Applications of Small Angle X-ray Scattering in Pharmaceutical Science

  • Ben J. BoydEmail author
  • Thomas Rades
Part of the Advances in Delivery Science and Technology book series (ADST)


Small angle X-ray scattering offers opportunities to better understand pharmaceutical systems across a range of length scales related to drug delivery. This contribution aims to highlight a range of areas in which SAXS can be deployed to better understand structure in pharmaceutically relevant materials from molecular to colloidal dimensions, with a focus on developing synchrotron techniques that provide new opportunities in time resolved kinetic studies.


X-ray scattering Diffraction Synchrotron Self-assembly Polymorphism Grazing incidence Time resolved 


  1. Aaltonen J, Alleso M, Mirza S, Koradia V, Gordon KC, Rantanen J (2009) Solid form screening—a review. Eur J Pharm Biopharm 71:23–37CrossRefPubMedGoogle Scholar
  2. Aizawa H (2010) Morphology of polysorbate 80 (Tween 80) micelles in aqueous dimethyl sulfoxide solutions. J Appl Cryst 43:630–631CrossRefGoogle Scholar
  3. Amenitsch H, Bernstorff S, Kriechbaum M, Lombardo D, Mio H, Rappolt M, Laggner P (1997) Performance and first results of the ELETTRA high-flux beamline for small-angle x-ray scattering. J Appl Cryst 30:872–876CrossRefGoogle Scholar
  4. Anderson AC (2003) The process of structure-based drug design. Chem Biol 10:787–797CrossRefPubMedGoogle Scholar
  5. Attwood D, Florence AT, Gillan JMN (1974) Micellar properties of drugs: properties of micellar aggregates of phenothiazines and their aqueous solutions. J Pharm Sci 63:988–993CrossRefPubMedGoogle Scholar
  6. Bauwens CM (2012) X-ray scattering. Nova, New YorkGoogle Scholar
  7. Bernstein J (2007) Polymorphism in molecular crystals. Oxford University Press, OxfordCrossRefGoogle Scholar
  8. Boetker J, Rades T, Rantanen J, Hawley A, Boyd BJ (2012) Structural elucidation of rapid solution-mediated phase transitions in pharmaceutical solids using in situ synchrotron SAXS/WAXS. Mol Pharm 9:2787–2791CrossRefPubMedGoogle Scholar
  9. Borne J, Nylander T, Khan A (2001) Phase behavior and aggregate formation for the aqueous monoolein system mixed with sodium oleate and oleic acid. Langmuir 17:7742–7751CrossRefGoogle Scholar
  10. Bouwstra JA, Gooris GS, Bras W, Talsma H (1993) Small angle X-ray scattering: possibilities and limitations in characterization of vesicles. Chem Phys Lipids 64:83–98CrossRefPubMedGoogle Scholar
  11. Bunjes H, Rades T (2005) Thermotropic liquid crystalline drugs. J Pharm Pharmacol 57:807–816CrossRefPubMedGoogle Scholar
  12. Caboi F, Amico GS, Pitzalis P, Monduzzi M, Nylander T, Larsson K (2001) Addition of hydrophilic and lipophilic compounds of biological relevance to the monoolein/water system. I. Phase behavior. Chem Phys Lipids 109:47–62CrossRefPubMedGoogle Scholar
  13. Carey MC, Small DM (1970) The characteristics of mixed micellar solutions with particular reference to bile. Am J Med 49:590–608CrossRefPubMedGoogle Scholar
  14. Chacón P, Diaz JF, Morán F, Andreu JM (2000) Reconstruction of protein form with X-ray solution scattering and a genetic algorithm. J Mol Biol 299:1289–1302CrossRefPubMedGoogle Scholar
  15. Chang CM, Bodmeier R (1997) Effect of dissolution media and additives on the drug release from cubic phase delivery systems. J Control Release 46:215–222CrossRefGoogle Scholar
  16. Clogston J, Rathman J, Tomasko D, Walker H, Caffrey M (2000) Phase behavior of a monoacylglycerol (Myverol 18-99K)/water system. Chem Phys Lipids 107:191–220CrossRefPubMedGoogle Scholar
  17. Davies JM, Tsuruta H, May AP, Weis WI (2005) Conformational changes of p97 during nucleotide hydrolysis determined by small-angle X-ray scattering. Structure 13:183–195CrossRefPubMedGoogle Scholar
  18. Deschamps J (2005) The role of crystallography in drug design. AAPS J 7:E813–E819CrossRefPubMedPubMedCentralGoogle Scholar
  19. Dong LA, Li J, Jian WS, Zhang L, Wu MS, Shi HL, Luo SQ (2014) Emphysema early diagnosis using X-ray diffraction enhanced imaging at synchrotron light source. Biomed Eng Online 13.Google Scholar
  20. Dong Y-D, Boyd BJ (2011) Applications of X-ray scattering in pharmaceutical science. Int J Pharm 417:101–111CrossRefPubMedGoogle Scholar
  21. Dong YD, Larson I, Hanley T, Boyd BJ (2006) Bulk and dispersed aqueous phase behavior of phytantriol: effect of vitamin E acetate and F127 polymer on liquid crystal nanostructure. Langmuir 22:9512–9518CrossRefPubMedGoogle Scholar
  22. Dora CL, Silva LFC, Putaux JL, Nishiyama Y, Pignot-Paintrand I, Borsali R, Lemos-Senna E (2012) Poly(ethylene glycol) hydroxystearate-based nanosized emulsions: effect of surfactant concentration on their formation and ability to solubilize quercetin. J Biomed Nanotechnol 8:202–210CrossRefPubMedGoogle Scholar
  23. Du JD, Liu Q, Salentinig S, Nguyen T-H, Boyd BJ (2014) A novel approach to enhance the mucoadhesion of lipid drug nanocarriers for improved drug delivery to the buccal mucosa. Int J Pharm 471:358–365CrossRefPubMedGoogle Scholar
  24. Dupuy C, Auvray X, Petipas C, Rico-Lattes I, Lattes A (1997) Anomeric effects on the structure of micelles of alkyl maltosides in water. Langmuir 13:3965–3967CrossRefGoogle Scholar
  25. Engstroem S, Engstrom L (1992) Phase behaviour of the lidocaine-monoolein-water system. Int J Pharm 79:113–122CrossRefGoogle Scholar
  26. Feast GC, Hutt OE, Mulet X, Conn CE, Drummond CJ, Savage GP (2014) The high-throughput synthesis and phase characterisation of amphiphiles: a sweet case study. Chem Eur J 20:2783–2792CrossRefPubMedGoogle Scholar
  27. Fini A, Fazio G, Feroci G (1995) Solubility and solubilization properties of non-steroidal anti-inflammatory drugs. Int J Pharm 126:95–102CrossRefGoogle Scholar
  28. Fong W-K, Hanley T, Boyd BJ (2009) Stimuli responsive liquid crystals provide ‘on-demand’ drug delivery in vitro and in vivo. J Control Release 135:218–226CrossRefPubMedGoogle Scholar
  29. Fong W-K, Hanley TL, Thierry B, Kirby N, Boyd BJ (2010) Plasmonic nanorods provide reversible control over nanostructure of self-assembled drug delivery materials. Langmuir 26:6136–6139CrossRefPubMedGoogle Scholar
  30. Fong W-K, Malic N, Evans RA, Hawley A, Boyd BJ, Hanley TL (2012) Alkylation of spiropyran moiety provides reversible photo-control over nanostructured soft materials. Biointerphases 7(1–4):3PubMedGoogle Scholar
  31. Fong W-K, Salentinig S, Prestidge CA, Mezzenga R, Hawley A, Boyd BJ (2014) Generation of geometrically ordered lipid-based liquid crystalline nanoparticles using biologically relevant enzymatic processing. Langmuir 30(19):5373–5377CrossRefPubMedGoogle Scholar
  32. Formariz TP, Chiavacci LA, Sarmento VHV, Franzini CM, Silva AA Jr, Scarpa MV, Santilli CV, Egito EST, Oliveira AG (2008) Structural changes of biocompatible neutral microemulsions stabilized by mixed surfactant containing soya phosphatidylcholine and their relationship with doxorubicin release. Colloids Surf B Biointerfaces 63:287–295CrossRefPubMedGoogle Scholar
  33. Glatter O, Kratky O (1982) Small angle X-ray scattering. Academic, LondonGoogle Scholar
  34. Gomez-Burgaz M, Torrado G, Torrado S (2009) Characterization and superficial transformations on mini-matrices made of interpolymer complexes of chitosan and carboxymethylcellulose during in vitro clarithromycin release. Eur J Pharm Biopharm 73:130–139CrossRefPubMedGoogle Scholar
  35. Gradzielski M (2012) Dynamics of self-assembled systems studied by neutron scattering: current state and perspectives. Eur Phys J Spec Top 213:267–290CrossRefGoogle Scholar
  36. Greco K, Bogner R (2012) Solution-mediated phase transformation: significance during dissolution and implications for bioavailability. J Pharm Sci 101:2996–3018CrossRefPubMedGoogle Scholar
  37. Guinier A (1959) Heterogeneities in solid solutions. In: Frederick S, David T (eds) Solid state physics. Academic, New York, pp 293–398Google Scholar
  38. Gutiérrez-Pichel M, Barbosa S, Taboada P, Mosquera V (2003) Surface properties of some amphiphilic antidepressant drugs in different aqueous media. Colloids Polym Sci 281:575–579CrossRefGoogle Scholar
  39. He, Garamus VM, Funari SS, Malfois M, Willumeit R, Niemeyer B (2002) Comparison of small-angle scattering methods for the structural analysis of octyl-β-maltopyranoside micelles. J Phys Chem B 106:7596–7604CrossRefGoogle Scholar
  40. Hilfiker R (1991) SAXS studies on structure formation in microemulsion-triblock copolymer systems. Ber Bunsen Ges Phys Chem 95:1227–1232CrossRefGoogle Scholar
  41. Hilfiker R, Blatter F, Raumer MV (2006) Relevance of solid-state properties for pharmaceutical products, polymorphism: in the pharmaceutical industry. Wiley-VCH Verlag GmbH & Co. KGaA, New York, pp 1–19Google Scholar
  42. Hirai M, Kawai-Hirai R, Iwase H, Hayakawa T, Kawabata Y, Takeda T (2002) Effect of proteins on dynamics of water-in-oil AOT microemulsions. Appl Phys A Mater Sci Process 74:s1254–s1256CrossRefGoogle Scholar
  43. Hirai M, Kawai-Hirai R, Takizawa T, Yabuki S, Nakamura K, Hirai T, Kobayashi K, Amemiya Y, Oya M (1995a) Aerosol-OT reversed micellar formation at low water-surfactant ratio studied by synchrotron radiation small-angle X-ray scattering. J Phys Chem 99:6652–6660CrossRefGoogle Scholar
  44. Hirai M, Takizawa T, Yabuki S, Hirai T, Hayashi K (1996) Thermotropic structural change of disialoganglioside micelles studied by using synchrotron radiation small-angle X-ray scattering. J Phys Chem 100:11675–11680CrossRefGoogle Scholar
  45. Hirai M, Takizawa T, Yabuki S, Kawai-Hirai R, Oya M, Nakamura K, Kobashi K, Amemiya Y (1995b) Structure and reactivity of aerosol-OT reversed micelles containing [small alpha]-chymotrypsin. J Chem Soc Faraday Trans 91:1081–1089CrossRefGoogle Scholar
  46. Hura GL, Menon AL, Hammel M, Rambo RP, Poole Ii FL, Tsutakawa SE, Jenney FE Jr, Classen S, Frankel KA, Hopkins RC, Yang S-j, Scott JW, Dillard BD, Adams MWW, Tainer JA (2009) Robust, high-throughput solution structural analyses by small angle X-ray scattering (SAXS). Nat Methods 6:606–612CrossRefPubMedPubMedCentralGoogle Scholar
  47. Ianeselli L, Zhang F, Skoda MWA, Jacobs RMJ, Martin RA, Callow S, Prévost S, Schreiber F (2010) Protein-protein interactions in ovalbumin solutions studied by small-angle scattering: effect of ionic strength and the chemical nature of cations. J Phys Chem B 114:3776–3783CrossRefPubMedGoogle Scholar
  48. Joshi JV, Aswal VK, Goyal PS (2007) Combined SANS and SAXS studies on alkali metal dodecyl sulphate micelles. J Phys Condens Matter 19:196219CrossRefGoogle Scholar
  49. Kataoka K, Harada A, Nagasaki Y (2001) Block copolymer micelles for drug delivery: design, characterization and biological significance. Adv Drug Deliv Rev 47:113–131CrossRefPubMedGoogle Scholar
  50. Kataoka M, Kuwajima K, Tokunaga F, Goto Y (1997) Structural characterization of the molten globule of α-lactalbumin by solution X-ray scattering. Protein Sci 6:422–430CrossRefPubMedPubMedCentralGoogle Scholar
  51. Kirby NM, Mudie ST, Hawley AM, Cookson DJ, Mertens HDT, Cowieson N, Samardzic-Boban V (2013) A low-background-intensity focusing small-angle X-ray scattering undulator beamline. J Appl Cryst 46:1670–1680CrossRefGoogle Scholar
  52. Koradia V, Tenho M, de Diego HL, Ringkjobing-Elema M, Moller-Sonnergaard J, Salonen J, Lehto VP, Rantanen J (2012) Investigation of solid phase composition on tablet surfaces by grazing incidence X-ray diffraction. Pharm Res 29:134–144CrossRefPubMedGoogle Scholar
  53. Kurz JL (1962) Effects of micellisation on the kinetics of the hydrolysis of monoalkyl sulfates. J Phys Chem 66:2239–2246CrossRefGoogle Scholar
  54. Lee KWY, Nguyen T-H, Hanley T, Boyd BJ (2008) Nanostructure of liquid crystalline matrix determines in vitro sustained release and in vivo oral absorption kinetics for hydrophilic model drugs. Int J Pharm 365:190–199CrossRefPubMedGoogle Scholar
  55. Lindner P (1991) Neutron, x-ray and light scattering: introduction to an investigative tool for colloidal and polymeric systems. In: Proceedings of the European workshop on neutron, X-ray and light scattering as an investigative tool for colloidal and polymeric systems, Bombannes, France, 27 May-2 June, 1990. North-Holland, AmsterdamGoogle Scholar
  56. Lipfert J, Columbus L, Chu VB, Lesley SA, Doniach S (2007) Size and shape of detergent micelles determined by small-angle X-ray scattering. J Phys Chem B 111:12427–12438CrossRefPubMedGoogle Scholar
  57. Lipfert J, Doniach S (2007) Small-angle X-ray scattering from RNA, proteins, and protein complexes. Annu Rev Biophys Biomol Struct 36:307–327CrossRefPubMedGoogle Scholar
  58. Liu L-Z, Cheng Z, Inomata K, Zhou S, Chu B (1999) Synchrotron SAXS and laser light scattering studies of aggregation behavior of poly(1,1-dihydroperfluorooctyl acrylate-b-vinyl acetate) diblock copolymer in supercritical carbon dioxide. Macromolecules 32:5836–5845CrossRefGoogle Scholar
  59. Liu W, Wacker D, Wang C, Abola E, Cherezov V (2014) Femtosecond crystallography of membrane proteins in the lipidic cubic phase. Philos Trans R Soc Lond B Biol Sci 369:20130314.Google Scholar
  60. Lund R, Willner L, Monkenbusch M, Panine P, Narayanan T, Colmenero J, Richter D (2009) Structural observation and kinetic pathway in the formation of polymeric micelles. Phys Rev Lett 102:188301CrossRefPubMedGoogle Scholar
  61. Mackeben S, Müller-Goymann CC (2000) Solubilization of timolol maleate in reversed micellar systems: measurement of particle size using SAXS and PCS. Int J Pharm 196:207–210CrossRefPubMedGoogle Scholar
  62. Mandelkow E, Holmes K (1989) Synchrotron radiation as a source for X-ray diffraction the beginning, vol III, Synchrotron radiation in chemistry and biology. Springer, Berlin, pp 1–7Google Scholar
  63. Mukerjee P (1974) Micellar properties of drugs: micellar and nonmicellar patterns of self-association of hydrophobic solutes of different molecular structures—monomer fraction, availability, and misuses of micellar hypothesis. J Pharm Sci 63:972–981CrossRefPubMedGoogle Scholar
  64. Mulet X, Conn CE, Fong C, Kennedy DF, Moghaddam MJ, Drummond CJ (2013) High-throughput development of amphiphile self-assembly materials: fast-tracking synthesis, characterization, formulation, application, and understanding. Acc Chem Res 46:1497–1505CrossRefPubMedGoogle Scholar
  65. Mulet X, Kennedy DF, Conn CE, Hawley A, Drummond CJ (2010) High throughput preparation and characterisation of amphiphilic nanostructured nanoparticulate drug delivery vehicles. Int J Pharm 395:290–297CrossRefPubMedGoogle Scholar
  66. Müller-Goymann CC (2002) Drug delivery—liquid crystals. In: Swarbrick J, Boylan JC (eds) Encyclopedia of pharmaceutical technology. Marcel Dekker, Inc., New YorkGoogle Scholar
  67. Nakano M, Teshigawara T, Sugita A, Leesajakul W, Taniguchi A, Kamo T, Matsuoka H, Handa T (2002) Dispersions of liquid crystalline phases of the monoolein/oleic acid/Pluronic F127 system. Langmuir 18:9283–9288CrossRefGoogle Scholar
  68. Nielsen FS, Gibault E, Ljusberg-Wahren H, Arleth L, Pedersen AS, Mullertz A (2007) Characterization of prototype self-nanoemuisifying formulations of lipophilic compounds. J Pharm Sci 96:876–892CrossRefPubMedGoogle Scholar
  69. Papadimitriou V, Xenakis A, Petit C, Pileni M (1994) Structural modifications of reverse micelles due to enzyme incorporation studied by SAXS. In: Ottewill R, Rennie A (eds) Trends in colloid and interface science VIII. Springer, Berlin, pp 226–228CrossRefGoogle Scholar
  70. Patterson J, Bary A, Rades T (2002) Physical stability and solubility of the thermotropic mesophase of fenoprofen calcium as pure drug and in a tablet formulation. Int J Pharm 247:147–157CrossRefPubMedGoogle Scholar
  71. Phan S, Hawley A, Mulet X, Waddington L, Prestidge CA, Boyd BJ (2013) Structural aspects of digestion of medium chain triglycerides studied in real time using sSAXS and cryo-TEM. Pharm Res 30:3088–3100CrossRefPubMedGoogle Scholar
  72. Rades T, Müller-Goymann CC (1994) Melting behaviour and thermotropic mesomorphism of fenoprofen salts. Eur J Pharm Biopharm 40:277–282Google Scholar
  73. Rambo RP, Tainer JA (2010) Improving small-angle X-ray scattering data for structural analyses of the RNA world. RNA 16:638–646CrossRefPubMedPubMedCentralGoogle Scholar
  74. Ristori S, Oberdisse J, Grillo I, Donati A, Spalla O (2005) Structural characterization of cationic liposomes loaded with sugar-based carboranes. Biophys J 88:535–547CrossRefPubMedGoogle Scholar
  75. Rodriguez-Spong B, Acciacca A, Fleisher D, Rodriguez-Hornedo N (2008) pH-induced nanosegregation of ritonavir to lyotropic liquid crystal of higher solubility than crystalline polymorphs. Mol Pharm 5:956–967CrossRefPubMedGoogle Scholar
  76. Salentinig S, Phan S, Darwish TA, Kirby N, Boyd BJ, Gilbert EP (2014) pH-responsive micelles based on caprylic acid. Langmuir 30:7296–7303CrossRefPubMedGoogle Scholar
  77. Salvati A, Ristori S, Oberdisse J, Spalla O, Ricciardi G, Pietrangeli D, Giustini M, Martini G (2007) Small angle scattering and zeta potential of liposomes loaded with octa(carboranyl)porphyrazine. J Phys Chem B 111:10357–10364CrossRefPubMedGoogle Scholar
  78. Sanada Y, Akiba I, Sakurai K, Shiraishi K, Yokoyama M, Mylonas E, Ohta N, Yagi N, Shinohara Y, Amemiya Y (2013) Hydrophobic molecules infiltrating into the poly(ethylene glycol) domain of the core/shell interface of a polymeric micelle: evidence obtained with anomalous small-angle X-ray scattering. J Am Chem Soc 135:2574–2582CrossRefPubMedGoogle Scholar
  79. Sardet C, Tardieu A, Luzzati V (1976) Shape and size of bovine rhodopsin: a small-angle X-ray scattering study of a rhodopsin-detergent complex. J Mol Biol 105:383–398CrossRefPubMedGoogle Scholar
  80. Scapin G (2006) Structural biology and drug discovery. Curr Pharm Des 12:2087–2097CrossRefPubMedGoogle Scholar
  81. Schmiele M, Schindler T, Westermann M, Steiniger F, Radulescu A, Kriele A, Gilles R, Unruh T (2014) Mesoscopic structures of triglyceride nanosuspensions studied by small-angle X-ray and neutron scattering and computer simulations. J Phys Chem B 118:8808–8818CrossRefPubMedGoogle Scholar
  82. Schmolzer S, Grabner D, Gradzielski M, Narayanan T (2002) Millisecond-range time-resolved small-angle X-ray scattering studies of micellar transformations. Phys Rev Lett 88:258301CrossRefPubMedGoogle Scholar
  83. Schreier S, Malheiros SVP, de Paula E (2000) Surface active drugs: self-association and interaction with membranes and surfactants. Physicochemical and biological aspects. Biochim Biophys Acta Biomembr 1508:210–234CrossRefGoogle Scholar
  84. Schütze W, Müller-Goymann CC (1998) Phase transformation of a liposomal dispersion into a micellar solution induced by drug-loading. Pharm Res 15:538–543CrossRefPubMedGoogle Scholar
  85. Skalko N, Bouwstra J, Spies F, Stuart M, Frederik PM, Gregoriadis G (1998) Morphological observations on liposomes bearing covalently bound protein: studies with freeze-fracture and cryo electron microscopy and small angle X-ray scattering techniques. Biochim Biophys Acta 1370:151–160CrossRefPubMedGoogle Scholar
  86. Svergun DI, Koch MHJ (2003) Small-angle scattering studies of biological macromolecules in solution. Rep Prog Phys 66:1735CrossRefGoogle Scholar
  87. Takeuchi K, Wagner G (2006) NMR studies of protein interactions. Curr Opin Struct Biol 16:109–117CrossRefPubMedGoogle Scholar
  88. Tangso KJ, Lindberg S, Hartley PG, Knott R, Spicer PT, Boyd BJ (2014) Formation of liquid crystalline structures in the bile salt—chitosan system and triggered release from lamellar phase bile salt—chitosan capsules. ACS Appl Mater Interfaces 6(15):12363–12371CrossRefPubMedGoogle Scholar
  89. Torchilin VP (2001) Structure and design of polymeric surfactant-based drug delivery systems. J Control Release 73:137–172CrossRefPubMedGoogle Scholar
  90. Wallace SJ, Li J, Nation RL, Prankerd RJ, Velkov T, Boyd BJ (2010) Self-assembly behavior of colistin and its prodrug colistin methanesulfonate: implications for solution stability and solubilization. J Phys Chem B 114:4836–4840CrossRefPubMedPubMedCentralGoogle Scholar
  91. Warren DB, Anby MU, Hawley A, Boyd BJ (2011) Real time evolution of liquid crystalline nanostructure during the digestion of formulation lipids using synchrotron small-angle X-ray scattering. Langmuir 27:9528–9534CrossRefPubMedGoogle Scholar
  92. Weiss TM, Narayanan T, Gradzielski M (2008) Dynamics of spontaneous vesicle formation in fluorocarbon and hydrocarbon surfactant mixtures. Langmuir 24:3759–3766CrossRefPubMedGoogle Scholar
  93. Weiss TM, Narayanan T, Wolf C, Gradzielski M, Panine P, Finet S, Helsby WI (2005) Dynamics of the self-assembly of unilamellar vesicles. Phys Rev Lett 94:038303CrossRefPubMedGoogle Scholar
  94. Williams SP, Kuyper LF, Pearce KH (2005) Recent applications of protein crystallography and structure-guided drug design. Curr Opin Chem Biol 9:371–380CrossRefPubMedGoogle Scholar
  95. Wörle G, Siekmann B, Bunjes H (2006) Effect of drug loading on the transformation of vesicular into cubic nanoparticles during heat treatment of aqueous monoolein/poloxamer dispersions. Eur J Pharm Biopharm 63:128–133CrossRefPubMedGoogle Scholar
  96. Yaghmur A, Laggner P, Sartori B, Rappolt M (2008) Calcium triggered Lα-H2 phase transition monitored by combined rapid mixing and time-resolved synchrotron SAXS. PLoS One 3:e2072CrossRefPubMedPubMedCentralGoogle Scholar
  97. Zhang F, Allen AJ, Levine LE, Ilavsky J, Long GG, Sandy AR (2011) Development of ultra-small-angle X-ray scattering-X-ray photon correlation spectroscopy. J Appl Cryst 44:200–212CrossRefGoogle Scholar
  98. Zhang F, Ilavsky J (2010) Ultra-small-angle X-ray scattering of polymers. Polym Rev 50:59–90CrossRefGoogle Scholar
  99. Zhang F, Skoda MWA, Jacobs RMJ, Martin RA, Martin CM, Schreiber F (2006) Protein interactions studied by SAXS: effect of ionic strength and protein concentration for BSA in aqueous solutions. J Phys Chem B 111:251–259CrossRefGoogle Scholar
  100. Zhang R, Marone PA, Thiyagarajan P, Tiede DM (1999) Structure and molecular fluctuations of n-alkyl-β-d-glucopyranoside micelles determined by X-ray and neutron scattering. Langmuir 15:7510–7519CrossRefGoogle Scholar
  101. Zhu L, Qin Z-J, Zhou J-M, Kihara H (2004) Unfolding kinetics of dimeric creatine kinase measured by stopped-flow small angle X-ray scattering. Biochimie 86:127–132CrossRefPubMedGoogle Scholar

Copyright information

© Controlled Release Society 2016

Authors and Affiliations

  1. 1.Drug Delivery, Disposition and Dynamics and ARC Centre of Excellence in Convergent Bio-Nano Science and TechnologyMonash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus)ParkvilleAustralia
  2. 2.Department of PharmacyUniversity of CopenhagenCopenhagenDenmark

Personalised recommendations