Skip to main content

Applications of Mass Spectrometry in Drug Development Science

  • Chapter
  • First Online:
Analytical Techniques in the Pharmaceutical Sciences

Abstract

Mass spectrometry (MS) offers the capability to identify, characterize and quantify a target molecule in a complex sample matrix and has developed into a premier analytical tool in drug development science. Through specific MS-based workflows including customized sample preparation, coupling to liquid chromatography and different ionization principles, both qualitative and quantitative analysis of small and large drug compounds can be achieved at an unprecedented sensitivity.

Here, we review the basic principles of MS and tandem MS, including ionization, mass analysis and detection, as well as fragmentation techniques and coupling of MS to chromatographic separation. As the structural integrity of protein drugs during purification, formulation and delivery is of critical importance to ensure drug efficacy and safety, an overview over current approaches for primary and higher-order structure analysis of proteins by mass spectrometry will be given as well as related workflows for quantitative MS analysis. Established “top-down” and “bottom-up” protein analyses with MS will be recapitulated, and the use of emerging technologies such as hydrogen/deuterium exchange mass spectrometry (HDX-MS) for higher-order protein structure analysis will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ardrey RE (2003) Liquid chromatography-mass spectrometry: an introduction. Wiley, New York

    Book  Google Scholar 

  • Armbruster DA, Pry T (2008) Limit of blank, limit of detection and limit of quantitation. Clin Biochem Rev 29(Suppl 1):S49–S52

    PubMed  PubMed Central  Google Scholar 

  • Armbruster DA, Tillman MD, Hubbs LM (1994) Limit of detection (Lod) limit of quantitation (Loq)—comparison of the empirical and the statistical, methods exemplified with GC-MS assays of abused drugs. Clin Chem 40(7):1233–1238

    CAS  PubMed  Google Scholar 

  • Bai Y, Milne JS, Mayne L, Englander SW (1993) Primary structure effects on peptide group hydrogen exchange. Proteins 17(1):75–86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown RS, Lennon JJ (1995) Sequence-specific fragmentation of matrix-assisted laser-desorbed protein peptide ions. Anal Chem 67(21):3990–3999

    Article  CAS  PubMed  Google Scholar 

  • Campins-Falco P, Herraez-Hernandez R, Sevillano-Cabeza A (1993) Column-switching techniques for high-performance liquid chromatography of drugs in biological samples. J Chromatogr 619(2):177–190

    Article  CAS  PubMed  Google Scholar 

  • Chen G, Warrack BM, Goodenough AK, Wei H, Wang-Iverson DB, Tymiak AA (2011) Characterization of protein therapeutics by mass spectrometry: recent developments and future directions. Drug Discov Today 16(1–2):58–64

    Article  CAS  PubMed  Google Scholar 

  • Cole RB (2010) Electrospray and MALDI mass spectrometry: fundamentals, instrumentation, practicalities, and biological applications. Wiley, Oxford

    Book  Google Scholar 

  • Corradini E, Klaasse G, Leurs U, Heck AJ, Martin NI, Scholten A (2015) Charting the interactome of PDE3A in human cells using an IBMX based chemical proteomics approach. Mol Biosyst 11(10):2783–2797

    Article  Google Scholar 

  • Frank R, Hargreaves R (2003) Clinical biomarkers in drug discovery and development. Nat Rev Drug Discov 2(7):566–580

    Article  CAS  PubMed  Google Scholar 

  • Gjelstad A, Pedersen-Bjergaard S (2013) Challenges and new directions in analytical sample preparation. Anal Bioanal Chem 406:375–376

    Article  Google Scholar 

  • Glish GL, Vachet RW (2003) The basics of mass spectrometry in the twenty-first century. Nat Rev Drug Discov 2(2):140–150

    Article  CAS  PubMed  Google Scholar 

  • Hardouin J (2007a) Protein sequence information by matrix-assisted laser desorption/ionization in-source decay mass spectrometry. Mass Spectrom Rev 26(5):672–682

    Article  CAS  PubMed  Google Scholar 

  • Herman JL, Edge T, Majors RE (2012) Theoretical concepts and applications of turbulent flow chromatography. LCGC North America 30(3):200–214

    CAS  Google Scholar 

  • Hillenkamp F, Peter-Katalini J (2007) MALDI MS: a practical guide to instrumentation, methods and applications. Weinheim, Wiley-VCH; [Chichester : John Wiley [distributor]]

    Book  Google Scholar 

  • Hoffmann ED, Stroobant V (2007) Mass spectrometry: principles and applications. Wiley, Hoboken, NJ; Chichester: John Wiley [distributor]

    Google Scholar 

  • Holcapek M, Jirasko R, Lisa M (2012) Recent developments in liquid chromatography-mass spectrometry and related techniques. J Chromatogr A 1259:3–15

    Article  CAS  PubMed  Google Scholar 

  • Houde D, Engen JR (2013) Conformational analysis of recombinant monoclonal antibodies with hydrogen/deuterium exchange mass spectrometry. Methods Mol Biol 988:269–289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Houde DJ, Berkowitz SA (2015) Biophysical characterization of proteins in developing biopharmaceuticals. D. J. H. A. Berkowitz. Elsevier, Amsterdam

    Google Scholar 

  • Hunt DF, Coon JJ, Syka JEP, Marto JA (2005). Electron transfer dissociation for biopolymer sequence analysis. US 11079147

    Google Scholar 

  • Jeffery DA, Bogyo M (2003) Chemical proteomics and its application to drug discovery. Curr Opin Biotechnol 14(1):87–95

    Article  CAS  PubMed  Google Scholar 

  • Jennings KR (1968) Collision-induced decompositions of aromatic molecular ions. Int J Mass Spectrom Ion Phys 1(3):227–235

    Article  CAS  Google Scholar 

  • Jensen PF, Larraillet V, Schlothauer T, Kettenberger H, Hilger M, Rand KD (2015) Investigating the interaction between the neonatal Fc receptor and monoclonal antibody variants by hydrogen/deuterium exchange mass spectrometry. Mol Cell Proteomics 14(1):148–161

    Article  CAS  PubMed  Google Scholar 

  • Joyce KB, Jones AE, Scott RJ, Biddlecombe RA, Pleasance S (1998) Determination of the enantiomers of salbutamol and its 4-O-sulphate metabolites in biological matrices by chiral liquid chromatography tandem mass spectrometry. Rapid Commun Mass Spectrom 12(23):1899–1910

    Article  CAS  PubMed  Google Scholar 

  • Karas M, Bahr U (1990) Laser desorption ionization mass spectrometry of large biomolecules. Trends Anal Chem 9(10):321–325

    Article  CAS  Google Scholar 

  • Koppenaal DW, Barinaga CJ, Denton MB, Sperline RP, Hieftje GM, Schilling GD, Andrade FJ, Barnes JH (2005) MS detectors. Anal Chem 77(21):418A–427A

    Article  CAS  PubMed  Google Scholar 

  • Korfmacher WA, Palmer CA, Nardo C, Dunn-Meynell K, Grotz D, Cox K, Lin CC, Elicone C, Liu C, Duchoslav E (1999) Development of an automated mass spectrometry system for the quantitative analysis of liver microsomal incubation samples: a tool for rapid screening of new compounds for metabolic stability. Rapid Commun Mass Spectrom 13(10):901–907

    Article  CAS  PubMed  Google Scholar 

  • Lanucara F, Holman SW, Gray CJ, Eyers CE (2014) The power of ion mobility-mass spectrometry for structural characterization and the study of conformational dynamics. Nat Chem 6(4):281–294

    Article  CAS  PubMed  Google Scholar 

  • Leurs U, Mistarz UH, Rand KD (2015) Getting to the core of protein pharmaceuticals—comprehensive structure analysis by mass spectrometry. Eur J Pharm Biopharm 93:95–109

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Shin YG, Yu C, Kosmeder JW, Hirschelman WH, Pezzuto JM, van Breemen RB (2003) Increasing the throughput and productivity of Caco-2 cell permeability assays using liquid chromatography-mass spectrometry: application to resveratrol absorption and metabolism. Comb Chem High Throughput Screen 6(8):757–767

    Article  CAS  PubMed  Google Scholar 

  • Lim MS, Elenitoba-Johnson KS (2004) Proteomics in pathology research. Lab Invest 84(10):1227–1244

    Article  CAS  PubMed  Google Scholar 

  • Little TA (2015) Method validation essentials, limit of blank, limit of detection, and limit of quantitation. Biopharm Int 28(4):48–51

    Google Scholar 

  • Makarov A (2000) Electrostatic axially harmonic orbital trapping: a high-performance technique of mass analysis. Anal Chem 72(6):1156–1162

    Article  CAS  PubMed  Google Scholar 

  • Marshall AG, Hendrickson CL, Shi SD (2002) Scaling MS plateaus with high-resolution FT-ICRMS. Anal Chem 74(9):252A–259A

    Article  CAS  PubMed  Google Scholar 

  • Pandit D, Tuske SJ, Coales SJ, E SY, Liu A, Lee JE, Morrow JA, Nemeth JF, Hamuro Y (2012) Mapping of discontinuous conformational epitopes by amide hydrogen/deuterium exchange mass spectrometry and computational docking. J Mol Recognit 25(3):114–124

    Article  CAS  PubMed  Google Scholar 

  • Payan MD, Li B, Petersen NJ, Jensen H, Hansen SH, Pedersen-Bjergaard S (2013) Nano-electromembrane extraction. Anal Chim Acta 785:60–66

    Article  CAS  PubMed  Google Scholar 

  • Reynolds A (1961) Dynamics of turbulent vortical flow. Z Angew Math Phys 12(2):149–158

    Article  Google Scholar 

  • Rix U, Superti-Furga G (2009) Target profiling of small molecules by chemical proteomics. Nat Chem Biol 5(9):616–624

    Article  CAS  PubMed  Google Scholar 

  • Roepstorff P, Fohlman J (1984) Proposal for a nomenclature for sequence ions in mass spectra of peptides. Biomed Mass Spectrom 11:601

    Article  CAS  PubMed  Google Scholar 

  • Ryhage R (1964) Use of mass spectrometer as detector+analyzer for effluents emerging from high temperature gas liquid chromatography columns. Anal Chem 36(4):759–764

    Article  CAS  Google Scholar 

  • Siuzdak G (1994) The emergence of mass spectrometry in biochemical research. Proc Natl Acad Sci U S A 91(24):11290–11297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith RD, Udseth HR, Loo JA, Wright BW, Ross GA (1989) Sample introduction and separation in capillary electrophoresis, and combination with mass spectrometric detection. Talanta 36(1–2):161–169

    Article  CAS  PubMed  Google Scholar 

  • Syka JE, Coon JJ, Schroeder MJ, Shabanowitz J, Hunt DF (2004) Peptide and protein sequence analysis by electron transfer dissociation mass spectrometry. Proc Natl Acad Sci U S A 101(26):9528–9533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tao L, Ackerman M, Wu W, Liu P, Russell R (2011) Characterization of impurities and degradants using mass spectrometry. Wiley, Hoboken

    Google Scholar 

  • van den Broek I, Niessen WMA, van Dongen WD (2013) Bioanalytical LC–MS/MS of protein-based biopharmaceuticals. J Chromatogr B 929:161–179

    Article  Google Scholar 

  • Wanner KT, Höfner G (2007) Mass spectrometry in medicinal chemistry. Weinheim, Wiley-VCH; Chichester : John Wiley [distributor]

    Book  Google Scholar 

  • Zhang Z, Smith DL (1993) Determination of amide hydrogen exchange by mass spectrometry: a new tool for protein structure elucidation. Protein Sci 2(4):522–531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng J (2009) Formulation and analytical development for low-dose oral drug products. Wiley, New York

    Book  Google Scholar 

  • Zubarev RA, Horn DM, Fridriksson EK, Kelleher NL, Kruger NA, Lewis MA, Carpenter BK, McLafferty FW (2000) Electron capture dissociation for structural characterization of multiply charged protein cations. Anal Chem 72(3):563–573

    Article  CAS  PubMed  Google Scholar 

  • Zubarev RA, Kruger NA, Fridriksson EK, Lewis MA, Horn DM, Carpenter BK, McLafferty FW (1999) Electron capture dissociation of gaseous multiply-charged proteins is favored at disulfide bonds and other sites of high hydrogen atom affinity. J Am Chem Soc 121:2857–2862

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kasper D. Rand .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Controlled Release Society

About this chapter

Cite this chapter

Leurs, U., Mistarz, U.H., Rand, K.D. (2016). Applications of Mass Spectrometry in Drug Development Science. In: Müllertz, A., Perrie, Y., Rades, T. (eds) Analytical Techniques in the Pharmaceutical Sciences. Advances in Delivery Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-4029-5_7

Download citation

Publish with us

Policies and ethics