2009) TRPA1 modulates mechanotransduction in cutaneous sensory neurons. J Neurosci 29:4808–4819CrossRefPubMedPubMedCentralGoogle Scholar
  19. Lechner SG, Frenzel H, Wang R, Lewin GR (2009) Developmental waves of mechanosensitivity acquisition in sensory neuron subtypes during embryonic development. EMBO 28:1479–1491CrossRefGoogle Scholar
  20. Li L, Ginty DD (2014) The structure and organization of lanceolate mechanosensory complexes at mouse hair follicles. Elife 3:e01901PubMedPubMedCentralGoogle Scholar
  21. Li L et al (2011) The functional organization of cutaneous low-threshold mechanosensory neurons. Cell 147:1615–1627CrossRefPubMedPubMedCentralGoogle Scholar
  22. Liu Q et al (2007) Molecular genetic visualization of a rare subset of unmyelinated sensory neurons that may detect gentle touch. Nat Neurosci 10:946–948CrossRefPubMedGoogle Scholar
  23. Lou S, Duan B, Vong L, Lowell BB, Ma Q (2013) Runx1 controls terminal morphology and mechanosensitivity of VGLUT3-expressing C-mechanoreceptors. J Neurosci 33:870–882CrossRefPubMedPubMedCentralGoogle Scholar
  24. Lumpkin EA, Marshall KL, Nelson AM (2010) The cell biology of touch. J Cell Biol 191:237–248CrossRefPubMedPubMedCentralGoogle Scholar
  25. Maksimovic S et al (2014) Epidermal Merkel cells are mechanosensory cells that tune mammalian touch receptors. Nature 509(7502):617–621CrossRefPubMedPubMedCentralGoogle Scholar
  26. Mammoto T, Mammoto A, Ingber DE (2013) Mechanobiology and developmental control. Annu Rev Cell Mol Biol 29:27–61, 101512-122340CrossRefGoogle Scholar
  27. McKemy DD (2013) The molecular and cellular basis of cold sensation. ACS Chem Neurosci 4:238–247CrossRefPubMedGoogle Scholar
  28. Olausson H, Wessberg J, Morrison I, McGlone F, Vallbo A (2010) The neurophysiology of unmyelinated tactile afferents. Neurosci Biobehav Rev 34:185–191CrossRefPubMedGoogle Scholar
  29. Poole K, Herget R, Lapatsina L, Ngo HD, Lewin GR (2014) Tuning Piezo ion channels to detect molecular-scale movements relevant for fine touch. Nat Commun 5:3520CrossRefPubMedPubMedCentralGoogle Scholar
  30. Quick K et al (2012) TRPC3 and TRPC6 are essential for normal mechanotransduction in subsets of sensory neurons and cochlear hair cells. Open biol 2:120068CrossRefPubMedPubMedCentralGoogle Scholar
  31. Seal RP et al (2009) Injury-induced mechanical hypersensitivity requires C-low threshold mechanoreceptors. Nature 462:651–655CrossRefPubMedPubMedCentralGoogle Scholar
  32. Vilceanu D, Stucky CL (2010) TRPA1 mediates mechanical currents in the plasma membrane of mouse sensory neurons. PloS one 5:e12177CrossRefPubMedPubMedCentralGoogle Scholar
  33. Voglmaier SM et al (2006) Distinct endocytic pathways control the rate and extent of synaptic vesicle protein recycling. Neuron 51:71–84CrossRefPubMedGoogle Scholar
  34. Volkers L, Mechioukhi Y, Coste B (2014) Piezo channels: from structure to function. Pflugers Arch 467(1):95–99CrossRefPubMedGoogle Scholar
  35. Vrontou S, Wong AM, Rau KK, Koerber HR, Anderson DJ (2013) Genetic identification of C fibres that detect massage-like stroking of hairy skin in vivo. Nature 493:669–673CrossRefPubMedPubMedCentralGoogle Scholar
  36. Weston MC, Nehring RB, Wojcik SM, Rosenmund C (2011) Interplay between VGLUT isoforms and endophilin A1 regulates neurotransmitter release and short-term plasticity. Neuron 69:1147–1159CrossRefPubMedGoogle Scholar
  37. Wetzel C et al (2007) A stomatin-domain protein essential for touch sensation in the mouse. Nature 445:206–209CrossRefPubMedGoogle Scholar
  38. Woo SH et al (2014) Piezo2 is required for Merkel-cell mechanotransduction. Nature 509:622–626CrossRefPubMedPubMedCentralGoogle Scholar
  39. Zylka MJ, Dong X, Southwell AL, Anderson DJ (2003) Atypical expansion in mice of the sensory neuron-specific Mrg G protein-coupled receptor family. Proc Natl Acad Sci U S A 100:10043–10048CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Departments of Neurobiology and Otolaryngology, Pittsburgh Center for Pain ResearchUniversity of Pittsburgh School of MedicinePittsburghUSA
  2. 2.Departments of Dermatology and Physiology and Cellular BiophysicsColumbia University College of Physicians and SurgeonsNew YorkUSA

Personalised recommendations