Advertisement

Functional Properties of C-Low Threshold Mechanoreceptors (C-LTMRs) in Nonhuman Mammals

  • Mark PitcherEmail author
  • Claire E. Le Pichon
  • Alexander Chesler
Chapter

Abstract

In humans, unmyelinated C-tactile fibers, referred to as C-low threshold mechanoreceptors (C-LTMRs) in nonhuman mammals, are found exclusively in hairy skin and preferentially respond to slow moving gentle touch, such as that produced by lightly stroking the skin. While substantial species differences exist in the proportion of C-LTMRs to the total C-fiber population, C-LTMRs appear to be expressed more densely in proximal regions of the limbs and the trunk. Functionally, C-LTMRs are specifically tuned to relatively low velocity (~0.1 cm/s) cutaneous stimulation, respond with biphasic adaptation to a single sustained stimulus and exhibit prolonged fatigue in response to repeated stimulation. While a molecular marker of the global C-LTMR population is lacking, subtypes expressing MrgprB4, VGLUT3, and TH have been identified. Considering that C-LTMRs terminate in lamina II of the spinal dorsal horn, there is increasing evidence supporting their involvement in the modulation of spinal responses to nociceptive input.

Keywords

C-Tactile C-Low threshold mechanoreceptor Unmyelinated C-fiber Sensory afferent Touch Pain Hair follicle 

References

  1. Ackerley R, Backlund Wasling H, Liljencrantz J, Olausson H, Johnson RD, Wessberg J (2014) Human C-tactile afferents are tuned to the temperature of a skin-stroking caress. J Neurosci 34(8):2879–2883CrossRefPubMedPubMedCentralGoogle Scholar
  2. Bessou P, Burgess PR, Perl ER, Taylor CB (1971) Dynamic properties of mechanoreceptors with unmyelinated (C) fibers. J Neurophysiol 34(1):116–131PubMedGoogle Scholar
  3. Bessou P, Perl ER (1969) Response of cutaneous sensory units with unmyelinated fibers to noxious stimuli. J Neurophysiol 32(6):1025–1043PubMedGoogle Scholar
  4. Brumovsky P, Hygge-Blakeman K, Villar MJ, Watanabe M, Wiesenfeld-Hallin Z, Hokfelt T (2006) Phenotyping of sensory and sympathetic ganglion neurons of a galanin-overexpressing mouse—possible implications for pain processing. J Chem Neuroanat 31:243–262CrossRefPubMedGoogle Scholar
  5. Cain DM, Khasabov SG, Simone DA (2001) Response properties of mechanoreceptors and nociceptors in mouse glabrous skin: an in vivo study. J Neurophysiol 85:1561–1574PubMedGoogle Scholar
  6. Cauna N (1969) The fine morphology of the sensory receptor organs in the auricle of the rat. J Comp Neurol 136:81–98CrossRefPubMedGoogle Scholar
  7. Cauna N (1973) The free penicillate nerve endings of the human hairy skin. J Anat 115:277–288PubMedPubMedCentralGoogle Scholar
  8. Cavanaugh DJ, Lee H, Lo L, Shields SD, Zylka MJ, Basbaum AI, Anderson DJ (2009) Distinct subsets of unmyelinated primary sensory fibers mediate behavioral responses to noxious thermal and mechanical stimuli. Proc Natl Acad Sci U S A 106:9075–9080CrossRefPubMedPubMedCentralGoogle Scholar
  9. Cervero F, Laird JM (1999) Visceral pain. Lancet 353:2145–2148CrossRefPubMedGoogle Scholar
  10. Craig AD (2003) Interoception: the sense of the physiological condition of the body. Curr Opin Neurobiol 13:500–505CrossRefPubMedGoogle Scholar
  11. Delfini MC, Mantilleri A, Gaillard S, Hao J, Reynders A, Malapert P, Alonso S, Francois A, Barrere C, Seal R, Landry M, Eschallier A, Alloui A, Bourinet E, Delmas P, Le Feuvre Y, Moqrich A (2013) TAFA4, a chemokine-like protein modulates injury-induced mechanical and chemical pain hypersensitivity in mice. Cell Rep 5:378–388CrossRefPubMedGoogle Scholar
  12. Djouhri L, Bleazard L, Lawson SN (1998) Association of somatic action potential shape with sensory receptive properties in guinea-pig dorsal root ganglion neurons. J Physiol 513(3):857–872CrossRefPubMedPubMedCentralGoogle Scholar
  13. Dong X, Han S, Zylka MJ, Simon MI, Anderson DJ (2001) A diverse family of GPCRs expressed in specific subsets of nociceptive sensory neurons. Cell 106:619–632CrossRefPubMedGoogle Scholar
  14. Douglas WW, Ritchie JM (1957) Non-medullated fibres in the saphenous nerve which signal touch. J Physiol I39:385–399CrossRefGoogle Scholar
  15. Fang X, McMullan S, Lawson SN, Djouhri L (2005) Electrophysiological differences between nociceptive and non-nociceptive dorsal root ganglion neurons in the rat in vivo. J Physiol 565(3):927–943CrossRefPubMedPubMedCentralGoogle Scholar
  16. Franz DN, Iggo A (1968) Conduction failure in myelinated and non-myelinated axons at low temperatures. J Physiol 199:319–345CrossRefPubMedPubMedCentralGoogle Scholar
  17. Gee MD, Lynn B, Cotsell B (1996) Activity-dependent slowing of conduction velocity provides a method for identifying different functional classes of c-fibre in the rat saphenous nerve. Neuroscience 73(3):667–675CrossRefPubMedGoogle Scholar
  18. Gee MD, Lynn B, Basile S, Pierau FK, Cotsell B (1999) The relationship between axonal spike shape and functional modality in cutaneous c-fibres in the pig and rat. Neuroscience 90(2):509–518CrossRefPubMedGoogle Scholar
  19. Hahn JF (1971) Thermal-mechanical stimulus interactions in low-threshold c-fiber mechanoreceptors of cat. Exp Neurol 33:607–617CrossRefPubMedGoogle Scholar
  20. Han SK, Dong X, Hwang JI, Zylka MJ, Anderson DJ, Simon MI (2002) Orphan G protein-coupled receptors MrgA1 and MrgC11 are distinctively activated by RF-amide-related peptides through the Gαq/11 pathway. Proc Natl Acad Sci U S A 99:14740–14745CrossRefPubMedPubMedCentralGoogle Scholar
  21. Hensel A, Iggo A, Witt I (1960) A quantitative study of sensitive cutaneous thermoreceptors with c afferent fibres. J Physiol 153:113–126CrossRefPubMedPubMedCentralGoogle Scholar
  22. Iggo A (1960) Cutaneous mechanoreceptors with afferent c fibres. J Physiol 152:337–353CrossRefPubMedPubMedCentralGoogle Scholar
  23. Iggo A, Kornhuber HH (1977) A quantitative study of c-mechanoreceptors in hairy skin of the cat. J Physiol 271:549–565CrossRefPubMedPubMedCentralGoogle Scholar
  24. Iriuchijima J, Zotterman Y (1960) The specificity of afferent cutaneous c-fibres in mammals. Acta Physiol Scand 49:267–278CrossRefPubMedGoogle Scholar
  25. Kramer HH, Lundblad L, Birklein F, Linde M, Karlsson T, Elam M, Olausson H (2007) Activation of the cortical pain network by soft tactile stimulation after injection of sumatriptan. Pain 133:72–78CrossRefPubMedGoogle Scholar
  26. Kramer HH, Lundblad L, Elam M, Olausson H (2006) Pain inhibition by brush stroking is mediated by unmyelinated tactile afferents. Soc. Neurosci. Abstract # 143.4Google Scholar
  27. Kumazawa T, Perl ER (1977) Primate cutaneous sensory units with unmyelinated (c) afferent fibers. J Neurophysiol 40(6):1325–1338PubMedGoogle Scholar
  28. Lembo PM, Lembo MC, Grazzini E, Groblewski T, O’Donnell D, Roy MO, Zhang J, Hoffert C, Cao J, Schmidt R, Pelletier M, Labarre M, Gosselin M, Fortin Y, Banville D, Shen SH, Ström P, Payza K, Dray A, Walker P, Ahmad S (2002) Proenkephalin A gene products activate a new family of sensory neuron-specific GPCRs. Nat Neurosci 5:201–209CrossRefPubMedGoogle Scholar
  29. Li L, Rutlin M, Abraira VE, Cassidy C, Kus L, Gong S, Jankowski MP, Luo W, Heintz N, Koerber HR, Woodbury CJ, Ginty DD (2011) The functional organization of cutaneous low-threshold mechanosensory neurons. Cell 147:1615–1627CrossRefPubMedPubMedCentralGoogle Scholar
  30. Lindblom U, Tapper DN (1967) Terminal properties of a vibro-tactile sensor. Exp Neurol 17(1):1–15CrossRefPubMedGoogle Scholar
  31. Linde M, Elam M, Lundblad L, Olausson H, Dahlof CG (2004) Sumatriptan (5-HT1B/1D-agonist) causes a transient allodynia. Cephalalgia 24:1057–1066CrossRefPubMedGoogle Scholar
  32. Liu Q, Vrontou S, Rice FL, Zylka MJ, Dong X, Anderson DJ (2007) Molecular genetic visualization of a rare subset of unmyelinated sensory neurons that may detect gentle touch. Nat Neurosci 10(8):946–948CrossRefPubMedGoogle Scholar
  33. Lou S, Duan B, Vong L, Lowell BB, Ma Q (2013) Runx1 controls terminal morphology and mechanosensitivity of VGLUT3-expressing C-mechanoreceptors. J Neurosci 33(3):870–882CrossRefPubMedPubMedCentralGoogle Scholar
  34. Lynn B, Carpenter SE (1982) Primary afferent units from the hairy skin of the rat hind limb. Brain Res 238:29–43CrossRefPubMedGoogle Scholar
  35. Malmberg AB, Chen C, Tonegawa S, Basbaum AI (1997) Preserved acute pain and reduced neuropathic pain in mice lacking PKCgamma. Science 278:279–283CrossRefPubMedGoogle Scholar
  36. Maruhashi J, Mizuguchi K, Tasaki I (1952) Action currents in single afferent nerve fibres elicited by stimulation of the skin of the toad and the cat. J Physiol 117:129–151CrossRefPubMedPubMedCentralGoogle Scholar
  37. Melzack R, Wall PD (1965) Pain mechanisms: a new theory. Science 150(3699):971–979CrossRefPubMedGoogle Scholar
  38. Mense S, Schmidt RF (1974) Activation of group IV afferent units from muscle by algesic agents. Brain Res 72(2):305–310CrossRefPubMedGoogle Scholar
  39. Merzenich MM, Harrington T (1969) The sense of flutter-vibration evoked by stimulation of the hairy skin of primates: comparison of human sensory capacity with the responses of mechanoreceptive afferents innervating the hairy skin of monkeys. Exp Brain Res 9:236–260CrossRefPubMedGoogle Scholar
  40. Molliver DC, Wright DE, Leitner ML, Parsadanian AS, Doster K, Wen D, Yan Q, Snider WD (1997) IB4-binding DRG neurons switch from NGF to GDNF dependence in early postnatal life. Neuron 19:849–861CrossRefPubMedGoogle Scholar
  41. Nordin M (1990) Low-threshold mechanoreceptive and nociceptive units with unmyelinated (C) fibres in the human supraorbital nerve. J Physiol 426:229–240CrossRefPubMedPubMedCentralGoogle Scholar
  42. Olausson H, Wessberg J, Morrison I, McGlone F, Vallbo A (2010) The neurophysiology of unmyelinated tactile afferents. Neurosci Biobehav Rev 34:185–191CrossRefPubMedGoogle Scholar
  43. Perry MJ, Lawson SN (1998) Differences in expression of oligosaccharides, neuropeptides, carbonic anhydrase and neurofilament in rat primary afferent neurons retrogradely labelled via skin, muscle or visceral nerves. Neuroscience 85:293–310CrossRefPubMedGoogle Scholar
  44. Pitcher MH, Cervero F (2010) Role of the NKCC1 co-transporter in sensitization of spinal nociceptive neurons. Pain 151:756–762CrossRefPubMedGoogle Scholar
  45. Ribeiro-da-Silva A, Tagari P, Cuello AC (1989) Morphological characterization of substance P-like immunoreactive glomeruli in the superficial dorsal horn of the rat spinal cord and trigeminal subnucleus caudalis: a quantitative study. J Comp Neurol 281:497–515CrossRefPubMedGoogle Scholar
  46. Rice FL, Albrecht PJ (2008) Cutaneous mechanisms of tactile perception: morphological and chemical organization of the innervation to the skin. In: Basbaum AI, Kaneko A, Shepherd GM, Westheimer G (eds) The senses, a comprehensive reference. Academic Press, San Diego, pp 1–32CrossRefGoogle Scholar
  47. Sassen M, Zimmermann M (1971) Capacity of cutaneous C-fibre mechanoreceptors to transmit information on stimulus intensity. Proc Int Union Physiol Sci 9:1466Google Scholar
  48. Seal RP, Wang X, Guan Y, Raja SN, Woodbury CJ, Basbaum AI, Edwards RH (2009) Injury-induced mechanical hypersensitivity requires C-low threshold mechanoreceptors. Nature 462:651–655CrossRefPubMedPubMedCentralGoogle Scholar
  49. Shea VK, Perl ER (1985) Sensory receptors with unmyelinated (C) fibers innervating the skin of the rabbit’s ear. J Neurophysiol 54(3):491–501PubMedGoogle Scholar
  50. Shim B, Ringkamp M, Lambrinos GL, Hartke TV, Griffen JW, Meyer RA (2008) Activity-dependent slowing of conduction velocity in uninjured L4 C fibers increases after an L5 spinal nerve injury in the rat. Pain 128(1–2):40–51Google Scholar
  51. Sugiura Y (1996) Spinal organization of C-fiber afferents related with nociception or non-nociception. Prog Brain Res 113:319–339CrossRefGoogle Scholar
  52. Sugiura Y, Lee CL, Perl ER (1986) Central projections of identified, unmyelinated (C) afferent fibers innervating mammualian skin. Science 234:358–361CrossRefPubMedGoogle Scholar
  53. Suarez-Roca H, Piñerua-Shuhaibar L, Morales ME, Maixner W (2003) Increased perception of post-ischemic paresthesias in depressed subjects. J Psychosom Res 55(3):253–257CrossRefPubMedGoogle Scholar
  54. Takahashi K, Sato J, Mizumura K (2003) Responses of C-fiber low threshold mechanoreceptors and nociceptors to cold were facilitated in rats persistently inflamed and hypersensitive to cold. Neurosci Res 47:409–419CrossRefPubMedGoogle Scholar
  55. Traub RJ, Mendell LM (1988) The spinal projection of individual identified A-delta- and C-fibers. J Neurophysiol 59(1):41–55PubMedGoogle Scholar
  56. Uvänas-Moberg K, Arn I, Magnusson D (2005) The psychobiology of emotion: the role of the oxytocinergic system. Int J Behav Med 12(2):59–65CrossRefPubMedGoogle Scholar
  57. Vallbo AB, Olausson H, Wessberg J (1999) Unmyelinated afferents constitute a second system coding tactile stimuli of the human hairy skin. J Neurophysiol 81:2753–2763PubMedGoogle Scholar
  58. Vrontou S, Wong AM, Rau KK, Koerber HR, Anderson DJ (2013) Genetic identification of C fibres that detect massage-like stroking of hairy skin in vivo. Nature 493:669–676CrossRefPubMedPubMedCentralGoogle Scholar
  59. Weiss T, Straube T, Boettcher J, Hecht H, Spohn D, Miltner WHR (2008) Brain activation upon selective stimulation of cutaneous C- and Aδ-fibers. Neuroimage 41:1372–1381CrossRefPubMedGoogle Scholar
  60. Wessberg J, Olausson H, Fernstrom KW, Vallbo AB (2003) Receptive field properties of unmyelinated tactile afferents in the human skin. J Neurophysiol 89:1567–1575CrossRefPubMedGoogle Scholar
  61. Zotterman Y (1939) Touch, pain and tickling: an electrophysiological investigation on cutaneous sensory nerves. J Physiol 95:1–28CrossRefPubMedPubMedCentralGoogle Scholar
  62. Zylka MJ, Dong X, Southwell AL, Anderson DJ (2003) Atypical expansion in mice of the sensory neuron-specific Mrg G protein-coupled receptor family. Proc Natl Acad Sci U S A 100:10043–10048CrossRefPubMedPubMedCentralGoogle Scholar
  63. Zylka MJ, Rice FL, Anderson DJ (2005) Topographically distinct epidermal nociceptive circuits revealed by axonal tracers targeted to Mrgprd. Neuron 45:17–25CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Mark Pitcher
    • 1
    Email author
  • Claire E. Le Pichon
    • 2
  • Alexander Chesler
    • 1
  1. 1.National Center for Complementary and Integrative HealthNational Institutes of HealthBethesdaUSA
  2. 2.National Institute for Neurological Disease and StrokeNational Institutes of HealthBethesdaUSA

Personalised recommendations