Skip to main content

The Role of DDRs in Atherosclerosis

  • Chapter
  • First Online:
Discoidin Domain Receptors in Health and Disease
  • 479 Accesses

Abstract

Discoidin domain receptors are unique collagen-binding receptors known to play important roles in mediating cell proliferation, migration, and the production of matrix metalloproteinases by cells during development and in several fibroinflammatory diseases. Collagens are abundant in human vascular and atherosclerotic lesions and play critical roles as bioactive molecules mediating cellular responses to injury. Collagens also affect the long-term complications of atherosclerosis including vascular calcification and plaque rupture. This review chapter summarizes the literature reporting an important role for DDR1 in atherosclerosis. DDR1 and DDR2 are both expressed in rodent and primate models of the disease. Our studies using mouse models of atherosclerosis have shown that DDR1 mediates plaque expansion and inflammation, but suppresses matrix accumulation, leading to the development of unstable plaques which are prone to rupture. DDR1 is required for macrophage infiltration of the atherosclerotic plaque, permitting attachment to and invasion through type IV collagen in the subendothelial cell basement membrane. DDR1 is also involved in mediating the production of MMPs and inflammatory cytokines in both macrophages and smooth muscle cells. In addition, DDR1 plays an important role in vascular atherosclerotic calcification, by mediating smooth muscle cell transdifferentiation, and by compounding inflammatory cytokine production by macrophages. Evidence suggests that inhibition of DDR1 may be a good therapeutic target for atherosclerosis, since DDR1 inhibition would lead to smaller, less inflammatory more stable, and less calcified atherosclerotic plaques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vogel W, Gish GD, Alves F, Pawson T (1997) The discoidin domain receptor tyrosine kinases are activated by collagen. Mol Cell 1:13–23

    Article  CAS  PubMed  Google Scholar 

  2. Shrivastava A, Radziejewski C, Campbell E et al (1997) An orphan receptor tyrosine kinase family whose members serve as nonintegrin collagen receptors. Mol Cell 1:25–34

    Article  CAS  PubMed  Google Scholar 

  3. Vogel WF, Abdulhussein R, Ford CE (2006) Sensing extracellular matrix: an update on discoidin domain receptor function. Cell Signal 18:1108–1116

    Article  CAS  PubMed  Google Scholar 

  4. Fu HL, Valiathan RR, Payne L et al (2014) Glycosylation at Asn211 regulates the activation state of the discoidin domain receptor 1 (DDR1). J Biol Chem 289:9275–9287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Phan TN, Wong EL, Sun X et al (2013) Low stability and a conserved N-glycosylation site are associated with regulation of the discoidin domain receptor family by glucose via post-translational N-glycosylation. Biosci Biotechnol Biochem 77:1907–1916

    Article  CAS  PubMed  Google Scholar 

  6. Vogel WF (2002) Ligand-induced shedding of discoidin domain receptor 1. FEBS Lett 514:175–180

    Article  CAS  PubMed  Google Scholar 

  7. Slack BE, Siniaia MS, Blusztajn JK (2006) Collagen type I selectively activates ectodomain shedding of the discoidin domain receptor 1: involvement of Src tyrosine kinase. J Cell Biochem 98:672–684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Xu H, Raynal N, Stathopoulos S, Myllyharju J, Farndale RW, Leitinger B (2011) Collagen binding specificity of the discoidin domain receptors: binding sites on collagens II and III and molecular determinants for collagen IV recognition by DDR1. Matrix Biol 30:16–26

    Article  PubMed  PubMed Central  Google Scholar 

  9. Leitinger B (2003) Molecular analysis of collagen binding by the human discoidin domain receptors, DDR1 and DDR2. Identification of collagen binding sites in DDR2. J Biol Chem 278:16761–16769

    Article  CAS  PubMed  Google Scholar 

  10. Mihai C, Chotani M, Elton TS, Agarwal G (2009) Mapping of DDR1 distribution and oligomerization on the cell surface by FRET microscopy. J Mol Biol 385:432–445

    Article  CAS  PubMed  Google Scholar 

  11. Xu H, Abe T, Liu JK, Zalivina I, Hohenester E, Leitinger B (2014) Normal activation of discoidin domain receptor 1 mutants with disulfide cross-links, insertions, or deletions in the extracellular juxtamembrane region: mechanistic implications. J Biol Chem 289:13565–13574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Vogel WF, Aszodi A, Alves F, Pawson T (2001) Discoidin domain receptor 1 tyrosine kinase has an essential role in mammary gland development. Mol Cell Biol 21:2906–2917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Labrador JP, Azcoitia V, Tuckermann J et al (2001) The collagen receptor DDR2 regulates proliferation and its elimination leads to dwarfism. EMBO Rep 2:446–452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Strauss BH, Chisholm RJ, Keeley F, Gotlieb AI, Logan RA, Armstrong PW (1994) Extracellular matrix remodeling after balloon angioplasty injury in a rabbit model of restenosis. Circ Res 75:650–658

    Article  CAS  PubMed  Google Scholar 

  15. Bendeck MP, Regenass S, Tom WD et al (1996) Differential expression of α1 type VIII collagen in injured, platelet-derived growth factor-BB stimulated rat carotid arteries. Circ Res 79:524–531

    Article  CAS  PubMed  Google Scholar 

  16. Sibinga NES, Foster LC, Hsieh C-M et al (1997) Collagen VIII is expressed by vascular smooth muscle cells in response to vascular injury. Circ Res 80:532–541

    Article  CAS  PubMed  Google Scholar 

  17. MacBeath JRE, Kielty CM, Shuttleworth CA (1996) Type VIII collagen is a product of vascular smooth-muscle cells in development and disease. Biochem J 319:993–998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bendeck MP, Zempo N, Clowes AW, Galardy RE, Reidy MA (1994) Smooth muscle cell migration and matrix metalloproteinase expression after arterial injury in the rat. Circ Res 75:539–545

    Article  CAS  PubMed  Google Scholar 

  19. Cho A, Reidy MA (2002) Matrix metalloproteinase-9 is necessary for the regulation of smooth muscle cell replication and migration after arterial injury. Circ Res 91:845–851

    Article  CAS  PubMed  Google Scholar 

  20. Hou G, Vogel W, Bendeck MP (2001) The discoidin domain-receptor tyrosine kinase DDR1 in arterial wound repair. J Clin Invest 107:727–735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hou G, Vogel WF, Bendeck MP (2002) Tyrosine kinase activity of discoidin domain receptor 1 is necessary for smooth muscle cell migration and matrix metalloproteinase expression. Circ Res 90:1147–1149

    Article  CAS  PubMed  Google Scholar 

  22. Dejmek J, Dib K, Jonsson M, Andersson T (2003) Wnt-5a and G-protein signaling are required for collagen-induced DDR1 receptor activation and normal mammary cell adhesion. Int J Cancer 103:344–351

    Article  CAS  PubMed  Google Scholar 

  23. Lu KK, Trcka D, Bendeck MP (2011) Collagen stimulates discoidin domain receptor 1-mediated migration of smooth muscle cells through Src. Cardiovasc Pathol 20:71–76

    Article  CAS  PubMed  Google Scholar 

  24. Borza CM, Pozzi A (2014) Discoidin domain receptors in disease. Matrix Biol 34:185–192

    Article  CAS  PubMed  Google Scholar 

  25. Hilton HN, Stanford PM, Harris J et al (1783) KIBRA interacts with discoidin domain receptor 1 to modulate collagen-induced signalling. Biochim Biophys Acta 2008:383–393

    Google Scholar 

  26. Curat CA, Vogel WF (2002) Discoidin domain receptor 1 controls growth and adhesion of mesangial cells. J Am Soc Nephrol 13:2648–2656

    Article  CAS  PubMed  Google Scholar 

  27. Wang CZ, Su HW, Hsu YC, Shen MR, Tang MJ (2006) A discoidin domain receptor 1/SHP-2 signaling complex inhibits alpha2beta1-integrin-mediated signal transducers and activators of transcription 1/3 activation and cell migration. Mol Biol Cell 17:2839–2852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yeh YC, Wang CZ, Tang MJ (2009) Discoidin domain receptor 1 activation suppresses alpha(2)beta(1) integrin-dependent cell spreading through inhibition of Cdc42 activity. J Cell Physiol 218:146–156

    Article  CAS  PubMed  Google Scholar 

  29. Xu H, Bihan D, Chang F, Huang PH, Farndale RW, Leitinger B (2012) Discoidin domain receptors promote alpha1beta1- and alpha2beta1-integrin mediated cell adhesion to collagen by enhancing integrin activation. PLoS One 7, e52209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Staudinger LA, Spano SJ, Lee W et al (2013) Interactions between the discoidin domain receptor 1 and β1 integrin regulate attachment to collagen. Biol Open 2:1148–1159

    Article  PubMed  PubMed Central  Google Scholar 

  31. Shintani Y, Fukumoto Y, Chaika N, Svoboda R, Wheelock MJ, Johnson KR (2008) Collagen I-mediated up-regulation of N-cadherin requires cooperative signals from integrins and discoidin domain receptor 1. J Cell Biol 180:1277–1289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Eswaramoorthy R, Wang CK, Chen WC et al (2010) DDR1 regulates the stabilization of cell surface E-cadherin and E-cadherin-mediated cell aggregation. J Cell Physiol 224:387–397

    Article  CAS  PubMed  Google Scholar 

  33. Yeh YC, Wu CC, Wang YK, Tang MJ (2011) DDR1 triggers epithelial cell differentiation by promoting cell adhesion through stabilization of E-cadherin. Mol Biol Cell 22:940–953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hidalgo-Carcedo C, Hooper S, Chaudhry SI et al (2011) Collective cell migration requires suppression of actomyosin at cell-cell contacts mediated by DDR1 and the cell polarity regulators Par3 and Par6. Nat Cell Biol 13:49–58

    Article  CAS  PubMed  Google Scholar 

  35. Wang CZ, Yeh YC, Tang MJ (2009) DDR1/E-cadherin complex regulates the activation of DDR1 and cell spreading. Am J Physiol Cell Physiol 297:C419–C429

    Article  CAS  PubMed  Google Scholar 

  36. Ferri N, Carragher NO, Raines EW (2004) Role of discoidin domain receptors 1 and 2 in human smooth muscle cell-mediated collagen remodeling: potential implications in atherosclerosis and lymphangioleiomyomatosis. Am J Pathol 164:1575–1585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Shyu KG, Chao YM, Wang BW, Kuan P (2005) Regulation of discoidin domain receptor 2 by cyclic mechanical stretch in cultured rat vascular smooth muscle cells. Hypertension 46:614–621

    Article  CAS  PubMed  Google Scholar 

  38. Morales MO, Price RL, Goldsmith EC (2005) Expression of discoidin domain receptor 2 (DDR2) in the developing heart. Microsc Microanal 11:260–267

    Article  CAS  PubMed  Google Scholar 

  39. Cowling RT, Yeo SJ, Kim IJ et al (2014) Discoidin domain receptor 2 germline gene deletion leads to altered heart structure and function in the mouse. Am J Physiol Heart Circ Physiol 307:H773–H781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hou G, Wang D, Bendeck MP (2012) Deletion of discoidin domain receptor 2 does not affect smooth muscle cell adhesion, migration, or proliferation in response to type I collagen. Cardiovasc Pathol 21:214–218

    Article  CAS  PubMed  Google Scholar 

  41. Chen SC, Wang BW, Wang DL, Shyu KG (2008) Hypoxia induces discoidin domain receptor-2 expression via the p38 pathway in vascular smooth muscle cells to increase their migration. Biochem Biophys Res Commun 374:662–667

    Article  CAS  PubMed  Google Scholar 

  42. Shyu KG, Wang BW, Chang H (2009) Hyperbaric oxygen activates discoidin domain receptor 2 via tumour necrosis factor-alpha and the p38 MAPK pathway to increase vascular smooth muscle cell migration through matrix metalloproteinase 2. Clin Sci 116:575–583

    Article  CAS  PubMed  Google Scholar 

  43. Shyu KG, Wang BW, Kuan P, Chang H (2008) RNA interference for discoidin domain receptor 2 attenuates neointimal formation in balloon injured rat carotid artery. Arterioscler Thromb Vasc Biol 28:1447–1453

    Article  CAS  PubMed  Google Scholar 

  44. Ishibashi S, Brown MS, Goldstein JL, Gerard RD, Hammer RE, Herz J (1993) Hypercholesterolemia in low density lipoprotein receptor knockout mice and its reversal by adenovirus-mediated gene delivery. J Clin Invest 92:883–893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Franco C, Hou G, Ahmad PJ et al (2008) Discoidin domain receptor 1 (Ddr1) deletion decreases atherosclerosis by accelerating matrix accumulation and reducing inflammation in low-density lipoprotein receptor deficient mice. Circ Res 102:1202–1211

    Article  CAS  PubMed  Google Scholar 

  46. Deguchi JO, Aikawa M, Tung CH et al (2006) Inflammation in atherosclerosis: visualizing matrix metalloproteinase action in macrophages in vivo. Circulation 114:55–62

    Article  PubMed  Google Scholar 

  47. Franco C, Britto K, Wong E et al (2009) Discoidin domain receptor 1 on bone marrow derived cells promotes macrophage accumulation during atherogenesis. Circ Res 105:1141–1148

    Article  CAS  PubMed  Google Scholar 

  48. Flamant M, Placier S, Rodenas A et al (2006) Discoidin domain receptor 1 null mice are protected against hypertension-induced renal disease. J Am Soc Nephrol 17:3374–3381

    Article  CAS  PubMed  Google Scholar 

  49. Guerrot D, Kerroch M, Placier S et al (2011) Discoidin domain receptor 1 is a major mediator of inflammation and fibrosis in obstructive nephropathy. Am J Pathol 179:83–91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Gross O, Girgert R, Beirowki B et al (2010) Loss of collagen-receptor DDR1 delays renal fibrosis in hereditary type IV collagen disease. Matrix Biol 29:346–356

    Article  CAS  PubMed  Google Scholar 

  51. Avivi-Green C, Singal M, Vogel WF (2006) Discoidin domain receptor 1 deficient mice are resistant to bleomycin-induced lung fibrosis. Am J Respir Crit Care Med 174:420–427

    Article  CAS  PubMed  Google Scholar 

  52. Matsuyama W, Wang L, Farrar WL, Faure M, Yoshimura T (2004) Activation of discoidin domain receptor 1 isoform b with collagen up-regulates chemokine production in human macrophages: role of p38 mitogen-activated protein kinase and NF-kappa B. J Immunol 172:2332–2340

    Article  CAS  PubMed  Google Scholar 

  53. Kamohara H, Yamashiro S, Galligan C, Yoshimura T (2001) Discoidin domain receptor 1 isoform-a (DDR1a) promotes migration of leukocytes in three-dimensional collagen lattices. FASEB J 15:2724–2726

    CAS  Google Scholar 

  54. Matsuyama W, Faure M, Yoshimura T (2003) Activation of discoidin domain receptor 1 facilitates the maturation of human monocyte-derived dendritic cells through the TNF receptor associated factor 6/TGF-{beta}-activated protein kinase 1 binding protein 1{beta}/p38{alpha} mitogen-activated protein kinase signaling cascade. J Immunol 171:3520–3532

    Article  CAS  PubMed  Google Scholar 

  55. Kim SH, Lee S, Suk K et al (2007) Discoidin domain receptor 1 mediates collagen-induced nitric oxide production in J774A.1 murine macrophages. Free Radic Biol Med 42:343–352

    Article  PubMed  Google Scholar 

  56. Hachehouche LN, Chetoui N, Aoudjit F (2010) Implication of discoidin domain receptor 1 in T cell migration in three-dimensional collagen. Mol Immunol 47:1866–1869

    Article  CAS  PubMed  Google Scholar 

  57. Chetoui N, El Azreq MA, Boisvert M, Bergeron ME, Aoudjit F (2011) Discoidin domain receptor 1 expression in activated T cells is regulated by the ERK MAP kinase signaling pathway. J Cell Biochem 112:3666–3674

    Article  CAS  PubMed  Google Scholar 

  58. Poudel B, Ki HH, Lee YM, Kim DK (2013) Induction of IL-12 production by the activation of discoidin domain receptor 2 via NF-kappaB and JNK pathway. Biochem Biophys Res Commun 434:584–588

    Article  CAS  PubMed  Google Scholar 

  59. Franco C, Ahmad PJ, Hou G, Wong E, Bendeck MP (2010) Increased cell and matrix accumulation during atherogenesis in mice with vessel wall-specific deletion of discoidin domain receptor 1. Circ Res 106:1775–1783

    Article  CAS  PubMed  Google Scholar 

  60. Flynn LA, Blissett AR, Calomeni EP, Agarwal G (2010) Inhibition of collagen fibrillogenesis by cells expressing soluble extracellular domains of DDR1 and DDR2. J Mol Biol 395:533–543

    Article  CAS  PubMed  Google Scholar 

  61. Allison MA, Criqui MH, Wright CM (2004) Patterns and risk factors for systemic calcified atherosclerosis. Arterioscler Thromb Vasc Biol 24:331–336

    Article  CAS  PubMed  Google Scholar 

  62. Bild DE, Detrano R, Peterson D et al (2005) Ethnic differences in coronary calcification: the multi-ethnic study of atherosclerosis (MESA). Circulation 111:1313–1320

    Article  PubMed  Google Scholar 

  63. Iribarren C, Sidney S, Sternfeld B, Browner WS (2000) Calcification of the aortic arch: risk factors and association with coronary heart disease, stroke, and peripheral vascular disease. JAMA 283:2810–2815

    Article  CAS  PubMed  Google Scholar 

  64. Wayhs R, Zelinger A, Raggi P (2002) High coronary artery calcium scores pose an extremely elevated risk for hard events. J Am Coll Cardiol 39:225–230

    Article  PubMed  Google Scholar 

  65. Rumberger JA, Simons DB, Fitzpatrick LA, Sheedy PF, Schwartz RS (1995) Coronary artery calcium area by electron-beam computed tomography and coronary atherosclerotic plaque area. A histopathologic correlative study. Circulation 92:2157–2162

    Article  CAS  PubMed  Google Scholar 

  66. Sangiorgi G, Rumberger JA, Severson A et al (1998) Arterial calcification and not lumen stenosis is highly correlated with atherosclerotic plaque burden in humans: a histologic study of 723 coronary artery segments using nondecalcifying methodology. J Am Coll Cardiol 31:126–133

    Article  CAS  PubMed  Google Scholar 

  67. Shao JS, Cheng SL, Sadhu J, Towler DA (2010) Inflammation and the osteogenic regulation of vascular calcification: a review and perspective. Hypertension 55:579–592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Snell-Bergeon J, Budoff M, Hokanson J (2013) Vascular calcification in diabetes: mechanisms and implications. Curr Diab Rep 13:391–402

    Article  PubMed  Google Scholar 

  69. Wu M, Rementer C, Giachelli CM (2013) Vascular calcification: an update on mechanisms and challenges in treatment. Calcif Tissue Int 93:365–373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Speer MY, Li X, Hiremath PG, Giachelli CM (2010) Runx2/Cbfa1, but not loss of myocardin, is required for smooth muscle cell lineage reprogramming toward osteochondrogenesis. J Cell Biochem 110:935–947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Speer MY, Yang HY, Brabb T et al (2009) Smooth muscle cells give rise to osteochondrogenic precursors and chondrocytes in calcifying arteries. Circ Res 104:733–741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Sallam T, Cheng H, Demer LL, Tintut Y (2013) Regulatory circuits controlling vascular cell calcification. Cell Mol Life Sci 70:3187–3197

    Article  CAS  PubMed  Google Scholar 

  73. Watson KE, Parhami F, Shin V, Demer LL (1998) Fibronectin and collagen I matrixes promote calcification of vascular cells in vitro, whereas collagen IV matrix is inhibitory. Arterioscler Thromb Vasc Biol 18:1964–1971

    Article  CAS  PubMed  Google Scholar 

  74. Lund AW, Stegemann JP, Plopper GE (2009) Mesenchymal stem cells sense three dimensional type I collagen through discoidin domain receptor 1. Open Stem Cell J 1:40–53

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Wu SC, Hsiao HF, Ho ML et al (2015) Suppression of discoidin domain receptor 1 expression enhances the chondrogenesis of adipose-derived stem cells. Am J Physiol Cell Physiol 308:C685–C696

    Article  PubMed  Google Scholar 

  76. Schminke B, Muhammad H, Bode C et al (2013) A discoidin domain receptor 1 knock-out mouse as a novel model for osteoarthritis of the temporomandibular joint. Cell Mol Life Sci 71(6):1081–1096

    Article  PubMed  Google Scholar 

  77. Xu L, Servais J, Polur I et al (2010) Attenuation of osteoarthritis progression by reduction of discoidin domain receptor 2 in mice. Arthritis Rheum 62:2736–2744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Ahmad PJ, Trcka D, Xue S et al (2009) Discoidin domain receptor-1 deficiency attenuates atherosclerotic calcification and smooth muscle cell-mediated mineralization. Am J Pathol 175:2686–2696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Tintut Y, Patel J, Territo M, Saini T, Parhami F, Demer LL (2002) Monocyte/macrophage regulation of vascular calcification in vitro. Circulation 105:650–655

    Article  CAS  PubMed  Google Scholar 

  80. Deuell KA, Callegari A, Giachelli CM, Rosenfeld ME, Scatena M (2012) RANKL enhances macrophage paracrine pro-calcific activity in high phosphate-treated smooth muscle cells: dependence on IL-6 and TNF-alpha. J Vasc Res 49:510–521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Byon CH, Sun Y, Chen J et al (2011) Runx2-upregulated receptor activator of nuclear factor {kappa}B ligand in calcifying smooth muscle cells promotes migration and osteoclastic differentiation of macrophages. Arterioscler Thromb Vasc Biol 31:1387–1396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michelle P. Bendeck .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bendeck, M.P. (2016). The Role of DDRs in Atherosclerosis. In: Fridman, R., Huang, P. (eds) Discoidin Domain Receptors in Health and Disease. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-6383-6_17

Download citation

Publish with us

Policies and ethics