Epigenetic Mechanisms of Maternal Obesity Effects on the Descendants

  • Paul CorderoEmail author
  • Jiawei Li
  • Jonathan L. Temple
  • Vi Nguyen
  • Jude A. Oben
Part of the Physiology in Health and Disease book series (PIHD)


Obesity has been described as a pandemic of the twenty-first century. Its prevalence among women of childbearing age continues to rise, increasing the risk of complications during pregnancy and the likelihood of their offspring developing obesity and its comorbidities in adult life. As our understanding of the developmental origins of health and disease has grown, the influence of maternal perinatal physiology has become more clear. Maternal programming appears to be shaped by epigenetic means. Diverse communities of epigenetic modifications determine the phenotypic characteristics of different cell types and are themselves adaptable to changes in cellular physiology and environment. It is now thought that such epigenetic programs are potentially heritable. Maternal body mass and other obesogenic cues have been widely associated with epigenetic alterations of offspring in human observational studies. Similarly, interventional studies in rodents demonstrate that obesogenic maternal diet, as well as maternal diabetes and obesity, manifests epigenetic and phenotypic alterations in different organs, often in association with genes related to appetite, glycaemic control and lipid biosynthesis. Whilst the dangers posed by obesity to the health of our society are undeniable, the impact of obesity upon the health of our children is only just beginning to emerge. Recent evidence suggests that, in addition to the effects of epigenetic programming upon first generation offspring, subsequent generations may also be affected. A greater understanding of the molecular phenomenology underlying maternal epigenetic programming in obesity may well lead to the development of effective therapeutic interventions to combat this disease and its comorbidities.


Epigenetics Obesity DNA methylation Histone Developmental programming Maternal obesity Transgenerational DOHaD Epigenotype 

List of Abbreviations


Body mass index


CCAAT/enhancer binding protein, beta


Developmental origins of health and disease


H19, imprinted maternally expressed transcript


Long interspersed nuclear element 1


Mesoderm-specific transcript


Non-alcoholic fatty liver disease


Non-alcoholic fatty pancreas disease


Neuropeptide Y


Nuclear receptor subfamily 3, group C, member 1


Paternally expressed 3




Peroxisome proliferator-activated receptor-gamma Co-activator 1-α


Peroxisome proliferator activated receptor alpha


Retinoid X receptor-α


Toll-like receptor 1


Toll-like receptor 2


Zinc finger protein 423



We acknowledge all the scientists who have contributed to the understanding of this field. We also acknowledge the Obesity Action Campaign (


  1. 1.
    Haslam DW, James WP (2005) Obesity. Lancet 366:1197–1209. doi: 10.1016/S0140-6736(05)67483-1 CrossRefPubMedGoogle Scholar
  2. 2.
    Tchernof A, Despres JP (2013) Pathophysiology of human visceral obesity: an update. Physiol Rev 93:359–404. doi: 10.1152/physrev.00033.2011 CrossRefPubMedGoogle Scholar
  3. 3.
    Ng M, Fleming T, Robinson M, Thomson B, Graetz N, Margono C et al (2014) Global, regional, and national prevalence of overweight and obesity in children and adults during 1980-2013: a systematic analysis for the global burden of disease study 2013. Lancet 384:766–781. doi: 10.1016/S0140-6736(14)60460-8 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Specchia ML, Veneziano MA, Cadeddu C, Ferriero AM, Mancuso A, Ianuale C et al (2015) Economic impact of adult obesity on health systems: a systematic review. Eur J Public Health 25:255–262. doi: 10.1093/eurpub/cku170 CrossRefPubMedGoogle Scholar
  5. 5.
    Poston L (2012) Maternal obesity, gestational weight gain and diet as determinants of offspring long term health. Best Pract Res Clin Endocrinol Metab 26:627–639. doi: 10.1016/j.beem.2012.03.010 CrossRefPubMedGoogle Scholar
  6. 6.
    Barisione M, Carlini F, Gradaschi R, Camerini G, Adami GF (2012) Body weight at developmental age in siblings born to mothers before and after surgically induced weight loss. Surg Obes Relat Dis 8:387–391. doi: 10.1016/j.soard.2011.09.016 CrossRefPubMedGoogle Scholar
  7. 7.
    Cordero P, Gonzalez-Muniesa P, Milagro FI, Campion J, Martinez JA (2015) Perinatal maternal feeding with an energy dense diet and/or micronutrient mixture drives offspring fat distribution depending on the sex and growth stage. J Anim Physiol Anim Nutr (Berl) 99:834–840. doi: 10.1111/jpn.12283 CrossRefGoogle Scholar
  8. 8.
    Cordero P, Milagro FI, Campion J, Martinez JA (2014) Supplementation with methyl donors during lactation to high-fat-sucrose-fed dams protects offspring against liver fat accumulation when consuming an obesogenic diet. J Dev Orig Health Dis 1–11. doi: 10.1017/S204017441400035X
  9. 9.
    Oben JA, Mouralidarane A, Samuelsson AM, Matthews PJ, Morgan ML, McKee C et al (2010) Maternal obesity during pregnancy and lactation programs the development of offspring non-alcoholic fatty liver disease in mice. J Hepatol 52:913–920. doi: 10.1016/j.jhep.2009.12.042 CrossRefPubMedGoogle Scholar
  10. 10.
    Oben JA, Patel T, Mouralidarane A, Samuelsson AM, Matthews P, Pombo J et al (2010) Maternal obesity programmes offspring development of non-alcoholic fatty pancreas disease. Biochem Biophys Res Commun 394:24–28. doi: 10.1016/j.bbrc.2010.02.057 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Begum G, Davies A, Stevens A, Oliver M, Jaquiery A, Challis J et al (2013) Maternal undernutrition programs tissue-specific epigenetic changes in the glucocorticoid receptor in adult offspring. Endocrinology 154:4560–4569. doi: 10.1210/en.2013-1693 CrossRefPubMedGoogle Scholar
  12. 12.
    Ge ZJ, Liang QX, Hou Y, Han ZM, Schatten H, Sun QY et al (2014) Maternal obesity and diabetes may cause DNA methylation alteration in the spermatozoa of offspring in mice. Reprod Biol Endocrinol 12:29. doi: 10.1186/1477-7827-12-29 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Ge ZJ, Luo SM, Lin F, Liang QX, Huang L, Wei YC et al (2014) DNA methylation in oocytes and liver of female mice and their offspring: effects of high-fat-diet-induced obesity. Environ Health Perspect 122:159–164. doi: 10.1289/ehp.1307047 PubMedGoogle Scholar
  14. 14.
    Lesseur C, Armstrong DA, Paquette AG, Koestler DC, Padbury JF, Marsit CJ (2013) Tissue-specific Leptin promoter DNA methylation is associated with maternal and infant perinatal factors. Mol Cell Endocrinol 381:160–167. doi: 10.1016/j.mce.2013.07.024 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Ong ML, Lin X, Holbrook JD (2015) Measuring epigenetics as the mediator of gene/environment interactions in DOHaD. J Dev Orig Health Dis 6:10–16. doi: 10.1017/S2040174414000506 CrossRefPubMedGoogle Scholar
  16. 16.
    Jaenisch R, Bird A (2003) Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet 33:245–254. doi: 10.1038/ng1089 CrossRefPubMedGoogle Scholar
  17. 17.
    Bannister AJ, Kouzarides T (2011) Regulation of chromatin by histone modifications. Cell Res 21:381–395. doi: 10.1038/cr.2011.22 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Deaton AM, Bird A (2011) CpG islands and the regulation of transcription. Genes Dev 25:1010–1022. doi: 10.1101/gad.2037511 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Robertson KD (2005) DNA methylation and human disease. Nat Rev Genet 6:597–610. doi: 10.1038/nrg1655 CrossRefPubMedGoogle Scholar
  20. 20.
    Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233. doi: 10.1016/j.cell.2009.01.002 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Campion J, Milagro FI, Martinez JA (2009) Individuality and epigenetics in obesity. Obes Rev 10:383–392. doi: 10.1111/j.1467-789X.2009.00595.x CrossRefPubMedGoogle Scholar
  22. 22.
    Milagro FI, Campion J, Cordero P, Goyenechea E, Gomez-Uriz AM, Abete I et al (2011) A dual epigenomic approach for the search of obesity biomarkers: DNA methylation in relation to diet-induced weight loss. FASEB J 25:1378–1389. doi: 10.1096/fj.10-170365 CrossRefPubMedGoogle Scholar
  23. 23.
    Ozanne SE (2015) Epigenetic signatures of obesity. N Engl J Med 372:973–974. doi: 10.1056/NEJMcibr1414707 CrossRefPubMedGoogle Scholar
  24. 24.
    Aslibekyan S, Demerath EW, Mendelson M, Zhi D, Guan W, Liang L et al (2015) Epigenome-wide study identifies novel methylation loci associated with body mass index and waist circumference. Obesity (Silver Spring) 23:1493–1501. doi: 10.1002/oby.21111 CrossRefGoogle Scholar
  25. 25.
    Cordero P, Campion J, Milagro FI, Goyenechea E, Steemburgo T, Javierre BM et al (2011) Leptin and TNF-alpha promoter methylation levels measured by MSP could predict the response to a low-calorie diet. J Physiol Biochem 67:463–470. doi: 10.1007/s13105-011-0084-4 CrossRefPubMedGoogle Scholar
  26. 26.
    Kaati G, Bygren LO, Edvinsson S (2002) Cardiovascular and diabetes mortality determined by nutrition during parents’ and grandparents’ slow growth period. Eur J Hum Genet 10:682–688. doi: 10.1038/sj.ejhg.5200859 CrossRefPubMedGoogle Scholar
  27. 27.
    Pembrey ME (2002) Time to take epigenetic inheritance seriously. Eur J Hum Genet 10:669–671. doi: 10.1038/sj.ejhg.5200901 CrossRefPubMedGoogle Scholar
  28. 28.
    Michels KB, Harris HR, Barault L (2011) Birthweight, maternal weight trajectories and global DNA methylation of LINE-1 repetitive elements. PLoS One 6:e25254. doi: 10.1371/journal.pone.0025254 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Ou X, Thakali KM, Shankar K, Andres A, Badger TM (2015) Maternal adiposity negatively influences infant brain white matter development. Obesity (Silver Spring) 23:1047–1054. doi: 10.1002/oby.21055 CrossRefGoogle Scholar
  30. 30.
    Sharp GC, Lawlor DA, Richmond RC, Fraser A, Simpkin A, Suderman M et al (2015) Maternal pre-pregnancy BMI and gestational weight gain, offspring DNA methylation and later offspring adiposity: findings from the Avon longitudinal study of parents and children. Int J Epidemiol 44:1288–1304. doi: 10.1093/ije/dyv042 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Liu X, Chen Q, Tsai HJ, Wang G, Hong X, Zhou Y et al (2014) Maternal preconception body mass index and offspring cord blood DNA methylation: exploration of early life origins of disease. Environ Mol Mutagen 55:223–230. doi: 10.1002/em.21827 CrossRefPubMedGoogle Scholar
  32. 32.
    Godfrey KM, Sheppard A, Gluckman PD, Lillycrop KA, Burdge GC, McLean C et al (2011) Epigenetic gene promoter methylation at birth is associated with child’s later adiposity. Diabetes 60:1528–1534. doi: 10.2337/db10-0979 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Gemma C, Sookoian S, Alvarinas J, Garcia SI, Quintana L, Kanevsky D et al (2009) Maternal pregestational BMI is associated with methylation of the PPARGC1A promoter in newborns. Obesity (Silver Spring) 17:1032–1039. doi: 10.1038/oby.2008.605 CrossRefGoogle Scholar
  34. 34.
    Nardelli C, Iaffaldano L, Ferrigno M, Labruna G, Maruotti GM, Quaglia F et al (2014) Characterization and predicted role of the microRNA expression profile in amnion from obese pregnant women. Int J Obes (Lond) 38:466–469. doi: 10.1038/ijo.2013.121 CrossRefGoogle Scholar
  35. 35.
    Soubry A, Murphy SK, Wang F, Huang Z, Vidal AC, Fuemmeler BF et al (2015) Newborns of obese parents have altered DNA methylation patterns at imprinted genes. Int J Obes (Lond) 39:650–657. doi: 10.1038/ijo.2013.193 CrossRefGoogle Scholar
  36. 36.
    Soubry A, Schildkraut JM, Murtha A, Wang F, Huang Z, Bernal A et al (2013) Paternal obesity is associated with IGF2 hypomethylation in newborns: results from a newborn epigenetics study (NEST) cohort. BMC Med 11:29. doi: 10.1186/1741-7015-11-29 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Obermann-Borst SA, Eilers PH, Tobi EW, de Jong FH, Slagboom PE, Heijmans BT et al (2013) Duration of breastfeeding and gender are associated with methylation of the LEPTIN gene in very young children. Pediatr Res 74:344–349. doi: 10.1038/pr.2013.95 CrossRefPubMedGoogle Scholar
  38. 38.
    Garmendia ML, Corvalan C, Araya M, Casanello P, Kusanovic JP, Uauy R (2015) Effectiveness of a normative nutrition intervention (diet, physical activity and breastfeeding) on maternal nutrition and offspring growth: the Chilean maternal and infant nutrition cohort study (CHiMINCs). BMC Pregnancy Childbirth 15:175. doi: 10.1186/s12884-015-0605-1 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Guenard F, Deshaies Y, Cianflone K, Kral JG, Marceau P, Vohl MC (2013) Differential methylation in glucoregulatory genes of offspring born before vs. after maternal gastrointestinal bypass surgery. Proc Natl Acad Sci USA 110:11439–11444. doi: 10.1073/pnas.1216959110 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Guenard F, Tchernof A, Deshaies Y, Cianflone K, Kral JG, Marceau P et al (2013) Methylation and expression of immune and inflammatory genes in the offspring of bariatric bypass surgery patients. J Obes 2013:492170. doi: 10.1155/2013/492170 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Mouralidarane A, Soeda J, Visconti-Pugmire C, Samuelsson AM, Pombo J, Maragkoudaki X et al (2013) Maternal obesity programs offspring nonalcoholic fatty liver disease by innate immune dysfunction in mice. Hepatology 58:128–138. doi: 10.1002/hep.26248 CrossRefPubMedGoogle Scholar
  42. 42.
    Nomura Y, Lambertini L, Rialdi A, Lee M, Mystal EY, Grabie M et al (2014) Global methylation in the placenta and umbilical cord blood from pregnancies with maternal gestational diabetes, preeclampsia, and obesity. Reprod Sci 21:131–137. doi: 10.1177/1933719113492206 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Allard C, Desgagne V, Patenaude J, Lacroix M, Guillemette L, Battista MC et al (2015) Mendelian randomization supports causality between maternal hyperglycemia and epigenetic regulation of leptin gene in newborns. Epigenetics 10:342–351. doi: 10.1080/15592294.2015.1029700 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    El Hajj N, Pliushch G, Schneider E, Dittrich M, Muller T, Korenkov M et al (2013) Metabolic programming of MEST DNA methylation by intrauterine exposure to gestational diabetes mellitus. Diabetes 62:1320–1328. doi: 10.2337/db12-0289 CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Seki Y, Williams L, Vuguin PM, Charron MJ (2012) Minireview: epigenetic programming of diabetes and obesity: animal models. Endocrinology 153:1031–1038. doi: 10.1210/en.2011-1805 CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Williams L, Seki Y, Vuguin PM, Charron MJ (2014) Animal models of in utero exposure to a high fat diet: a review. Biochim Biophys Acta 1842:507–519. doi: 10.1016/j.bbadis.2013.07.006 CrossRefPubMedGoogle Scholar
  47. 47.
    Yang QY, Liang JF, Rogers CJ, Zhao JX, Zhu MJ, Du M (2013) Maternal obesity induces epigenetic modifications to facilitate Zfp423 expression and enhance adipogenic differentiation in fetal mice. Diabetes 62:3727–3735. doi: 10.2337/db13-0433 CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Borengasser SJ, Zhong Y, Kang P, Lindsey F, Ronis MJ, Badger TM et al (2013) Maternal obesity enhances white adipose tissue differentiation and alters genome-scale DNA methylation in male rat offspring. Endocrinology 154:4113–4125. doi: 10.1210/en.2012-2255 CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Mahmood S, Smiraglia DJ, Srinivasan M, Patel MS (2013) Epigenetic changes in hypothalamic appetite regulatory genes may underlie the developmental programming for obesity in rat neonates subjected to a high-carbohydrate dietary modification. J Dev Orig Health Dis 4:479–490. doi: 10.1017/S2040174413000238 CrossRefPubMedGoogle Scholar
  50. 50.
    Marco A, Kisliouk T, Tabachnik T, Meiri N, Weller A (2014) Overweight and CpG methylation of the Pomc promoter in offspring of high-fat-diet-fed dams are not “reprogrammed” by regular chow diet in rats. FASEB J 28:4148–4157. doi: 10.1096/fj.14-255620 CrossRefPubMedGoogle Scholar
  51. 51.
    Maloyan A, Muralimanoharan S, Huffman S, Cox LA, Nathanielsz PW, Myatt L et al (2013) Identification and comparative analyses of myocardial miRNAs involved in the fetal response to maternal obesity. Physiol Genomics 45:889–900. doi: 10.1152/physiolgenomics.00050.2013 CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Dudley KJ, Sloboda DM, Connor KL, Beltrand J, Vickers MH (2011) Offspring of mothers fed a high fat diet display hepatic cell cycle inhibition and associated changes in gene expression and DNA methylation. PLoS One 6:e21662. doi: 10.1371/journal.pone.0021662 CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Mouralidarane A, Soeda J, Sugden D, Bocianowska A, Carter R, Ray S et al (2015) Maternal obesity programs offspring non-alcoholic fatty liver disease through disruption of 24-h rhythms in mice. Int J Obes (Lond) 39:1339–1348. doi: 10.1038/ijo.2015.85 CrossRefGoogle Scholar
  54. 54.
    Laker RC, Lillard TS, Okutsu M, Zhang M, Hoehn KL, Connelly JJ et al (2014) Exercise prevents maternal high-fat diet-induced hypermethylation of the Pgc-1alpha gene and age-dependent metabolic dysfunction in the offspring. Diabetes 63:1605–1611. doi: 10.2337/db13-1614 CrossRefPubMedGoogle Scholar
  55. 55.
    Nicholas LM, Rattanatray L, MacLaughlin SM, Ozanne SE, Kleemann DO, Walker SK et al (2013) Differential effects of maternal obesity and weight loss in the periconceptional period on the epigenetic regulation of hepatic insulin-signaling pathways in the offspring. FASEB J 27:3786–3796. doi: 10.1096/fj.13-227918 CrossRefPubMedGoogle Scholar
  56. 56.
    Cordero P, Milagro FI, Campion J, Martinez JA (2013) Maternal methyl donors supplementation during lactation prevents the hyperhomocysteinemia induced by a high-fat-sucrose intake by dams. Int J Mol Sci 14:24422–24437. doi: 10.3390/ijms141224422 CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Fernandez-Twinn DS, Constancia M, Ozanne SE (2015) Intergenerational epigenetic inheritance in models of developmental programming of adult disease. Semin Cell Dev Biol 43:85–95. doi: 10.1016/j.semcdb.2015.06.006 CrossRefPubMedGoogle Scholar
  58. 58.
    Ding Y, Li J, Liu S, Zhang L, Xiao H, Li J et al (2014) DNA hypomethylation of inflammation-associated genes in adipose tissue of female mice after multigenerational high fat diet feeding. Int J Obes (Lond) 38:198–204. doi: 10.1038/ijo.2013.98 CrossRefGoogle Scholar
  59. 59.
    Masuyama H, Mitsui T, Nobumoto E, Hiramatsu Y (2015) The effects of high-fat diet exposure in utero on the obesogenic and diabetogenic traits through epigenetic changes in adiponectin and leptin gene expression for multiple generations in female mice. Endocrinology 156:2482–2491. doi: 10.1210/en.2014-2020 CrossRefPubMedGoogle Scholar
  60. 60.
    Wei Y, Yang CR, Wei YP, Ge ZJ, Zhao ZA, Zhang B et al (2015) Enriched environment-induced maternal weight loss reprograms metabolic gene expression in mouse offspring. J Biol Chem 290:4604–4619. doi: 10.1074/jbc.M114.605642 CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Tracey R, Manikkam M, Guerrero-Bosagna C, Skinner MK (2013) Hydrocarbons (jet fuel JP-8) induce epigenetic transgenerational inheritance of obesity, reproductive disease and sperm epimutations. Reprod Toxicol 36:104–116. doi: 10.1016/j.reprotox.2012.11.011 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© The American Physiological Society 2016

Authors and Affiliations

  • Paul Cordero
    • 1
    Email author
  • Jiawei Li
    • 1
  • Jonathan L. Temple
    • 2
  • Vi Nguyen
    • 1
  • Jude A. Oben
    • 1
    • 3
  1. 1.Institute for Liver and Digestive HealthUniversity College London, Royal Free Hospital, NHS Foundation TrustLondonUK
  2. 2.Faculty of Life Sciences and MedicineKing’s College LondonLondonUK
  3. 3.Department of Gastroenterology and HepatologyGuy’s and St Thomas’ Hospital, NHS Foundation TrustLondonUK

Personalised recommendations