Study of a Mixed Dispersal Population Dynamics Model

  • Marina Chugunova
  • Baasansuren Jadamba
  • Chiu-Yen KaoEmail author
  • Christine Klymko
  • Evelyn Thomas
  • Bingyu Zhao
Part of the The IMA Volumes in Mathematics and its Applications book series (IMA, volume 160)


In this paper, we consider a mixed dispersal model with periodic and Dirichlet boundary conditions and its corresponding linear eigenvalue problem. This model describes the time evolution of a population which disperses both locally and nonlocally. We investigate how long time dynamics depend on the parameter values. Furthermore, we study the minimization of the principal eigenvalue under the constraints that the resource function is bounded from above and below, and with a fixed total integral. Biologically, this minimization problem is motivated by the question of determining the optimal spatial arrangement of favorable and unfavorable regions for the species to die out more slowly or survive more easily. Our numerical simulations indicate that the optimal favorable region tends to be a simply connected domain. Numerous results are shown to demonstrate various scenarios of optimal favorable regions for periodic and Dirichlet boundary conditions.


Mixed Diffusion Model Favored Regions Dirichlet Boundary Conditions Principal Eigenvalue Unfavorable Regions 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors would like to thank Institute for Mathematics and its Applications at University of Minnesota for hosting a special workshop on “WhAM! A Research Collaboration Workshop for Women in Applied Mathematics: Numerical Partial Differential Equations and Scientific Computing.” This paper summarized the project results of Team3 on principal eigenvalue for a population dynamics model problem with both local and nonlocal dispersal.


  1. 1.
    Bai, X., Li, F.: Optimization of species survival for logistic models with non-local dispersal. Nonlinear Analysis: Real World Applications 21, 53–62 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bai, X., Li, F.: Global dynamics of a competition model with nonlocal dispersal ii: The full system. Journal of Differential Equations 258(8), 2655–2685 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bangerth, W., Heister, T., Heltai, L., Kanschat, G., Kronbichler, M., Maier, M., Turcksin, B., Young, T.D.: The deal.II library, version 8.2. Archive of Numerical Software 3 (2015)Google Scholar
  4. 4.
    Cantrell, R.S., Cosner, C.: Diffusive logistic equations with indefinite weights: population models in disrupted environments. Proceedings of the Royal Society of Edinburgh: Section A Mathematics 112(3-4), 293–318 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Cantrell, R.S., Cosner, C.: Diffusive logistic equations with indefinite weights: population models in disrupted environments ii. SIAM Journal on Mathematical Analysis 22(4), 1043–1064 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Cantrell, R.S., Cosner, C.: Spatial ecology via reaction-diffusion equations. John Wiley & Sons (2004)Google Scholar
  7. 7.
    Chasseigne, E., Chaves, M., Rossi, J.D.: Asymptotic behavior for nonlocal diffusion equations. Journal de mathématiques pures et appliquées 86(3), 271–291 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Chugunova, M.: Inverse spectral problem for the sturm-liouville operator with eigenvalue parameter dependent boundary conditions. In: Operator theory, system theory and related topics, pp. 187–194. Springer (2001)Google Scholar
  9. 9.
    Colombo, E.H., Anteneodo, C.: Nonlinear diffusion effects on biological population spatial patterns. Physical Review E 86(3), 036,215 (2012)Google Scholar
  10. 10.
    Cortazar, C., Coville, J., Elgueta, M., Martinez, S.: A nonlocal inhomogeneous dispersal process. Journal of Differential Equations 241(2), 332–358 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Cortázar, C., Elgueta, M., García-Melián, J., Martínez, S.: Existence and asymptotic behavior of solutions to some inhomogeneous nonlocal diffusion problems. SIAM Journal on Mathematical Analysis 41(5), 2136–2164 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Cosner, C., Dávila, J., Martínez, S.: Evolutionary stability of ideal free nonlocal dispersal. Journal of Biological Dynamics 6(2), 395–405 (2012)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Coville, J.: On a simple criterion for the existence of a principal eigenfunction of some nonlocal operators. Journal of Differential Equations 249(11), 2921–2953 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Coville, J., Dávila, J., Martínez, S.: Existence and uniqueness of solutions to a nonlocal equation with monostable nonlinearity. SIAM Journal on Mathematical Analysis 39(5), 1693–1709 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Coville, J., Dávila, J., Martínez, S.: Nonlocal anisotropic dispersal with monostable nonlinearity. Journal of Differential Equations 244(12), 3080–3118 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Coville, J., Davila, J., Martinez, S.: Pulsating fronts for nonlocal dispersion and kpp nonlinearity. Annales de l’Institut Henri Poincare (C) Non Linear Analysis 30(2), 179–223 (2013)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Coville, J., Dupaigne, L.: On a non-local equation arising in population dynamics. Proceedings of the Royal Society of Edinburgh: Section A Mathematics 137(04), 727–755 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Deng, K.: On a nonlocal reaction-diffusion population model. Discrete and Continuous Dynamical Systems Series B 9(1), 65 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Henrot, A.: Extremum problems for eigenvalues of elliptic operators. Springer Science & Business Media (2006)Google Scholar
  20. 20.
    Hintermüller, M., Kao, C.Y., Laurain, A.: Principal eigenvalue minimization for an elliptic problem with indefinite weight and robin boundary conditions. Applied Mathematics and Optimization 65(1), 111–146 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Jin, Y., Lewis, M.A.: Seasonal influences on population spread and persistence in streams: critical domain size. SIAM Journal on Applied Mathematics 71(4), 1241–1262 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Jin, Y., Lewis, M.A.: Seasonal influences on population spread and persistence in streams: spreading speeds. Journal of Mathematical Biology 65(3), 403–439 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Kao, C.Y., Lou, Y., Shen, W.: Random dispersal vs. nonlocal dispersal. Discrete and Continuous Dynamical Systems 26(2), 551–596 (2010)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Kao, C.Y., Lou, Y., Shen, W.: Evolution of mixed dispersal in periodic environments. Discrete and Continuous Dynamical Systems B 17(6), 2047–2072 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Kao, C.Y., Lou, Y., Yanagida, E.: Principal eigenvalue for an elliptic problem with indefinite weight on cylindrical domains. Mathematical Biosciences and Engineering 5(2), 315–335 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Kao, C.Y., Su, S.: Efficient rearrangement algorithms for shape optimization on elliptic eigenvalue problems. Journal of Scientific Computing 54(2-3), 492–512 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Li, F., Lou, Y., Wang, Y.: Global dynamics of a competition model with non-local dispersal i: The shadow system. Journal of Mathematical Analysis and Applications 412(1), 485–497 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Lutscher, F.: Nonlocal dispersal and averaging in heterogeneous landscapes. Applicable Analysis 89(7), 1091–1108 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Shen, W., Xie, X.: On principal spectrum points/principal eigenvalues of nonlocal dispersal operators and applications. arXiv preprint arXiv:1309.4753 (2013)
  30. 30.
    Skellam, J.: Random dispersal in theoretical populations. Biometrika pp. 196–218 (1951)Google Scholar
  31. 31.
    Sun, J.W.: Existence and uniqueness of positive solutions for a nonlocal dispersal population model. Electronic Journal of Differential Equations 2014(143), 1–9 (2014)MathSciNetGoogle Scholar
  32. 32.
    Volpert, V., Vougalter, V.: Existence of stationary pulses for nonlocal reaction-diffusion equations. Documenta Mathematica 19, 1141–1153 (2014)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Marina Chugunova
    • 1
  • Baasansuren Jadamba
    • 2
  • Chiu-Yen Kao
    • 3
    Email author
  • Christine Klymko
    • 4
  • Evelyn Thomas
    • 5
  • Bingyu Zhao
    • 6
  1. 1.Department of MathematicsClaremont Graduate UniversityClaremontUSA
  2. 2.School of Mathematical SciencesRochester Institute of TechnologyRochesterUSA
  3. 3.Department of Mathematical SciencesClaremont McKenna CollegeClaremontUSA
  4. 4.Center for Applied Scientific ComputingLawrence Livermore National LaboratoryLivermoreUSA
  5. 5.Department of Mathematics and StatisticsUniversity of Maryland Baltimore CountyBaltimoreUSA
  6. 6.Department of Applied MathematicsBrown UniversityProvidenceUSA

Personalised recommendations