Skip to main content

Edgeworth Expansions and the Bootstrap

  • Chapter
  • First Online:
A Course in Mathematical Statistics and Large Sample Theory

Part of the book series: Springer Texts in Statistics ((STS))

  • 5239 Accesses

Abstract

This chapter outlines the proof of the validity of a properly formulated version of the formal Edgeworth expansion, and derives from it the precise asymptotic rate of the coverage error of Efron’s bootstrap. A number of other applications of Edgeworth expansions are outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Babu, G. J., & Signh, K. (1984). On one term Edgeworth correction by Efron’s bootstrap. Sankhyá Series A, 46, 219–232.

    MATH  Google Scholar 

  • Bentkus, V., & Götze, F. (1999). Lattice point problems and distribution of values of quadratic forms. Annals of Mathematics, 150, 977–1027.

    Article  MATH  MathSciNet  Google Scholar 

  • Beran, R. (1987). Prepivoting to reduce level error of confidence sets. Biometrika, 74, 457–468.

    Article  MATH  MathSciNet  Google Scholar 

  • Bhattacharya, R. N. (1977) Refinements of the multidimensional central limit theorem and applications. Annals of Probability, 5, 1–28.

    Article  MATH  MathSciNet  Google Scholar 

  • Bhattacharya, R. N. (1987) Some aspects of Edgeworth expansions in statistics and probability. In M. L. Puri, J. P. Vilaplana, & W. Wertz (Eds.), New perspectives in theoretical and applied statistics. New York: Wiley.

    Google Scholar 

  • Bhattacharya, R. N., & Chan, N. H. (1996). Edgeworth expansions and bootstrap approximations to the distributions of the frequency chisquare. Sankhya Series A, 58, 57–68.

    MATH  MathSciNet  Google Scholar 

  • Bhattacharya, R. N., & Denker, M. (1990). Asymptotic statistics. Boston: Birkhäuser.

    Book  MATH  Google Scholar 

  • Bhattacharya, R. N., & Ghosh, J. K. (1978). On the validity of the formal Edgeworth expansion. Annals of statistics, 6, 434–451.

    Article  MATH  MathSciNet  Google Scholar 

  • Bhattacharya, R. N., & Qumsiyeh, M. (1989). Second order and L p-comparisons between the bootstrap and empirical Edgeworth expansion methodologies. Annals of Statistics, 17, 160–169.

    Article  MATH  MathSciNet  Google Scholar 

  • Bhattacharya, R. N., & Ranga Rao, R. (1976). Normal approximation and asymptotic expansions. New York: Wiley; Revised Reprint, SIAM Reprint with a new chapter in SIAM No.64. Malabar: Krieger (2010).

    Book  Google Scholar 

  • Bickel, P. J., Chibishov, D. N., & van Zwet, W. R. (1981). On efficiency of first and second order. International Statistics Revised, 49, 169–175.

    Article  MATH  MathSciNet  Google Scholar 

  • Chandra, T. K., & Ghosh, J. K. (1979) Valid asymptotic expansions for the likelihood ratio statistic and other perturbed chi-square alternatives. Sankhyá Series A, 41, 22–47.

    MATH  MathSciNet  Google Scholar 

  • Chandra, T. K., & Ghosh, J. K. (1980). Valid asymptotic expansions for the likelihood ratio and other statistics under contiguous alternatives. Sankhyá Series A, 42, 170–184.

    MATH  MathSciNet  Google Scholar 

  • Chebyshev, P. L. (1890). Sur deux thĂ©orèmes relatifs aux probabilitiĂ©s. Acta Mathematica, 14, 305–315.

    Article  MathSciNet  Google Scholar 

  • Chibishov, D. M. (1973). An asymptotic expansion for a class of estimators containing maximum likelihood estimators. Theory of Probability and Its Applications, 18, 295–303.

    Article  Google Scholar 

  • Cornish, E. A., & Fisher, R. A. (1937). Moments and cumulants in the specification of distributions. Review of the Institute of Mathematical Statistics, 5, 307–322.

    Article  MATH  Google Scholar 

  • CramĂ©r, H. (1928). On the composition of elementary errors. Skandinavisk Aktuarietidskr, 11, 13–74, 141–180.

    MATH  Google Scholar 

  • CramĂ©r, H. (1937). Random variables and probability distribution. Cambridge: Cambridge University Press

    MATH  Google Scholar 

  • Edgeworth, F. Y. (1905). The law of error. Proceedings of the Cambridge Philological Society, 20, 36–65.

    Google Scholar 

  • Efron, B., & Tibshirani, R. (1994). An introduction to the bootstrap. New York: Chapman and Hall.

    MATH  Google Scholar 

  • Esseen, C. G. (1945). Fourier analysis of distribution functions: A mathematical study of the Laplace-Gaussian law. Acta Mathematica, 77, 1–125.

    Article  MATH  MathSciNet  Google Scholar 

  • Fisher, R. A. (1925). Theory of statistical estimation. Proceedings of the Cambridge Philological Society, 22, 700–725.

    Google Scholar 

  • Ghosh, J. K. (1994). Higher order asymptotics. NSF-CBMS Regional Conference Series in Probability and Statistics (Vol. 4). Hayward: Institute of Mathematical Statistics.

    Google Scholar 

  • Gine, E., & Zinn, J. (1989). Necessary conditions for the bootstrap of the mean. Annals of Statistics, 17(2), 684–691.

    Article  MATH  MathSciNet  Google Scholar 

  • Götze, F., & Hipp, C. (1983). Asymptotic expansions for sums of weakly dependent random vectors. Zeitschrift fĂĽr Wahrscheinlichkeitstheorie und verwandte Gebiete, 64, 211–239.

    Article  MATH  MathSciNet  Google Scholar 

  • Götze, F., & Hipp, C. (1994). Asymptotic distribution of statistics in time series. Annals of Statistics, 22, 2062–2088.

    Article  MATH  MathSciNet  Google Scholar 

  • Götze, F., & Kunsch, H. R. (1996). Second order correctness of the blockwise bootstrap for stationary observations. Annals of Statistics, 24, 1914–1933.

    Article  MATH  MathSciNet  Google Scholar 

  • Groeneboom, P., & Oosterhoff, J. (1981). Bahadur efficiency and small sample efficiency. International Statistical Review, 49, 127–142.

    Article  MATH  MathSciNet  Google Scholar 

  • Guedenko, B. V., & Kolmogorov, A. N. (1954). Limit distributions of sums of independent random variables (K.L. Chung, Trans.). London: Addison-Wesley.

    Google Scholar 

  • Hall, P. (1983). Inverting an Edgeworth expansion. Annals of Statistics, 11, 569–576.

    Article  MATH  MathSciNet  Google Scholar 

  • Hall, P. (1988). Theoretical comparison of bootstrap confidence intervals. Annals of Statistics, 16, 927–985.

    Article  MATH  MathSciNet  Google Scholar 

  • Hall, P. (1992). The bootstrap and Edgeworth expansions. New York: Springer.

    Book  MATH  Google Scholar 

  • Ivanov, A. V., & Zwanzig, S. (1983). An asymptotic expansion of the distribution of least squares estimators in the nonlinear regression model. Mathematische Operationsforschung und Statistik, Series Statistics, 14, 7–27.

    MATH  MathSciNet  Google Scholar 

  • James, G. S. (1958). On moments and cumulants of system of statistics. Sankhya, 20, 1–30.

    MATH  MathSciNet  Google Scholar 

  • Jensen, J. L. (1986). A note on the work of Götze and Hibb concerning asymptotic expansions for sums of weakly dependent random vectors (Memoirs no. 10). Department of Mathematics, Aarhus University.

    Google Scholar 

  • Jensen, J. L. (1989). Asymptotic expansions for strongly mixing Harris recurrent Markov chains. Scandinavian Journal of Statistics, 16, 47–64.

    MATH  MathSciNet  Google Scholar 

  • Konakov, V., & Mammen, E. (2005). Edgeworth-type expansions for transition densities of Markov chains converging to diffutions. Bernoulli, 11, 591–641.

    Article  MATH  MathSciNet  Google Scholar 

  • Kubilius, J. (1964). Probabilistic methods in the theory of numbers. Translations for Mathematical Monographs. Providence: American Mathematical Society.

    Google Scholar 

  • Lahiri, S. N. (1996). Asymptotic expansions for sums of random vectors under polynomial mixing rates. Sankhyá Series A, 58, 206–224.

    MATH  MathSciNet  Google Scholar 

  • Leonov, V. P., & Shiryaev, A. N. (1959). On a method of calculation of semi-invariants. Theory of Probability and Its Applications, 4, 319–329.

    Article  MATH  Google Scholar 

  • Nagaev, S. V. (1957). Some limit theorems for stationary Markov chains. Theory of Probability and Its Applications, 71, 378–405.

    Article  MathSciNet  Google Scholar 

  • Pfanzagl, J. (1980). Asymptotic expansions in parametric statistical theory. Developments in Statistics (Krishnaiah, P.R., Ed.), 3, 1–97.

    Article  MATH  MathSciNet  Google Scholar 

  • Pfanzagl, J. (1985). Asymptotic expansions for general statistical models. Lecture Notes in Statistics (Vol. 31). Berlin: Springer.

    Google Scholar 

  • Qumsiyeh, M. (1989). Edgeworth expansion in regression models. Journal of Multivariate Analysis

    Google Scholar 

  • Rao, C. R. (1961). Asymptotic efficiency and limiting information. Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, 1, 531–546.

    Google Scholar 

  • Rao, C. R. (1962). Efficient estimates and optimum inference procedures in large samples. Journal of the Royal Statistical Society, Series B, 24, 45–63.

    MATH  MathSciNet  Google Scholar 

  • Rao, C. R. (1963). Criteria of estimation in large samples. Sankhyá Series A, 25, 189–206.

    MATH  MathSciNet  Google Scholar 

  • Singh, K. (1981). On the asymptotic accuracy of Efron’s bootstrap. Annals of Statistics, 9, 1187–1195.

    Article  MATH  MathSciNet  Google Scholar 

  • Yoshida, N. (1997). Malliavin calculus and asymptotic expansion for martingales. Probability Theory and Related Fields, 190, 301–312.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Appendices

Appendix: Approximate Moments and Cumulants of W n

Write \(H(\overline{Z}) - H(\mu ) = G(\overline{Z}) + O_{p}(n^{-3/2})\), where

$$\displaystyle\begin{array}{rcl} G(\overline{Z})& =& (\overline{Z}-\mu ) \cdot \mathrm{ grad}\,H(\mu ) + \frac{1} {2!}\sum _{1\leq i_{1},i_{2}\leq k}D_{i_{1}i_{2}}(\overline{Z}^{(i_{1})} -\mu ^{(i_{1})})(\overline{Z}^{(i_{2})} -\mu ^{(i_{2})}) {}\\ & & + \frac{1} {3!}\sum _{1\leq i_{1},i_{2},i_{3}\leq k}D_{i_{1}i_{2}i_{3}}(\overline{Z}^{(i_{1})} -\mu ^{(i_{1})})(\overline{Z}^{(i_{2})} -\mu ^{(i_{2})})(\overline{Z}^{(i_{3})} -\mu ^{(i_{3})}). {}\\ & & \quad [(\overline{Z}-\mu ) \cdot \mathrm{ grad}\,H(\mu ) =\sum _{i}(D_{i}H)(\mu )(\overline{Z}^{(i)} -\mu ^{(i)})]. {}\\ \end{array}$$

Notation \((D_{i}H)(z) = (\partial H/\partial z^{(i)})(z)\), \((D_{i_{1}i_{2}}H)(z) = (D_{i_{1}}D_{i_{2}}H)(z)\), D i  = (D i H)(μ), \(D_{i_{1}i_{2}} = (D_{i_{1}i_{2}}H)(\mu )\), \(D_{i_{1}i_{2}i_{3}} = (D_{i_{1}i_{2}i_{3}}H)(\mu )\), etc., \(\sigma _{i_{1}i_{2}} = E(Z_{j}^{(i_{1})} -\mu ^{(i_{1})})(Z_{j}^{(i_{2})} -\mu ^{(i_{2})}) =\mu _{i_{ 1}i_{2}}\), \(\mu _{i_{1}i_{2}i_{3}} = E(Z_{j}^{(i_{1})} -\mu ^{(i_{1})}) \cdot (Z_{j}^{(i_{2})} -\mu ^{(i_{2})})(Z_{n}^{(i_{3})} -\mu ^{(i_{3})})\), etc., \(m_{r,n}:= EG(\overline{Z})^{r}\), \(\mu _{r,n} = E(\sqrt{n}G(\overline{Z}))^{r} = n^{r/2}m_{r,n}\). We will compute μ r, n up to \(O(n^{-3/2})\ (1 \leq r \leq 6)\).

$$\displaystyle\begin{array}{rcl} m_{1,n}& =& \frac{a_{1}} {n} + O(n^{-2}),\ a_{ 1} = \frac{1} {2!}\sum _{i_{1},i_{2}}D_{i_{1}i_{2}}\sigma _{i_{1}i_{2}},{}\end{array}$$
(11.55)
$$\displaystyle\begin{array}{rcl} m_{2,n}& =& \frac{b_{1}} {n} + \frac{b_{2}} {n^{2}} + O(n^{-3}), \\ b_{1}& =& \sum _{i_{1},i_{2}}D_{i_{1}} \cdot D_{i_{2}}\sigma _{i_{1}i_{2}} = E((Z_{j}-\mu )\mathrm{grad}\,H(\mu ))^{2}, \\ b_{2}& =& \sum _{i_{1},i_{2},i_{3}}D_{i_{1}}D_{i_{2}i_{3}}\mu _{i_{1}i_{2}i_{3}} \\ & & \quad + \frac{1} {3}\sum _{i_{1},i_{2},i_{3},i_{4}}D_{i_{1}}D_{i_{2}i_{3}i_{4}}(\sigma _{i_{1}i_{2}}\sigma _{i_{3}i_{4}} +\sigma _{i_{1}i_{3}}\sigma _{i_{2}i_{4}} +\sigma _{i_{1}i_{4}}\sigma _{i_{2}i_{3}}) \\ & & \qquad + \frac{1} {4}\sum _{i_{1},i_{2},i_{3},i_{4}}D_{i_{1}i_{2}}D_{i_{3}i_{4}}(\sigma _{i_{1}i_{2}}\sigma _{i_{3}i_{4}} +\sigma _{i_{1}i_{3}}\sigma _{i_{2}i_{4}} +\sigma _{i_{1}i_{4}}\sigma _{i_{2}i_{3}}),{}\end{array}$$
(11.56)
$$\displaystyle\begin{array}{rcl} m_{3,n}& =& \frac{c_{1}} {n^{2}} + O(n^{-3}), \\ c_{1}& =& \sum _{i_{1},i_{2},i_{3}}D_{i_{1}}D_{i_{2}}D_{i_{3}}\mu _{i_{1}i_{2}i_{3}} \\ & & \quad + \frac{3} {2}\sum _{i_{1},i_{2},i_{3},i_{4}}D_{i_{1}}D_{i_{2}}D_{i_{3}i_{4}}(\sigma _{i_{1}i_{2}}\sigma _{i_{3}i_{4}} +\sigma _{i_{1}i_{3}}\sigma _{i_{2}i_{4}} +\sigma _{i_{1}i_{4}}\sigma _{i_{2}i_{3}}),{}\end{array}$$
(11.57)
$$\displaystyle\begin{array}{rcl} m_{4,n}& =& \frac{d_{1}} {n^{2}} + \frac{d_{2}} {n^{3}} + O(n^{-4}),\ \text{where} \\ d_{1}& =& 3b_{1}^{2},\ \text{and} \\ d_{2}& =& E[(Z_{1}-\mu ) \cdot \mathrm{ grad}\,H(\mu )]^{4} - 3b_{ 1}^{2} \\ & & \quad + 2\sum _{i_{1},i_{2}}D_{i_{1}i_{2}}\bigg[E((Z_{1}-\mu ) \cdot \mathrm{ grad}\,H(\mu ))^{3}\sigma _{ i_{1}i_{2}} \\ & & \quad \ \ + 3E((Z_{1}-\mu ) \cdot \mathrm{ grad}\,H(\mu ))^{2} \\ & & \quad \ \ \ \cdot E\{(Z_{1}^{(i_{1})} -\mu ^{(i_{1})})(Z_{ 1}^{(i_{2})} -\mu ^{(i_{2})})((Z_{ 1}-\mu ) \cdot \mathrm{ grad}\,H(\mu ))\} \\ & & \quad \ + 3E\{(\mathrm{grad}\,H(\mu ) \cdot (Z_{1}-\mu ))(Z_{1}^{(i)} -\mu ^{(i_{1})})\} \\ & & \quad \ \ \ \ \cdot E\{(\mathrm{grad}\,H(\mu ) \cdot (Z_{1}-\mu ))^{2} \cdot (Z_{ 1}^{(i_{2})} -\mu ^{(i_{2})})\} \\ & & \qquad \ + 3E\{(\mathrm{grad}\,H(\mu ) \cdot (Z_{1}-\mu ))(Z_{1}^{(i_{2})} -\mu ^{(i_{2})})\} \\ & & \qquad \ \ \ \cdot E\{(\mathrm{grad}\,H(\mu ) \cdot (Z_{1}-\mu ))^{2}(Z_{ 1}^{(i_{1})} -\mu ^{(i_{1})})\}\bigg] \\ & & \qquad + \frac{2} {3}\sum _{i_{1},i_{2},i_{3}}D_{i_{1}i_{2}i_{3}}\bigg[3E((Z_{1}-\mu ) \cdot \mathrm{ grad}\,H(\mu ))^{2} \\ & & \qquad \quad \ \ \cdot \bigg\{ E((Z_{1}^{(i_{1})} -\mu ^{(i_{1})})(Z_{ 1}-\mu ) \cdot \mathrm{ grad}\,H(\mu )))\sigma _{i_{2}i_{3}} \\ & & \qquad \quad \ \ + E((Z_{1}^{(i_{2})} -\mu ^{(i_{2})})((Z_{ 1}-\mu ) \cdot \mathrm{ grad}\,H(\mu )))\sigma _{i_{1}i_{3}} \\ & & \qquad \quad \ \ + E((Z_{1}^{(i_{3})} -\mu ^{(i_{3})})((Z_{ 1}-\mu ) \cdot \mathrm{ grad}\,H(\mu )))\sigma _{i_{1}i_{2}}\bigg\} \\ & & \qquad \quad \ \ + 6E((Z_{1}^{(i_{1})} -\mu ^{(i_{1})})((Z_{ 1}-\mu ) \cdot \mathrm{ grad}\,H(\mu ))) \\ & & \qquad \quad \ \ \cdot E((Z_{1}-\mu ) \cdot \mathrm{ grad}\,H(\mu ))(Z_{1}^{(i_{2})} -\mu ^{(i_{2})}) \\ & & \qquad \quad \ \ \ \cdot E((Z_{1}-\mu ) \cdot \mathrm{ grad}\,H(\mu ))(Z_{1}^{(i_{3})} -\mu ^{(i_{3})})\bigg] \\ & & \qquad \quad + \frac{3} {2}\sum _{i_{1},i_{2},i_{3},i_{4}}D_{i_{1}i_{2}}D_{i_{3}i_{4}}\bigg[E(\mathrm{grad}\,H(\mu ) \cdot (Z_{1}-\mu ))^{2} \\ & & \qquad \qquad \cdot \{\sigma _{i_{1}i_{2}}\sigma _{i_{3}i_{4}} +\sigma _{i_{1}i_{3}}\sigma _{i_{2}i_{4}} +\sigma _{i_{1}i_{4}}\sigma _{i_{2}i_{3}}\} \\ & & \qquad \qquad \ + E((\mathrm{grad}\,H(\mu ) \cdot (Z_{1}-\mu ))(Z_{1}^{(i_{1})} -\mu ^{(i_{1})})) \\ & & \qquad \qquad \ \ \ \cdot \bigg\{ E((\mathrm{grad}\,H(\mu ) \cdot (Z_{1}-\mu ))(Z_{1}^{(i_{2})} -\mu ^{(i_{2})}))\sigma _{ i_{3}i_{4}} \\ & & \qquad \qquad \ \ + E((\mathrm{grad}\,H(\mu ) \cdot (Z_{1}-\mu ))(Z_{1}^{(i_{3})} -\mu ^{(i_{3})}))\sigma _{ i_{2}i_{4}} \\ & & \qquad \qquad \ + E((\mathrm{grad}\,H(\mu ) \cdot (Z_{1}-\mu ))(Z_{1}^{(i_{4})} -\mu ^{(i_{4})})\sigma _{ i_{2}i_{3}}\bigg\} \\ & & \qquad \qquad \ + E((\mathrm{grad}\,H(\mu ) \cdot (Z_{1}-\mu ))(Z_{1}^{(i_{2})} -\mu ^{(i_{2})})) \\ & & \qquad \qquad \ \ \ \ \ \ \cdot \bigg\{ E((\mathrm{grad}\,H(\mu ) \cdot (Z_{1}-\mu ))(Z_{1}^{(i_{1})} -\mu ^{(i_{1})}))\sigma _{ i_{3}i_{4}} \\ & & \qquad \qquad \ \ \ \ \ \ \ + E((\mathrm{grad}\,H(\mu ) \cdot (Z_{1}-\mu ))(Z_{1}^{(i_{3})} -\mu ^{(i_{3})}))\sigma _{ i_{1}i_{4}} \\ & & \qquad \qquad \qquad \ \ + E((\mathrm{grad}\,H(\mu ) \cdot (Z_{1}^{(i_{4})} -\mu ^{(i_{4})}))\sigma _{ i_{1}i_{3}}\bigg\} \\ & & \qquad \qquad + E((\mathrm{grad}\,H(\mu ) \cdot (Z_{1}-\mu ))(Z_{1}^{(i_{3})} -\mu ^{(i_{3})})) \\ & & \qquad \qquad \cdot \bigg\{ E((\mathrm{grad}\,H(\mu ) \cdot (Z_{1}-\mu ))(Z_{1}^{(i_{1})} -\mu ^{(i_{1})}))\sigma _{ i_{2}i_{4}} \\ & & \qquad \qquad + E((\mathrm{grad}\,H(\mu ) \cdot (Z_{1}-\mu ))(Z_{1}^{(i_{2})} -\mu ^{(i_{2})}))\sigma _{ i_{1}i_{4}} \\ & & \qquad \qquad + E((\mathrm{grad}\,H(\mu ) \cdot (Z_{1}-\mu ))(Z_{1}^{(i_{4})} -\mu ^{(i_{4})}))\sigma _{ i_{1}i_{2}}\bigg\} \\ & & \qquad \qquad + E((\mathrm{grad}\,H(\mu ) \cdot Z_{1}-\mu ))(Z_{1}^{(i_{4})} -\mu ^{(i_{4})})) \\ & & \qquad \qquad \qquad \ \cdot \bigg\{ E((\mathrm{grad}\,H(\mu ) \cdot Z_{1}-\mu ))(Z_{1}^{(i_{1})} -\mu ^{(i_{1})}))\sigma _{ i_{2}i_{3}} \\ & & \qquad \qquad \qquad \ \ + E((\mathrm{grad}\,H(\mu ) \cdot (Z_{1}-\mu ))(Z_{1}^{(i_{2})} -\mu ^{(i_{2})}))\sigma _{ i_{1}i_{3}} \\ & & \qquad \qquad \qquad \ \ + E((\mathrm{grad}\,H(\mu ) \cdot (Z_{1}^{(i_{3})} -\mu ^{(i_{3})}))\sigma _{ i_{1}i_{2}}\bigg\}\bigg], {}\end{array}$$
(11.58)
$$\displaystyle\begin{array}{rcl} m_{5,n}& =& \frac{e_{1}} {n^{3}} + O(n^{-4}), \\ e_{1}& =& 10E((Z_{1}-\mu ) \cdot \mathrm{ grad}\,H(\mu ))^{3} \cdot E((Z_{ 1}-\mu ) \cdot \mathrm{ grad}\,H(\mu ))^{2} \\ & & \quad + \frac{5} {2}\sum _{i_{1},i_{2}}D_{i_{1}i_{2}}E(Z_{1}-\mu ) \cdot \mathrm{ grad}\,H(\mu ))^{2} \\ & & \qquad \cdot \bigg\{ 3\sigma _{i_{1}i_{2}}(E(Z_{1}-\mu ) \cdot \mathrm{ grad}\,H(\mu ))^{2} \\ & & \qquad \quad + 12E((Z_{1}-\mu ) \cdot \mathrm{ grad}\,H(\mu ))(Z_{1}^{(i_{1})} -\mu ^{(i_{1})})) \\ & & \qquad \qquad \cdot E((Z_{1}-\mu ) \cdot \mathrm{ grad}\,H(\mu ))(Z_{1}^{(i_{2})} -\mu ^{(i_{2})}))\bigg\}, {}\end{array}$$
(11.59)
$$\displaystyle\begin{array}{rcl} m_{6,n}& =& \frac{f_{1}} {n^{3}} + O(n^{-4}), \\ f_{1}& =& 15[E(Z_{1}-\mu ) \cdot \mathrm{ grad}\,H(\mu ))^{2}]^{3}.{}\end{array}$$
(11.60)

“Approximate” cumulants of W n are then given by

$$\displaystyle\begin{array}{rcl} k_{1,n}& =& \mu _{1,n} = \sqrt{n}\,m_{1,n} = n^{-1/2}a_{ 1} + O(n^{-3/2}) \\ & =& \frac{n^{-1/2}} {2} \sum _{i_{1},i_{2}}D_{i_{1}i_{2}}\sigma _{i_{1}i_{2}} + O(n^{-3/2}) \\ k_{2,n}& =& \mu _{2,n} -\mu _{1,n}^{2} = n(m_{ 2,n} - m_{1,n}^{2}) \\ & =& b_{1} + \frac{b_{2} - a_{1}^{2}} {n} + O(n^{-2}), \\ k_{3,n}& =& \mu _{3,n} - 3\mu _{2,n}\mu _{1,n} + 2\mu _{1,n}^{3} = n^{-1/2}(c_{ 1} - 3b_{1}a_{1}) + O(n^{-3/2}), \\ k_{4,n}& =& \mu _{4,n} - 4\mu _{3,n}\mu _{1,n} - 3\mu _{2,n}^{2} + 12\mu _{ 2,n}\mu _{1,n}^{2} - 6\mu _{ 1,n}^{4} \\ & =& d_{1} + \frac{d_{2}} {n} -\frac{4a_{1}c_{1}} {n} - 3\left (b_{1}^{2} + \frac{2b_{1}b_{2}} {n} \right ) + 12\frac{a_{1}^{2}b_{1}} {n} + O(n^{-2}) \\ & =& n^{-1}(d_{ 2} - 4a_{1}c_{1} - 6b_{1}b_{2} + 12a_{1}^{2}b_{ 1}) + O(n^{-2}). {}\end{array}$$
(11.61)

As an example for Student’s t,

$$\displaystyle\begin{array}{rcl} k_{1,n}& =& -\frac{1} {2}\mu _{3}n^{-1/2} + O(n^{-3/2}), \\ k_{2,n}& =& 1 + n^{-1}(2\mu _{ 3}^{2} + 3) - n^{-1}\left (\frac{1} {4}\mu _{3}^{2}\right ) + O(n^{-2}) \\ & =& 1 + n^{-1}\left (\frac{7} {4}\mu _{3}^{2} + 3\right ) + O(n^{-2}) \\ k_{3,n}& =& n^{-1/2}\left (-\frac{7} {2}\mu _{3} + \frac{3} {2}\mu _{3}\right ) + O(n^{-3/2}) = -2n^{-1/2}\mu _{ 3} + O(n^{-3/2}) \\ k_{4,n}& =& n^{-1}[-2\mu _{ 4} + 28\mu _{3}^{2} + 30 - 7\mu _{ 3}^{2} - 6(2\mu _{ 3}^{2} + 3) + 3\mu _{ 3}^{2}] + O(n^{-2}) \\ & =& n^{-1}(-2\mu _{ 4} + 12\mu _{3}^{2} + 12) + O(n^{-2}) \\ & =& -2n^{-1}(\mu _{ 4} - 6\mu _{3}^{2} - 6) + O(n^{-2}). {}\end{array}$$
(11.62)

Exercises for Chap. 11

Ex. 11.1. Derive (a) the Edgeworth expansion for the distribution function of the (nonparametric) Student’s t, using (11.62), and under appropriate conditions, and (b) prove the analog of (11.49) for the coverage error of the bootstrap approximation for a symmetric confidence interval for the mean based on t.

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag New York

About this chapter

Cite this chapter

Bhattacharya, R., Lin, L., Patrangenaru, V. (2016). Edgeworth Expansions and the Bootstrap. In: A Course in Mathematical Statistics and Large Sample Theory. Springer Texts in Statistics. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-4032-5_11

Download citation

Publish with us

Policies and ethics