Skip to main content

Discoidin Domain Receptors in Cardiac Development

  • Chapter
  • First Online:
Discoidin Domain Receptors in Health and Disease

Abstract

Heart development is a complex process, involving temporally and spatially restricted morphogenic events that ultimately give rise to a multichambered heart. Discoidin domain receptors (DDRs) 1 and 2 are receptor tyrosine kinases which bind and are activated by multiple types of collagen, a structural protein found within the myocardium and valves of the heart. Both DDR1 and DDR2 are expressed in the developing heart, with DDR1 expression detected on both cardiac myocytes and fibroblasts, whereas DDR2 was only detected on fibroblasts. To date most studies examining DDRs during heart development have focused on the role of DDR2 in this process. DDR2 is upregulated on activated endothelial cells of cardiac cushions during epithelial-mesenchymal transformation associated with valve development. Inhibition of DDR2 results in incomplete transformation and a lack of mesenchymal cell formation in vitro; however, in vivo there appears to be a compensatory mechanism which allows for mesenchymal cell formation. DDR1 and DDR2 have both been implicated in fibroblast-mediated collagen remodeling. Additional studies are necessary to characterize the consequences of DDR1 or DDR2 deletion on cardiac function and to examine how these receptors may participate in matrix remodeling in cardiovascular disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Linask KK, Han M, Cai DH et al (2005) Cardiac morphogenesis: matrix metalloproteinase coordination of cellular mechanisms underlying heart tube formation and directionality of looping. Dev Dyn 233:739–753

    Article  CAS  PubMed  Google Scholar 

  2. Markwald RR, Wessels A (2001) Overview of heart development. In: Tomanek RJ, Runyan RB (eds) Formation of the heart and its regulation. Birkhauser, Boston

    Google Scholar 

  3. Goldsmith EC, Carver W, Borg TK (2001) The role of the extracellular matrix and its receptors in modulating cardiac development. In: Tomanek RJ, Runyan RB (eds) Formation of the heart and its regulation. Birkhauser, Boston

    Google Scholar 

  4. Bishop JE, Greenbaum R, Gibson DG et al (1990) Enhanced deposition of predominantly type I collagen in myocardial disease. J Mol Cell Cardiol 22:1157–165

    Article  CAS  PubMed  Google Scholar 

  5. Carver W, Terracio L, Borg TK (1993) Expression and accumulation of interstitial collagen in the neonatal rat heart. Anat Rec 236:511–520

    Article  CAS  PubMed  Google Scholar 

  6. Borg TK, Terracio L (1990) Interaction of the extracellular matrix with cardiac myocytes during development and disease. In: Robinson T (ed) Issues in Biomedicine. Karger, Basel

    Google Scholar 

  7. Thompson RP, Fitzharris TP, Denslow S et al (1979) Collagen synthesis in the developing chick heart. Tex Rep Biol Med 39:305–319

    CAS  PubMed  Google Scholar 

  8. Borg TK, Caulfield JB (1981) The collagen matrix of the heart. Fed Proc 40:2037–2041

    CAS  PubMed  Google Scholar 

  9. Caulfield JB, Borg TK (1979) The collagen network of the heart. Lab Invest 40:364–372

    CAS  PubMed  Google Scholar 

  10. Hopkins F, McCutcheon EP, Wekstein DR (1973) Postnatal changes in rat ventricular function. Circ Res 32:685–691

    Article  PubMed  Google Scholar 

  11. Eghbali M, Robinson TF, Seifter S et al (1989) Collagen accumulation in heart ventricles as a function of growth and aging. Cardiovasc Res 23:723–729

    Article  CAS  PubMed  Google Scholar 

  12. Borg TK, Caulfield JB (1979) Collagen in the heart. Texas Rep Biol Med 39:321–333

    CAS  Google Scholar 

  13. Cheah KS, Lau ET, Au PK (1991) Expression of the mouse alpha 1 (II) collagen gene is not restricted to cartilage during development. Development 111:945–953

    CAS  PubMed  Google Scholar 

  14. Iruela-Arispe ML, Sage EH (1991) Expression of type VIII collagen during morphogenesis of the chicken and mouse heart. Dev Biol 144:107–118

    Article  CAS  PubMed  Google Scholar 

  15. Kruithof BPT, Krawitz SA, Gaussin V (2007) Atrioventricular valve development during late embryonic and postnatal stages involves condensation and extracellular matrix remodeling. Dev Biol 302:208–217

    Article  CAS  PubMed  Google Scholar 

  16. Eghbali M, Czaja MJ, Zeydel M et al (1988) Collagen chain mRNAs in isolated heart cells from young and adult rats. J Mol Cell Cardiol 20:267–276

    Article  CAS  PubMed  Google Scholar 

  17. Weber KT (1989) Cardiac interstitium in health and disease: the fibrillar collagen network. JACC 13:1637–1652

    Article  CAS  PubMed  Google Scholar 

  18. Vogel W, Gish GD, Alves F et al (1997) The discoidin domain receptor tyrosine kinases are activated by collagen. Mol Cell 1:13–23

    Article  CAS  PubMed  Google Scholar 

  19. Shrivastava A, Radziejewski C, Campbell E et al (1997) An orphan receptor tyrosine kinase family whose members serve as non-integrin collagen receptors. Mol Cell 1:25–34

    Article  CAS  PubMed  Google Scholar 

  20. Lemmon MA, Schlessinger J (2010) Cell signaling by receptor tyrosine kinases. Cell 141:1117–1134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Leitinger B (2003) Molecular analysis of collagen binding by the human discoidin domain receptors, DDR1 and DDR2. Identification of collagen binding sites in DDR2. J Biol Chem 278:16761–16769

    Article  CAS  PubMed  Google Scholar 

  22. Leitinger B, Steplewski A, Fertala A (2004) The D2 period of collagen II contains a specific binding site for the human discoidin domain receptor, DDR2. J Mol Biol 344:993–1003

    Article  CAS  PubMed  Google Scholar 

  23. Leitinger B, Kwan AP (2006) The discoidin domain receptor DDR2 is a receptor for type X collagen. Matrix Biol 25:355–364

    Article  CAS  PubMed  Google Scholar 

  24. Hou G, Vogel W, Bendeck MP (2001) The discoidin domain receptor tyrosine kinase DDR1 in arterial wound repair. J Clin Invest 107:727–735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Brauer PR (2006) MMPs—role in cardiovascular development and disease. Front Biosci 11:447–478

    Article  CAS  PubMed  Google Scholar 

  26. Spinale FG (2007) Myocardial matrix remodeling and the matrix metalloproteinases: influence on cardiac form and function. Physiol Rev 87:1285–1384

    Article  CAS  PubMed  Google Scholar 

  27. Chin GS, Lee S, Hsu M et al (2001) Discoidin domain receptors and their ligand, collagen, are temporally regulated in fetal rat fibroblasts in vitro. Plast Reconstr Surg 107:769–776

    Article  CAS  PubMed  Google Scholar 

  28. Alves F, Vogel W, Mossie K et al (1995) Distinct structural characteristics of discoidin 1 subfamily receptor tyrosine kinases and complementary expression in human cancer. Oncogene 10:609–618

    CAS  PubMed  Google Scholar 

  29. Goldsmith EC, Hoffman A, Morales MO et al (2004) Organization of fibroblasts in the heart. Dev Dyn 230:787–794

    Article  CAS  PubMed  Google Scholar 

  30. Snider P, Standley KN, Wang J et al (2009) Origin of cardiac fibroblasts and the role of periostin. Circ Res 105:934–947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Goldsmith EC, Bradshaw AD, Zile MR, Spinale FG (2014) Myocardial fibroblast-matrix interactions and potential therapeutic targets. J Mol Cell Cardiol 70:92–99

    Article  CAS  PubMed  Google Scholar 

  32. Banerjee I, Fuseler JW, Price RL et al (2007) Determinatin of cell types and numbers during cardiac development in the neonatal and adult rat and mouse. Am J Physiol Heart Circ Physiol 293:H1883–H1891

    Article  CAS  PubMed  Google Scholar 

  33. Talasila A, Germack R, Dickenson JM (2009) Characterization of P2Y receptor subtypes functionally expressed on neonatal cardiac myofibroblasts. Br J Pharmacol 158:339–353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sun J, Li SH, Liu SM et al (2009) Improvement in cardiac function after bone marrow cell therapy is associated with an increase in myocardial inflammation. Am J Physiol Heart Circ Physiol 296:H43–50

    Article  CAS  PubMed  Google Scholar 

  35. Squires CE, Escobar GP, Payne JF et al (2005) Altered fibroblast function following myocardial infarction. J Mol Cell Cardiol 39:699–707

    Article  CAS  PubMed  Google Scholar 

  36. Borg TK (1982) Development of the connective tissue network in the neonatal hamster heart. Am J Anat 165:435–443

    Article  CAS  PubMed  Google Scholar 

  37. Dettman RW, Denetclaw W, Ordhal CP et al (1998) Common epicardial origin of coronary vascular smooth muscle, perivascular fibroblasts, and intermyocardial fibroblast in the avian heart. Dev Biol 193:169–181

    Article  CAS  PubMed  Google Scholar 

  38. Gittenberger-De Groot AC, Vrancken Peeters MPFM, Mentink MMT et al (1998) Epicardium-derived cells contribute a novel population to the myocardial wall and the artioventricular cushions. Circ Res 82:1043–1052

    Article  CAS  PubMed  Google Scholar 

  39. Morales MO, Price RL, Goldsmith EC (2005) Expression of discoidin domain receptor 2 (DDR2) in the developing heart. Microsc Microanal 11:260–267

    Article  CAS  PubMed  Google Scholar 

  40. Bolender DL, Markwald RR (1979) Epithelial-mesenchymal transformation in chick atrioventricular cushion morphogenesis. Scanning Electron Microsc 13:313–321

    Google Scholar 

  41. Bouchey D, Argraves WS, Little CD (1996) Fibulin-1, vitronectin and fibronectin expression during avian cardiac valve and septa development. Anat Rec 244:540–551

    Article  CAS  PubMed  Google Scholar 

  42. Ramsdell AF, Markwald RR (1997) Induction of endocardial cushion tissue in the avian heart is regulated, in part, by TGFβ-3-mediated autocrine signaling. Dev Biol 188:64–74

    Article  CAS  PubMed  Google Scholar 

  43. Sinning AR, Lepera RC, Markwald RR (1988) Initial expression of type I procollagen in chick cardiac mesenchyme is dependent upon myocardial stimulation. Dev Biol 130:167–174

    Article  CAS  PubMed  Google Scholar 

  44. Goldsmith EC, Zhang X, Watson J et al (2010) The collagen receptor DDR2 is expressed during early cardiac development. Anat Rec 293:762–769

    Article  CAS  Google Scholar 

  45. Olaso E, Labrador JP, Wang L et al (2002) Discoidin domain receptor 2 regulates fibroblast proliferation and migration through the extracellular matrix in association with transcriptional activation of matrix metalloproteinase-2. J Biol Chem 277:3606–3613

    Article  CAS  PubMed  Google Scholar 

  46. Labrador JP, Azcoitia V, Tuckermann J et al (2001) The collagen receptor DDR2 regulates proliferation and its elimination leads to dwarfism. EMBO Rep 2:446–452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Norris RA, Damon B, Mironov V et al (2007) Periostin regulates collagen fibrillogenesis and the biomechanical properties of connective tissue. J Cell Biochem 101:695–711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. de Vlaming A, Sauls K, Hajdu Z et al (2012) Atrioventircular valve development: New perspectives on an old theme. Differentiation 84:103–116

    Article  PubMed  PubMed Central  Google Scholar 

  49. Bishop JE, Laurent GJ (1995) Collagen turnover and its regulation in the normal and hypertrophying heart. Eur Heart J 16C:38–44

    Article  Google Scholar 

  50. Spinale FG, Coker ML, Thomas CV et al (1998) Time-dependent changes in matrix metalloproteinase activity and expression during the progression of congestive heart failure. Circ Res 82:482–495

    Article  CAS  PubMed  Google Scholar 

  51. Grinnell F (1994) Fibroblasts, myofibroblasts and wound contraction. J Cell Biol 124:401–404

    Article  CAS  PubMed  Google Scholar 

  52. Ross RS, Borg TK (2001) Integrins and the myocardium. Circ Res 88:1112–1119

    Article  CAS  PubMed  Google Scholar 

  53. Burgess ML, Carver WE, Terracio L et al (1994) Integrin-mediated collagen gel contraction by cardiac fibroblasts: effects of angiotensin II. Circ Res 74:291–298

    Article  CAS  PubMed  Google Scholar 

  54. Vogel W, Brakebusch C, Fassler R et al (2000) Discoidin domain receptor 1 is activated independently of beta(1) integrin. J Biol Chem 275:5779–5784

    Article  CAS  PubMed  Google Scholar 

  55. Leitinger B (2014) Discoidin domain receptor functions in physiological and pathological conditions. Int Rev Cell Mol Biol 310:39–87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Arora PD, McColloch CA (1994) Dependence of collagen remodeling on alpha-smooth muscle actin expression by fibroblasts. J Cell Physiol 159:161–175

    Article  CAS  PubMed  Google Scholar 

  57. Hinz B, Celetta G, Tomasek JJ et al (2001) Alpha-smooth muscle actin expression upregulates fibroblast contractile activity. Mol Cell Biol 12:2730–2741

    Article  CAS  Google Scholar 

  58. Linjen P, Petrov V, Fagard R (2003) Transforming growth factor-beta 1-mediated collagen contraction by cardiac fibroblasts. Biomech Model Mechanobiol 1:59–67

    Google Scholar 

  59. Carver W, Molano I, Reaves TA et al (1995) Role of the alpha 1 beta 1 integrin complex in collagen gel contraction in vitro by fibroblasts. J Cell Physiol 165:425–437

    Article  CAS  PubMed  Google Scholar 

  60. Wilson CG, Stone JW, Fowkles V et al (2011) Age-dependent expression of collagen receptors and deformation of type I collagen substrates by rat cardiac fibroblasts. Microsc Microanal 17:555–562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Stone JW, Sisco PN, Goldsmith EC et al (2007) Using gold nanorods to probe cell-induced collagen deformation. Nano Lett 7:116–119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Cukierman E, Pankov R, Stevens DR et al (2001) Taking cell matrix adhesions to the third dimension. Science 122:1708–1712

    Article  Google Scholar 

  63. Ieda M, Tsuchihashi T, Ivey KN et al (2009) Cardiac fibroblasts regulate myocardial proliferation through beta 1 integrin signaling. Dev Cell 16:233–244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Lai C, Lemke G (1991) An extended family of protein-tyrosine kinase genes differentially expressed in the vertebrate nervous system. Neuron 6:691–704

    Article  CAS  PubMed  Google Scholar 

  65. DiMarco E, Cutuli N, Guerra L et al (1993) Molecular cloning of trkE, a novel trk-related putative tyrosine kinase receptor isolated from normal human keratinocytes and widely expressed by normal human tissues. J Biol Chem 268:24290–24259

    CAS  Google Scholar 

  66. Sanchez MP, Tapley P, Saini SS et al (1994) Multiple tyrosine protein kinases in rat hippocampal neurons: isolation of Ptk-3, a receptor expressed in proliferative zones of the developing brain. Proc Natl Acad Sci 91:1819–1823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Gross O, Beirowski B, Harvey SJ et al (2004) DDR1-deficient mice show localized subepithelial GBM thickening with focal loss of slit diaphragms and proteinuria. Kidney Int 66:102–111

    Article  CAS  PubMed  Google Scholar 

  68. Meyer zum Gottesberge AM, Gross O, Becker-Lendzian U, Massing T, Vogel WF (2008) Inner ear defects and hearing loss in mice lacking the collagen receptor DDR1. Lab Invest 88:27–37

    Article  CAS  PubMed  Google Scholar 

  69. Vogel WF, Aszodi A, Alves F et al (2001) Discoidin domain receptor 1 tyrosine kinase has an essential role in mammary gland development. Mol Cell Biol 21:2906–2917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Unsoeld T, Park JO, Hutter H (2013) Discoidin domain receptors guide axons along longitudinal tracts in C. elegans. Dev Biol 374:142–152

    Article  CAS  PubMed  Google Scholar 

  71. Cowling RT, Yeo SJ, Kim IJ et al (2014) Discoidin domain receptor 2 germline gene deletion leads to altered heart structure and function in the mouse. Am J Physiol Heart Circ Physiol 307:H773–H781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Ms. Mary Morales for technical assistance, Regeneron Pharmaceuticals for providing the DDR2 knockout mice, and the National Institutes of Health (HL73937) and the Mid-Atlantic Affiliate of the American Heart Association (0060217U and 13GRNT17070086) for funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edie C. Goldsmith .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Justus, D.E. et al. (2016). Discoidin Domain Receptors in Cardiac Development. In: Fridman, R., Huang, P. (eds) Discoidin Domain Receptors in Health and Disease. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-6383-6_18

Download citation

Publish with us

Policies and ethics