An Overview of Powder X-ray Diffraction and Its Relevance to Pharmaceutical Crystal Structures

  • Kenneth ShanklandEmail author
Part of the Advances in Delivery Science and Technology book series (ADST)


Single-crystal X-ray diffraction is one of the most powerful methods for the analysis of crystalline materials, but as active pharmaceutical ingredients are typically processed in the form of polycrystalline powders, powder X-ray diffraction assumes a particularly important role in their analysis. This chapter, which is targeted at pharmaceutical scientists, presents a brief introduction to the technique, before discussing the various ways in which it can be used to probe crystal structures, with a particular emphasis on the practicalities of data collection in the laboratory and on data analysis, leading ultimately to high-quality, refined crystal structures.


Powder diffraction Pharmaceuticals Crystal structure determination Laboratory X-ray powder diffraction instrumentation Physical form identification Crystal structure verification Rietveld refinement 



The author gratefully acknowledges the many long-standing collaborations that have contributed to his work in the area of PXRD, but in particular those with Bill David, Tony Csoka, Anders Markvardsen, Alastair Florence, Norman Shankland and the staff of the Cambridge Crystallographic Data Centre.


  1. Allen FH (2002) The Cambridge Structural Database: a quarter of a million crystal structures and rising. Acta Crystallogr B 58:380–388. doi: 10.1107/s0108768102003890 CrossRefPubMedGoogle Scholar
  2. Allen FH, Johnson O, Shields GP, Smith BR, Towler M (2004) CIF applications. XV. enCIFer: a program for viewing, editing and visualizing CIFs. J Appl Crystallogr 37:335–338. doi: 10.1107/s0021889804003528 CrossRefGoogle Scholar
  3. Altomare A, Camalli M, Cuocci C, Giacovazzo C, Moliterni A, Rizzi R (2009) EXPO2009: structure solution by powder data in direct and reciprocal space. J Appl Crystallogr 42(6):1197–1202. doi: 10.1107/S0021889809042915 CrossRefGoogle Scholar
  4. Altomare A, Cuocci C, Giacovazzo C, Moliterni A, Rizzi R (2012) COVMAP: a new algorithm for structure model optimization in the EXPO package. J Appl Crystallogr 45(4):789–797. doi: 10.1107/S002188981201953X CrossRefGoogle Scholar
  5. Antonio SG, Benini FR, Ferreira FF, Pires Rosa PC, Paiva-Santos CDO (2011) Quantitative phase analyses through the Rietveld method with X-ray powder diffraction data of heat-treated carbamazepine form III. J Pharm Sci 100(7):2658–2664. doi: 10.1002/jps.22482 CrossRefPubMedGoogle Scholar
  6. Barr G, Dong W, Gilmore CJ (2009) PolySNAP3: a computer program for analysing and visualizing high-throughput data from diffraction and spectroscopic sources. J Appl Crystallogr 42:965–974. doi: 10.1107/s0021889809025746 CrossRefGoogle Scholar
  7. Brittain HG (2001) X-ray diffraction III: pharmaceutical applications of x-ray powder diffraction. Spectroscopy 16(7):14–18Google Scholar
  8. Bruno IJ, Cole JC, Kessler M, Luo J, Motherwell WDS, Purkis LH, Smith BR, Taylor R, Cooper RI, Harris SE, Orpen AG (2004) Retrieval of crystallographically-derived molecular geometry information. J Chem Inf Comput Sci 44(6):2133–2144. doi: 10.1021/ci049780b CrossRefPubMedGoogle Scholar
  9. ChemAxon (2013) Marvin, edn. ChemAxonGoogle Scholar
  10. Clark SJ, Segall MD, Pickard CJ, Hasnip PJ, Probert MJ, Refson K, Payne MC (2005) First principles methods using CASTEP. Z Kristallogr 220(5–6):567–570. doi: 10.1524/zkri.220.5.567.65075 Google Scholar
  11. Coelho A (2003) TOPAS user manual, v3.1 edn. Bruker AXS GmbH, KarlsruheGoogle Scholar
  12. Davey RJ, Maginn SJ, Andrews SJ, Black SN, Buckley AM, Cottier D, Dempsey P, Plowman R, Rout JE, Stanley DR, Taylor A (1994) Morphology and polymorphism in molecular-crystals—terephthalic acid. J Chem Soc-Faraday Trans 90(7):1003–1009. doi: 10.1039/ft9949001003 CrossRefGoogle Scholar
  13. David WIF, Shankland K, van de Streek J, Pidcock E, Motherwell WDS, Cole JC (2006) DASH: a program for crystal structure determination from powder diffraction data. J Appl Crystallogr 39:910–915. doi: 10.1107/s0021889806042117 CrossRefGoogle Scholar
  14. Dykhne T, Taylor R, Florence A, Billinge SJL (2011) Data requirements for the reliable use of atomic pair distribution functions in amorphous pharmaceutical fingerprinting. Pharm Res 28(5):1041–1048. doi: 10.1007/s11095-010-0350-0 CrossRefPubMedGoogle Scholar
  15. Engel GE, Wilke S, Konig O, Harris KDM, Leusen FJJ (1999) PowderSolve—a complete package for crystal structure solution from powder diffraction patterns. J Appl Crystallogr 32(6):1169–1179. doi: 10.1107/S0021889899009930 CrossRefGoogle Scholar
  16. Favre-Nicolin V, Černý R (2004) A better FOX: using flexible modelling and maximum likelihood to improve direct-space ab initio structure determination from powder diffraction. Z Kristallogr Cryst Mater 219(12):847–856. doi: 10.1524/zkri.219.12.847.55869 CrossRefGoogle Scholar
  17. Florence AJ (2009) Approaches to high-throughput physical form screening and discovery. In: Brittain HG (ed) Polymorphism in pharmaceutical solids, 2nd edn. Informa Healthcare, New YorkGoogle Scholar
  18. Florence AJ, Shankland K, Gelbrich T, Hursthouse MB, Shankland N, Johnston A, Fernandes P, Leech CK (2008) A catemer-to-dimer structural transformation in cyheptamide. CrystEngComm 10(1):26–28. doi: 10.1039/b712547j CrossRefGoogle Scholar
  19. Hofmann DWM (2002) Fast estimation of crystal densities. Acta Crystallogr B 58:489–493. doi: 10.1107/s0108768101021814 CrossRefPubMedGoogle Scholar
  20. Ivanisevic I, McClurg RB, Schields PJ (2010) Uses of X-ray powder diffraction in the pharmaceutical industry. In: Gad SC (ed) Pharmaceutical Sciences Encyclopedia. Wiley, New York. doi: 10.1002/9780470571224.pse414 Google Scholar
  21. Larson AC, Von Dreele RB (2000) General Structure Analysis System (GSAS). Los Alamos National Laboratory ReportGoogle Scholar
  22. Lemmerer A, Bernstein J, Griesser UJ, Kahlenberg V, Toebbens DM, Lapidus SH, Stephens P, Esterhuysen C (2011) A tale of two polymorphic pharmaceuticals: pyrithyldione and propyphenazone and their 1937 co-crystal patent. Chemistry 17(48):13445–13460. doi: 10.1002/chem.201100667 CrossRefPubMedGoogle Scholar
  23. Looijenga-Vos A, Buerger MJ (2005) Determination of space groups. In: Hahn T (ed) International tables for crystallography, volume A: space-group symmetry, 5th edn. Springer, DordrechtGoogle Scholar
  24. Louer D (2002) Laboratory X-ray powder diffraction. In: David WIF, Shankland K, McCusker LB, Baerlocher C (eds) Structure determination from powder diffraction data. Oxford University Press, OxfordGoogle Scholar
  25. Macrae CF, Bruno IJ, Chisholm JA, Edgington PR, McCabe P, Pidcock E, Rodriguez-Monge L, Taylor R, van de Streek J, Wood PA (2008) Mercury CSD 2.0—new features for the visualization and investigation of crystal structures. J Appl Crystallogr 41:466–470. doi: 10.1107/s0021889807067908 CrossRefGoogle Scholar
  26. Markvardsen AJ, David WIF, Johnston JC, Shankland K (2012) A probabilistic approach to space-group determination from powder diffraction data (vol A57, pg 47, 2001). Acta Crystallogr A 68:780. doi: 10.1107/s0108767312038305 CrossRefGoogle Scholar
  27. Morissette SL, Almarsson O, Peterson ML, Remenar JF, Read MJ, Lemmo AV, Ellis S, Cima MJ, Gardner CR (2004) High-throughput crystallization: polymorphs, salts, co-crystals and solvates of pharmaceutical solids. Adv Drug Deliv Rev 56(3):275–300. doi: 10.1016/j.addr.2003.10.020 CrossRefPubMedGoogle Scholar
  28. Ooi L (2009) Principles of X-ray crystallography. Oxford University Press, OxfordGoogle Scholar
  29. Pagola S, Stephens PW (2010) PSSP, a computer program for the crystal structure solution of molecular materials from X-ray powder diffraction data. J Appl Crystallogr 43(2):370–376. doi:10.1107/S0021889810005509Google Scholar
  30. PANalytical (2014) X’Pert HighScore Plus PANalytical B.V.Google Scholar
  31. Pecharsky VK, Zavalij PY (2005) Fundamentals of powder diffraction and structural characterization of materials. Springer, New YorkGoogle Scholar
  32. Randall C, Rocco W, Ricou P (2010) XRD in pharmaceutical analysis: a versatile tool for problem-solving. Am Pharm Rev 13:52–59Google Scholar
  33. Rodriguez-Carvajal J (1993) Recent advances in magnetic-structure determination by neutron powder diffraction. Physica B 192(1–2):55–69. doi: 10.1016/0921-4526(93)90108-i CrossRefGoogle Scholar
  34. Shankland K, David WIF, Sivia DS (1997) Routine ab initio structure determination of chlorothiazide by X-ray powder diffraction using optimised data collection and analysis strategies. J Mater Chem 7(3):569–572. doi: 10.1039/a606998c CrossRefGoogle Scholar
  35. Shankland K, Spillman MJ, Kabova EA, Edgeley DS, Shankland N (2013) The principles underlying the use of powder diffraction data in solving pharmaceutical crystal structures. Acta Crystallogr C 69:1251–1259. doi: 10.1107/s0108270113028643 CrossRefPubMedGoogle Scholar
  36. Spek AL (2009) Structure validation in chemical crystallography. Acta Crystallogr D 65:148–155. doi: 10.1107/s090744490804362x CrossRefPubMedPubMedCentralGoogle Scholar
  37. Werner P-E (2002) Autoindexing. In: David WIF, Shankland K, McCusker LB, Baerlocher C (eds) Structure determination from powder diffraction data. Oxford University Press, OxfordGoogle Scholar
  38. Young RA (ed) (1995) The Rietveld method. Oxford University Press, OxfordGoogle Scholar

Copyright information

© Controlled Release Society 2016

Authors and Affiliations

  1. 1.School of Pharmacy, University of ReadingReadingUK

Personalised recommendations