Advertisement

Illuminating Cell Adhesion: Modern Microscopy Approaches to Study Integrin-Based Focal Adhesions

  • Vinay Swaminathan
  • Clare M. WatermanEmail author
Chapter
Part of the Physiology in Health and Disease book series (PIHD)

Abstract

Integrin-based focal adhesions are plasma membrane-associated macromolecular structures that link the extracellular matrix to the cytoskeleton and play important roles in a variety of cellular processes. Focal adhesions dynamically change shape, size, and biochemical composition, all of which are carefully regulated by the cell to perform its function normally. Additionally, focal adhesions are also the primary conduits for relaying physical information between the cell and its environment. It is all these properties that make focal adhesions a unique research problem at the interface of biology and technology and have driven the development and application of many techniques to study them. In this article, we review how light and force microscopy-based approaches have expanded our understanding of integrin-based focal adhesions. We highlight specific questions about focal adhesions that each technique addresses, and the novel insight gained from studies using these approaches to understand how these complex adhesion organelles of more than 500 proteins are built and regulated, and the integration of the cell with its environment in mediating physiological functions.

Keywords

TIRF Super-resolution FRET Force spectroscopy Correlation spectroscopy 

References

  1. Abercrombie M, Dunn GA (1975) Adhesions of fibroblasts to substratum during contact inhibition observed by interference reflection microscopy. Exp Cell Res 92:57–62PubMedCrossRefGoogle Scholar
  2. AMBROSE EJ (1961) The movements of fibrocytes. Exp Cell Res Suppl 8:54–73CrossRefGoogle Scholar
  3. Askari JA et al (2009) Linking integrin conformation to function. J Cell Sci 122:165–170PubMedCrossRefGoogle Scholar
  4. Askari J a et al (2010) Focal adhesions are sites of integrin extension. J Cell Biol 188:891–903PubMedPubMedCentralCrossRefGoogle Scholar
  5. Bachir AI et al (2014) Integrin-associated complexes form hierarchically with variable stoichiometry in nascent adhesions. Curr Biol 24:1845–1853PubMedPubMedCentralCrossRefGoogle Scholar
  6. Balaban NQ et al (2001) Force and focal adhesion assembly: a close relationship studied using elastic micropatterned substrates. Nat Cell Biol 3:466–472PubMedCrossRefGoogle Scholar
  7. Ballestrem C et al (2001) Marching at the front and dragging behind: differential αVβ3-integrin turnover regulates focal adhesion behavior. J Cell Biol 155:1319–1332PubMedPubMedCentralCrossRefGoogle Scholar
  8. Beningo K a et al (2001) Nascent focal adhesions are responsible for the generation of strong propulsive forces in migrating fibroblasts. J Cell Biol 153:881–887PubMedPubMedCentralCrossRefGoogle Scholar
  9. Betzig E et al (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science 313:1642–1645PubMedCrossRefGoogle Scholar
  10. Brown CM et al (2008) Raster image correlation spectroscopy (RICS) for measuring fast protein dynamics and concentrations with a commercial laser scanning confocal microscope. J Microsc 229:78–91PubMedPubMedCentralCrossRefGoogle Scholar
  11. Burridge K et al (1988) Focal adhesions: transmembrane junctions between the extracellular matrix and the cytoskeleton. Annu Rev Cell Biol 4:487–525PubMedCrossRefGoogle Scholar
  12. Cai X et al (2008) Spatial and temporal regulation of focal adhesion kinase activity in living cells. Mol Cell Biol 28:201–214PubMedCrossRefGoogle Scholar
  13. Carisey A et al (2013) Vinculin regulates the recruitment and release of core focal adhesion proteins in a force-dependent manner. Curr Biol 23:271–281PubMedPubMedCentralCrossRefGoogle Scholar
  14. Case LB et al (2015) Molecular mechanism of vinculin activation and nanoscale spatial organization in focal adhesions. Nat Cell Biol 17:880–892. doi: 10.1038/ncb3180 PubMedPubMedCentralCrossRefGoogle Scholar
  15. Cavalcanti-Adam EA et al (2007) Cell spreading and focal adhesion dynamics are regulated by spacing of integrin ligands. Biophys J 92:2964–2974PubMedPubMedCentralCrossRefGoogle Scholar
  16. Chen H et al (2005) Spatial distribution and functional significance of activated vinculin in living cells. J Cell Biol 169:459–470PubMedPubMedCentralCrossRefGoogle Scholar
  17. Chen W et al (2012) Observing force-regulated conformational changes and ligand dissociation from a single integrin on cells. J Cell Biol 199:497–512PubMedPubMedCentralCrossRefGoogle Scholar
  18. Chesla SE et al (1998) Measuring two-dimensional receptor-ligand binding kinetics by micropipette. Biophys J 75:1553–1572PubMedPubMedCentralCrossRefGoogle Scholar
  19. Chiu C-L, Gratton E (2013) Axial super resolution topography of focal adhesion by confocal microscopy. Microsc Res Tech 76:1070–1078PubMedCrossRefGoogle Scholar
  20. Choi CK et al (2008) Actin and alpha-actinin orchestrate the assembly and maturation of nascent adhesions in a myosin II motor-independent manner. Nat Cell Biol 10:1039–1050PubMedPubMedCentralCrossRefGoogle Scholar
  21. Choi CK et al (2011) Cross-correlated fluctuation analysis reveals phosphorylation-regulated paxillin-fak complexes in nascent adhesions. Biophys J 100:583–592PubMedPubMedCentralCrossRefGoogle Scholar
  22. Choquet D et al (1997) Extracellular matrix rigidity causes strengthening of integrin-cytoskeleton linkages. Cell 88:39–48PubMedCrossRefGoogle Scholar
  23. Cluzel C et al (2005) The mechanisms and dynamics of αvβ3 integrin clustering in living cells. J Cell Biol 171:383–392PubMedPubMedCentralCrossRefGoogle Scholar
  24. Cohen DM et al (2006) A conformational switch in vinculin drives formation and dynamics of a talin-vinculin complex at focal adhesions. J Biol Chem 281:16006–16015PubMedCrossRefGoogle Scholar
  25. Costa KD et al (2006) Non-Hertzian approach to analyzing mechanical properties of endothelial cells probed by atomic force microscopy. J Biomech Eng 128:176–184PubMedCrossRefGoogle Scholar
  26. Cross SE et al (2007) Nanomechanical analysis of cells from cancer patients. Nat Nanotechnol 2:780–783PubMedCrossRefGoogle Scholar
  27. Curtis ASG (1964) A study by interference reflection microscopy. J Cell Biol 20:199–215PubMedPubMedCentralCrossRefGoogle Scholar
  28. Del Rio A et al (2009) Stretching single talin rod molecules activates vinculin binding. Science 323:638–641PubMedCrossRefGoogle Scholar
  29. Dembo M, Wang YL (1999) Stresses at the cell-to-substrate interface during locomotion of fibroblasts. Biophys J 76:2307–2316PubMedPubMedCentralCrossRefGoogle Scholar
  30. Digman MA et al (2008) Paxillin dynamics measured during adhesion assembly and disassembly by correlation spectroscopy. Biophys J 94:2819–2831PubMedCrossRefGoogle Scholar
  31. Digman MA et al (2009) Stoichiometry of molecular complexes at adhesions in living cells. Proc Natl Acad Sci U S A 106:2170–2175PubMedPubMedCentralCrossRefGoogle Scholar
  32. Du Roure O et al (2005) Force mapping in epithelial cell migration. Proc Natl Acad Sci U S A 102:2390–2395PubMedPubMedCentralCrossRefGoogle Scholar
  33. Elson EL (2001) Fluorescence correlation spectroscopy measures molecular transport in cells. Traffic 2:789–796PubMedCrossRefGoogle Scholar
  34. Evans E et al (2004) Mechanical switching and coupling between two dissociation pathways in a P-selectin adhesion bond. Proc Natl Acad Sci U S A 101:11281–11286PubMedPubMedCentralCrossRefGoogle Scholar
  35. Ezratty EJ et al (2005) Microtubule-induced focal adhesion disassembly is mediated by dynamin and focal adhesion kinase. Nat Cell Biol 7:581–590PubMedCrossRefGoogle Scholar
  36. Ezratty EJ et al (2009) Clathrin mediates integrin endocytosis for focal adhesion disassembly in migrating cells. J Cell Biol 187:733–747PubMedPubMedCentralCrossRefGoogle Scholar
  37. Fisher JK et al (2005) Three-dimensional force microscope: a nanometric optical tracking and magnetic manipulation system for the biomedical sciences. Rev Sci Instrum 76:11CrossRefGoogle Scholar
  38. Gad AKB et al (2012) Rho GTPases link cellular contractile force to the density and distribution of nanoscale adhesions. FASEB J 26:2374–2382PubMedCrossRefGoogle Scholar
  39. Galbraith CG, Sheetz MP (1997) A micromachined device provides a new bend on fibroblast traction forces. Proc Natl Acad Sci U S A 94:9114–9118PubMedPubMedCentralCrossRefGoogle Scholar
  40. Galbraith CG et al (2002) The relationship between force and focal complex development. J Cell Biol 159:695–705PubMedPubMedCentralCrossRefGoogle Scholar
  41. Gardel ML et al (2008) Traction stress in focal adhesions correlates biphasically with actin retrograde fl ow speed. J Cell Biol 183:999–1005PubMedPubMedCentralCrossRefGoogle Scholar
  42. Gardel ML et al (2010) Mechanical integration of actin and adhesion dynamics in cell migration. Annu Rev Cell Dev Biol 26:315–333PubMedPubMedCentralCrossRefGoogle Scholar
  43. Geiger B (1979) A 130 K protein from chicken gizzard: its localization at the termini of microfilament bundles in cultured chicken cells. Cell 18:193–205PubMedCrossRefGoogle Scholar
  44. Geiger B, Bershadsky A (2002) Exploring the neighborhood: adhesion-coupled cell mechanosensors. Cell 110:139–142PubMedCrossRefGoogle Scholar
  45. Geiger T, Zaidel-Bar R (2012) Opening the floodgates: proteomics and the integrin adhesome. Curr Opin Cell Biol 24:562–568PubMedCrossRefGoogle Scholar
  46. Geiger B et al (2009) Environmental sensing through focal adhesions. Nat Rev Mol Cell Biol 10:21–33PubMedCrossRefGoogle Scholar
  47. Ghassemi S et al (2012) Cells test substrate rigidity by local contractions on submicrometer pillars. Proc Natl Acad Sci 109:5328–5333PubMedPubMedCentralCrossRefGoogle Scholar
  48. Giannone G et al (2007) Lamellipodial actin mechanically links myosin activity with adhesion-site formation. Cell 128:561–575PubMedCrossRefGoogle Scholar
  49. Grashoff C et al (2010) Measuring mechanical tension across vinculin reveals regulation of focal adhesion dynamics. Nature 466:263–266PubMedPubMedCentralCrossRefGoogle Scholar
  50. Guilluy C et al (2011) The Rho GEFs LARG and GEF-H1 regulate the mechanical response to force on integrins. Nat Cell Biol 13:722–727PubMedPubMedCentralCrossRefGoogle Scholar
  51. Guo W, Wang Y (2007) Retrograde fluxes of focal adhesion proteins in response to cell migration and mechanical signals. Mol Biol Cell 18:4519–4527PubMedPubMedCentralCrossRefGoogle Scholar
  52. Gustafsson MG (2000) Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J Microsc 198:82–87PubMedCrossRefGoogle Scholar
  53. Gustafsson MGL (2005) Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution. Proc Natl Acad Sci U S A 102:13081–13086PubMedPubMedCentralCrossRefGoogle Scholar
  54. Gustafsson MGL et al (1999) I5M: 3D widefield light microscopy with better than 100 nm axial resolution. J Microsc 195:10–16PubMedCrossRefGoogle Scholar
  55. Gustafsson MGL et al (2000) Doubling the lateral resolution of wide-field fluorescence microscopy using structured illumination. Proc SPIE 3919:141–150CrossRefGoogle Scholar
  56. Gustafsson MGL et al (2008) Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination. Biophys J 94:4957–4970PubMedPubMedCentralCrossRefGoogle Scholar
  57. Hamadi A et al (2005) Regulation of focal adhesion dynamics and disassembly by phosphorylation of FAK at tyrosine 397. J Cell Sci 118:4415–4425PubMedCrossRefGoogle Scholar
  58. Harris AK et al (1980) Silicone rubber substrata: a new wrinkle in the study of cell locomotion. Science 208:177–179PubMedCrossRefGoogle Scholar
  59. Heath JP, Dunn GA (1978) Cell to substratum contacts of chick fibroblasts and their relation to the microfilament system. A correlated interference-reflexion and high-voltage electron-microscope study. J Cell Sci 29:197–212PubMedGoogle Scholar
  60. Hell SW, Wichman J (1994) Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt Lett 19:780–782PubMedCrossRefGoogle Scholar
  61. Hess ST et al (2006) Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys J 91:4258–4272PubMedPubMedCentralCrossRefGoogle Scholar
  62. Hoffmann JE et al (2014) Symmetric exchange of multi-protein building blocks between stationary focal adhesions and the cytosol. Elife 2014:1–18Google Scholar
  63. Hu K et al (2007) Differential transmission of actin motion within focal adhesions. Science 315:111–115PubMedCrossRefGoogle Scholar
  64. Hu S et al (2015) Structured illumination microscopy reveals focal adhesions are composed of linear subunits. Cytoskeleton (Hoboken). doi: 10.1002/cm.21223 Google Scholar
  65. Huang B et al (2008a) Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science 319:810–813PubMedPubMedCentralCrossRefGoogle Scholar
  66. Huang B et al (2008b) Whole-cell 3D STORM reveals interactions between cellular structures with nanometer-scale resolution. Nat Methods 5:1047–1052PubMedPubMedCentralCrossRefGoogle Scholar
  67. Humphries JD et al (2007) Vinculin controls focal adhesion formation by direct interactions with talin and actin. J Cell Biol 179:1043–1057PubMedPubMedCentralCrossRefGoogle Scholar
  68. Huttenlocher A et al (1995) Adhesion in cell migration. Curr Opin Cell Biol 7:697–706PubMedCrossRefGoogle Scholar
  69. Hynes RO (1992) Integrins: versatility, modulation, and signaling in cell adhesion. Cell 69:11–25PubMedCrossRefGoogle Scholar
  70. Hynes RO (2002) Integrins: bidirectional, allosteric signaling machines. Cell 110:673–687PubMedCrossRefGoogle Scholar
  71. Izzard CS, Lochner LR (1976) Cell-to-substrate contacts in living fibroblasts: an interference reflexion study with an evaluation of the technique. J Cell Sci 21:129–159PubMedGoogle Scholar
  72. Jiang G et al (2003) Two-piconewton slip bond between fibronectin and the cytoskeleton depends on talin. Nature 424:334–337PubMedCrossRefGoogle Scholar
  73. Joo C et al (2008) Advances in single-molecule fluorescence methods for molecular biology. Annu Rev Biochem 77:51–76PubMedCrossRefGoogle Scholar
  74. Kanchanawong P et al (2010) Nanoscale architecture of integrin-based cell adhesions. Nature 468:580–584PubMedPubMedCentralCrossRefGoogle Scholar
  75. Kastrup L et al (2005) Fluorescence fluctuation spectroscopy in subdiffraction focal volumes. Phys Rev Lett 94:1–4CrossRefGoogle Scholar
  76. Kim M et al (2003) Bidirectional transmembrane signaling by cytoplasmic domain separation in integrins. Science 301:1720–1725PubMedCrossRefGoogle Scholar
  77. Klar TA et al (2001) Breaking Abbe’s diffraction resolution limit in fluorescence microscopy with stimulated emission depletion beams of various shapes. Phys Rev 64:066613CrossRefGoogle Scholar
  78. Kong F et al (2009) Demonstration of catch bonds between an integrin and its ligand. J Cell Biol 185:1275–1284PubMedPubMedCentralCrossRefGoogle Scholar
  79. Kong F et al (2013) Cyclic mechanical reinforcement of integrin-ligand interactions. Mol Cell 49:1060–1068PubMedPubMedCentralCrossRefGoogle Scholar
  80. Krylyshkina O et al (2003) Nanometer targeting of microtubules to focal adhesions. J Cell Biol 161:853–859PubMedPubMedCentralCrossRefGoogle Scholar
  81. Kusumi A et al (2014) Tracking single molecules at work in living cells. Nat Chem Biol 10:524–532PubMedCrossRefGoogle Scholar
  82. Lauffenburger D a, Horwitz AF (1996) Cell migration: a physically integrated molecular process. Cell 84:359–369PubMedCrossRefGoogle Scholar
  83. Laukaitis CM et al (2001) Differential dynamics of alpha 5 integrin, paxillin, and alpha-actinin during formation and disassembly of adhesions in migrating cells. J Cell Biol 153:1427–1440PubMedPubMedCentralCrossRefGoogle Scholar
  84. Legant WR et al (2012) Multidimensional traction force microscopy reveals out-of-plane rotational moments about focal adhesions. Proc Natl Acad Sci 110:881–886PubMedPubMedCentralCrossRefGoogle Scholar
  85. Legate KR et al (2011) Integrin adhesion and force coupling are independently regulated by localized PtdIns(4,5)2 synthesis. EMBO J 30:4539–4553PubMedPubMedCentralCrossRefGoogle Scholar
  86. Lehenkari PP, Horton MA (1999) Single integrin molecule adhesion forces in intact cells measured by atomic force microscopy. Biochem Biophys Res Commun 259:645–650PubMedCrossRefGoogle Scholar
  87. Lele TP et al (2006) Mechanical forces alter zyxin unbinding kinetics within focal adhesions of living cells. J Cell Physiol 207:187–194PubMedCrossRefGoogle Scholar
  88. Lele TP et al (2008) Investigating complexity of protein-protein interactions in focal adhesions. Biochem Biophys Res Commun 369:929–934PubMedPubMedCentralCrossRefGoogle Scholar
  89. Liu J et al (2015) Talin determines the nanoscale architecture of focal adhesions. Proc Natl Acad Sci U S A 112:E4864–E4873. doi: 10.1073/pnas.1512025112 PubMedPubMedCentralCrossRefGoogle Scholar
  90. Manley S et al (2008) High-density mapping of single-molecule trajectories with photoactivated localization microscopy. Nat Methods 5:155–157PubMedCrossRefGoogle Scholar
  91. Margadant F et al (2011) Mechanotransduction in vivo by repeated talin stretch-relaxation events depends upon vinculin. PLoS Biol 9, e1001223PubMedPubMedCentralCrossRefGoogle Scholar
  92. Matthews BD et al (2004) Mechanical properties of individual focal adhesions probed with a magnetic microneedle. Biochem Biophys Res Commun 313:758–764PubMedCrossRefGoogle Scholar
  93. Mierke CT et al (2008) Mechano-coupling and regulation of contractility by the vinculin tail domain. Biophys J 94:661–670PubMedCrossRefGoogle Scholar
  94. Moerner WE, Orrit M (1999) Illuminating single molecules in condensed matter. Science 283:1670–1676PubMedCrossRefGoogle Scholar
  95. Morimatsu M et al (2013) Molecular tension sensors report forces generated by single integrin molecules in living cells. Nano Lett 13:3985–3989PubMedCrossRefGoogle Scholar
  96. Oakes PW et al (2012) Tension is required but not sufficient for focal adhesion maturation without a stress fiber template. J Cell Biol 196:363–374PubMedPubMedCentralCrossRefGoogle Scholar
  97. Oesterhelt F et al (2000) Unfolding pathways of individual bacteriorhodopsins. Science 288:143–146PubMedCrossRefGoogle Scholar
  98. Oliver T et al (1995) Traction forces in locomoting cells. Cell Motil Cytoskeleton 31:225–240PubMedCrossRefGoogle Scholar
  99. Palecek SP et al (1997) Integrin-ligand binding properties govern cell migration speed through cell-substratum adhesiveness. Nature 385:537–540PubMedCrossRefGoogle Scholar
  100. Papusheva E et al (2009) Dynamic conformational changes in the FERM domain of FAK are involved in focal-adhesion behavior during cell spreading and motility. J Cell Sci 122:656–666PubMedCrossRefGoogle Scholar
  101. Pasapera AM et al (2010) Myosin II activity regulates vinculin recruitment to focal adhesions through FAK-mediated paxillin phosphorylation. J Cell Biol 188:877–890PubMedPubMedCentralCrossRefGoogle Scholar
  102. Paszek MJ et al (2012) Scanning angle interference microscopy reveals cell dynamics at the nanoscale. Nat Methods 9:825–827PubMedPubMedCentralCrossRefGoogle Scholar
  103. Paszek MJ et al (2014) The cancer glycocalyx mechanically primes integrin-mediated growth and survival. Nature 511:319–325PubMedPubMedCentralCrossRefGoogle Scholar
  104. Patla I et al (2010) Dissecting the molecular architecture of integrin adhesion sites by cryo-electron tomography. Nat Cell Biol 12:909–915PubMedCrossRefGoogle Scholar
  105. Pelham RJ, Wang YL (1998) Cell locomotion and focal adhesions are regulated by the mechanical properties of the substrate. Biol Bull 194:348–350PubMedCrossRefGoogle Scholar
  106. Pelham RJ, Wang YL (1999) High resolution detection of mechanical forces exerted by locomoting fibroblasts on the substrate. Mol Biol Cell 10:935–945PubMedPubMedCentralCrossRefGoogle Scholar
  107. Petersen NO et al (1998) Analysis of membrane protein cluster densities and sizes in situ by image correlation spectroscopy. Faraday Discuss. doi: 10.1039/a806677i PubMedGoogle Scholar
  108. Plotnikov SV et al (2012) Force fluctuations within focal adhesions mediate ECM-rigidity sensing to guide directed cell migration. Cell 151:1513–1527PubMedCrossRefGoogle Scholar
  109. Ridley AJ et al (2003) Cell migration: integrating signals from front to back. Science 302:1704–1709PubMedCrossRefGoogle Scholar
  110. Rief M et al (1997) Reversible unfolding of individual titin immunoglobulin domains by AFM. Science 276:1109–1112PubMedCrossRefGoogle Scholar
  111. Riveline D et al (2001) Focal contacts as mechanosensors: externally applied local mechanical force induces growth of focal contacts by an mDia1-dependent and ROCK-independent mechanism. J Cell Biol 153:1175–1185PubMedPubMedCentralCrossRefGoogle Scholar
  112. Roca-Cusachs P et al (2009) Clustering of α5β1 integrins determines adhesion strength whereas αvβ3 and talin enable mechanotransduction. Proc Natl Acad Sci 106:16245–16250PubMedPubMedCentralCrossRefGoogle Scholar
  113. Rossier O et al (2012) Integrins β1 and β3 exhibit distinct dynamic nanoscale organizations inside focal adhesions. Nat Cell Biol 14:1057–1067PubMedCrossRefGoogle Scholar
  114. Rubashkin MG et al (2014) Force engages vinculin and promotes tumor progression by enhancing PI3K activation of phosphatidylinositol (3,4,5)-triphosphate. Cancer Res 74:4597–4611PubMedPubMedCentralCrossRefGoogle Scholar
  115. Rust MJ et al (2006) Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods 3:793–795PubMedPubMedCentralCrossRefGoogle Scholar
  116. Schmidt T et al (1996) Imaging of single molecule diffusion. Proc Natl Acad Sci U S A 93:2926–2929PubMedPubMedCentralCrossRefGoogle Scholar
  117. Schoen I et al (2010) Probing cellular traction forces by micropillar arrays: contribution of substrate warping to pillar deflection. Nano Lett 10:1823–1830PubMedPubMedCentralCrossRefGoogle Scholar
  118. Schwaiger I et al (2004) A mechanical unfolding intermediate in an actin-crosslinking protein. Nat Struct Mol Biol 11:81–85PubMedCrossRefGoogle Scholar
  119. Shibata ACE et al (2012) Archipelago architecture of the focal adhesion: membrane molecules freely enter and exit from the focal adhesion zone. Cytoskeleton 69:380–392PubMedCrossRefGoogle Scholar
  120. Shibata ACE et al (2013) Rac1 recruitment to the archipelago structure of the focal adhesion through the fluid membrane as revealed by single-molecule analysis. Cytoskeleton 70:161–177PubMedPubMedCentralCrossRefGoogle Scholar
  121. Shroff H et al (2008) Photoactivated localization microscopy (PALM) of adhesion complexes. Curr Protoc Cell Biol Chapter 4:Unit 4.21Google Scholar
  122. Shroff H et al (2008b) Live-cell photoactivated localization microscopy of nanoscale adhesion dynamics. Nat Methods 5:417–423PubMedCrossRefGoogle Scholar
  123. Shtengel G et al (2009) Interferometric fluorescent super-resolution microscopy resolves 3D cellular ultrastructure. Proc Natl Acad Sci U S A 106:3125–3130PubMedPubMedCentralCrossRefGoogle Scholar
  124. Stehbens SJ et al (2014) CLASPs link focal-adhesion-associated microtubule capture to localized exocytosis and adhesion site turnover. Nat Cell Biol 16:561–573PubMedPubMedCentralCrossRefGoogle Scholar
  125. Sun Z et al (2005) Mechanical properties of the interaction between fibronectin and alpha5beta1-integrin on vascular smooth muscle cells studied using atomic force microscopy. Am J Physiol Hear Circ Physiol 289:H2526–H2535CrossRefGoogle Scholar
  126. Tan JL et al (2003) Cells lying on a bed of microneedles: an approach to isolate mechanical force. Proc Natl Acad Sci U S A 100:1484–1489PubMedPubMedCentralCrossRefGoogle Scholar
  127. Taubenberger A et al (2007) Revealing early steps of α2β1 integrin-mediated adhesion to collagen type I by using single-cell force spectroscopy. Mol Biol Cell 18:1634–1644PubMedPubMedCentralCrossRefGoogle Scholar
  128. Thievessen I et al (2013) Vinculin-actin interaction couples actin retrograde flow to focal adhesions, but is dispensable for focal adhesion growth. J Cell Biol 202:163–177PubMedPubMedCentralCrossRefGoogle Scholar
  129. Trepat X et al (2003) Oscillatory magnetic tweezers based on ferromagnetic beads and simple coaxial coils. Rev Sci Instrum 74:4012–4020CrossRefGoogle Scholar
  130. Van den Dries K et al (2013) Dual-color superresolution microscopy reveals nanoscale organization of mechanosensory podosomes. Mol Biol Cell 24:2112–2123PubMedPubMedCentralCrossRefGoogle Scholar
  131. Verma D et al (2012) Interplay between cytoskeletal stresses and cell adaptation under chronic flow. PLoS One 7, e44167PubMedPubMedCentralCrossRefGoogle Scholar
  132. Walde M et al (2014) Vinculin binding angle in podosomes revealed by high resolution microscopy. PLoS One 9, e88251PubMedPubMedCentralCrossRefGoogle Scholar
  133. Wang X, Ha T (2013) Defining single molecular forces required to activate integrin and notch signaling. Science 340:991–994PubMedPubMedCentralCrossRefGoogle Scholar
  134. Wang Y et al (2005) Visualizing the mechanical activation of Src. Nature 434:1040–1045PubMedCrossRefGoogle Scholar
  135. Webb DJ et al (2002) Adhesion assembly, disassembly and turnover in migrating cells—over and over and over again. Nat Cell Biol 4:E97–E100PubMedCrossRefGoogle Scholar
  136. Wildanger D et al (2009) A compact STED microscope providing 3D nanoscale resolution. J Microsc 236:35–43PubMedCrossRefGoogle Scholar
  137. Wiseman PW et al (2000) Two-photo image correlation spectroscopy and image cross-correlation spectroscopy. J Microsc 200:14–25PubMedCrossRefGoogle Scholar
  138. Wolfenson H et al (2009a) A role for the juxtamembrane cytoplasm in the molecular dynamics of focal adhesions. PLoS One 4Google Scholar
  139. Wolfenson H et al (2009b) The heel and toe of the cell’s foot: a multifaceted approach for understanding the structure and dynamics of focal adhesions. Cell Motil Cytoskeleton 66:1017–1029PubMedPubMedCentralCrossRefGoogle Scholar
  140. Wolfenson H et al (2011) Actomyosin-generated tension controls the molecular kinetics of focal adhesions. J Cell Sci 124:1425–1432PubMedPubMedCentralCrossRefGoogle Scholar
  141. Wolfenson H et al (2013) Dynamic regulation of the structure and functions of integrin adhesions. Dev Cell 24:447–458PubMedCrossRefGoogle Scholar
  142. Yao M et al (2014) Mechanical activation of vinculin binding to talin locks talin in an unfolded conformation. Sci Rep 4:4610PubMedPubMedCentralGoogle Scholar
  143. Zhang X et al (2004) Molecular basis for the dynamic strength of the integrin alpha4beta1/VCAM-1 interaction. Biophys J 87:3470–3478PubMedPubMedCentralCrossRefGoogle Scholar
  144. Zhang X et al (2008) Talin depletion reveals independence of initial cell spreading from integrin activation and traction. Nat Cell Biol 10:1062–1068PubMedPubMedCentralCrossRefGoogle Scholar
  145. Zhang Y et al (2014) DNA-based digital tension probes reveal integrin forces during early cell adhesion. Nat Commun 5:5167PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© The American Physiological Society 2016

Authors and Affiliations

  1. 1.Cell Biology and Physiology CenterNational Heart, Lung and Blood Institute, National Institutes of HealthBethesdaUSA

Personalised recommendations