Fractals and Chaos in the Hemodynamics of Intracranial Aneurysms

  • Gábor Závodszky
  • György Károlyi
  • István Szikora
  • György Paál
Part of the Springer Series in Computational Neuroscience book series (NEUROSCI)


Computing the emerging flow in blood vessel sections by means of computational fluid dynamics is an often applied practice in hemodynamics research. One particular area for such investigations is related to the cerebral aneurysms, since their formation, pathogenesis and the risk of a potential rupture may be flow-related. We present a study on the behavior of small advected particles in cerebral vessel sections in the presence of aneurysmal malformations. These malformations cause strong flow disturbances driving the system towards chaotic behavior. Within these flows the particle trajectories can form a fractal structure, the properties of which are measurable by quantitative techniques. The measurable quantities are well established chaotic properties, such as the Lyapunov exponent, escape rate and information dimension. Based on these findings, we propose that chaotic flow within blood vessels in the vicinity of the aneurysm might be relevant for the pathogenesis and development of this malformation.


Cerebral aneurysm Computational fluid dynamics Chaotic advection Passive tracers Fractals Information dimension 



Financial support from OTKA no. K 100894 and NK 100296, as well as from the KTIA_NAP_13-1-2013-0001 Hungarian Brain Research Program is gratefully acknowledged.


  1. 1.
    Aref H. Stirring by chaotic advection. J Fluid Mech. 1984;143:1–21.CrossRefGoogle Scholar
  2. 2.
    Campo-Deaño L, Oliveira MS, Pinho FT. A review of computational hemodynamics in middle cerebral aneurysms and rheological models for blood flow. Appl Mech Rev. 2015;67(3):030801.CrossRefGoogle Scholar
  3. 3.
    Castro MA, Olivares MCA, Putman CM, Cebral JR. Unsteady wall shear stress analysis from image-based computational fluid dynamic aneurysm models under Newtonian and Casson rheological models. Med Biol Eng Comput. 2014;52(10):827–39.CrossRefPubMedGoogle Scholar
  4. 4.
    Cebral JR, Castro M, Appanaboyina S, Putman CM, Millan D, Frangi AF, et al. Efficient pipeline for image-based patient-specific analysis of cerebral aneurysm hemodynamics: technique and sensitivity. Med Imag IEEE Trans. 2005;24(4):457–67.CrossRefGoogle Scholar
  5. 5.
    Cebral JR, Castro MA, Burgess JE, Pergolizzi RS, Sheridan MJ, Putman CM. Characterization of cerebral aneurysms for assessing risk of rupture by using patient-specific computational hemodynamics models. Am J Neuroradiol. 2005;26(10):2550–9.PubMedGoogle Scholar
  6. 6.
    Guglielmi G, Viñuela F, Dion J, Duckwiler G. Electrothrombosis of saccular aneurysms via endovascular approach: part 2: preliminary clinical experience. J Neurosurg. 1991;75(1):8–14.CrossRefPubMedGoogle Scholar
  7. 7.
    Kantz H, Grassberger P. Repellers, semi-attractors, and long-lived chaotic transients. Physica D Nonlinear Phenom. 1985;17(1):75–86.CrossRefGoogle Scholar
  8. 8.
    Károlyi G, Péntek Á, Scheuring I, Tél T, Toroczkai Z. Chaotic flow: the physics of species coexistence. Proc Natl Acad Sci. 2000;97(25):13661–5.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Károlyi G, Péntek Á, Toroczkai Z, Tél T, Grebogi C. Chemical or biological activity in open chaotic flows. Phys Rev E. 1999;59(5):5468.CrossRefGoogle Scholar
  10. 10.
    Károlyi G, Tél T. Chaotic tracer scattering and fractal basin boundaries in a blinking vortex-sink system. Phys Rep. 1997;290(1):125–47.CrossRefGoogle Scholar
  11. 11.
    Károlyi G, Tél T. Chemical transients in closed chaotic flows: the role of effective dimensions. Phys Rev Lett. 2005;95(26):264501.CrossRefPubMedGoogle Scholar
  12. 12.
    Kelly P, Stein J, Shafqat S, Eskey C, Doherty D, Chang Y, et al. Functional recovery after rehabilitation for cerebellar stroke. Stroke. 2001;32(2):530–4.CrossRefPubMedGoogle Scholar
  13. 13.
    Lasheras JC. The biomechanics of arterial aneurysms. Annu Rev Fluid Mech. 2007;39:293–319.CrossRefGoogle Scholar
  14. 14.
    Oubel E, De Craene M, Putman CM, Cebral JR, Frangi AF. Analysis of intracranial aneurysm wall motion and its effects on hemodynamic patterns. In: Medical imaging. San Diego: International Society for Optics and Photonics; 2007. p. 65112A.Google Scholar
  15. 15.
    Paál G, Ugron A, Szikora I, Bojtár I. Flow in simplified and real models of intracranial aneurysms. Int J Heat Fluid Flow. 2007;28(4):653–64.CrossRefGoogle Scholar
  16. 16.
    Ropper AH, Zervas NT. Outcome 1 year after SAH from cerebral aneurysm: management morbidity, mortality, and functional status in 112 consecutive good-risk patients. J Neurosurg. 1984;60(5):909–15.CrossRefPubMedGoogle Scholar
  17. 17.
    Schelin AB, Károlyi G, De Moura A, Booth N, Grebogi C. Chaotic advection in blood flow. Phys Rev E. 2009;80(1):016213.CrossRefGoogle Scholar
  18. 18.
    Schelin AB, Károlyi G, De Moura AP, Booth NA, Grebogi C. Fractal structures in stenoses and aneurysms in blood vessels. Philos Trans R Soc Lond A: Math Phys Eng Sci. 2010;368(1933):5605–17.CrossRefGoogle Scholar
  19. 19.
    Schelin AB, Károlyi G, De Moura AP, Booth N, Grebogi C. Are the fractal skeletons the explanation for the narrowing of arteries due to cell trapping in a disturbed blood flow? Comput Biol Med. 2012;42(3):276–81.CrossRefPubMedGoogle Scholar
  20. 20.
    Scheuring I, Károlyi G, Toroczkai Z, Tél T, Péntek Á. Competing populations in flows with chaotic mixing. Theor Popul Biol. 2003;63(2):77–90.CrossRefPubMedGoogle Scholar
  21. 21.
    Sforza DM, Putman CM, Cebral JR. Hemodynamics of cerebral aneurysms. Annu Rev Fluid Mech. 2009;41:91.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Szikora I, Berentei Z, Kulcsar Z, Marosfoi M, Vajda Z, Lee W, et al. Treatment of intracranial aneurysms by functional reconstruction of the parent artery: the Budapest experience with the pipeline embolization device. Am J Neuroradiol. 2010;31(6):1139–47.CrossRefPubMedGoogle Scholar
  23. 23.
    Szikora I, Paal G, Ugron A, Nasztanovics F, Marosfoi M, Berentei Z, et al. Impact of aneurysmal geometry on intraaneurysmal flow: a computerized flow simulation study. Neuroradiology. 2008;50(5):411–21.CrossRefPubMedGoogle Scholar
  24. 24.
    Taylor CA, Draney MT. Experimental and computational methods in cardiovascular fluid mechanics. Annu Rev Fluid Mech. 2004;36:197–231.CrossRefGoogle Scholar
  25. 25.
    Tél T. Fractals, multifractals, and thermodynamics. Z Naturforsch A. 1988;43(12):1154–74.CrossRefGoogle Scholar
  26. 26.
    Tél T, de Moura A, Grebogi C, Károlyi G. Chemical and biological activity in open flows: a dynamical system approach. Phys Rep. 2005;413(2):91–196.CrossRefGoogle Scholar
  27. 27.
    Tél T, Gruiz M. Chaotic dynamics: an introduction based on classical mechanics. Cambridge, UK: Cambridge University Press; 2006.Google Scholar
  28. 28.
    Toroczkai Z, Károlyi G, Péntek Á, Tél T, Grebogi C. Advection of active particles in open chaotic flows. Phys Rev Lett. 1998;80(3):500.CrossRefGoogle Scholar
  29. 29.
    Ugron Á, Paál G. On the boundary conditions of cerebral aneurysm simulations. Mech Eng. 2014;58(1):37–45.Google Scholar
  30. 30.
    Ugron Á, Szikora I, Paál G. Haemodynamic changes induced by intrasaccular packing on intracranial aneurysms: a computational fluid dynamic study. Interv Med Appl Sci. 2012;4(2):78–84.Google Scholar
  31. 31.
    Ugron Á, Szikora I, Paál G. Measurement of flow diverter hydraulic resistance to model flow modification in and around intracranial aneurysms. Interv Med Appl Sci. 2014;6(2):61–8.PubMedPubMedCentralGoogle Scholar
  32. 32.
    Vlak MH, Algra A, Brandenburg R, Rinkel GJ. Prevalence of unruptured intracranial aneurysms, with emphasis on sex, age, comorbidity, country, and time period: a systematic review and meta-analysis. Lancet Neurol. 2011;10(7):626–36.CrossRefPubMedGoogle Scholar
  33. 33.
    Wiebers DO, Torner JC, Meissner I. Impact of unruptured intracranial aneurysms on public health in the United States. Stroke. 1992;23(10):1416–9.CrossRefPubMedGoogle Scholar
  34. 34.
    Závodszky G, Károlyi G, Paál G. Emerging fractal patterns in a real 3D cerebral aneurysm. J Theor Biol. 2015;368:95–101.CrossRefPubMedGoogle Scholar
  35. 35.
    Závodszky G, Paál G. Validation of a lattice Boltzmann method implementation for a 3D transient fluid flow in an intracranial aneurysm geometry. Int J Heat Fluid Flow. 2013;44:276–83.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Hydrodynamic SystemsBudapest University of Technology and EconomicsBudapestHungary
  2. 2.Institute of Nuclear TechniquesBudapest University of Technology and EconomicsBudapestHungary
  3. 3.Department of NeurointerventionsNational Institute of Clinical NeurosciencesBudapestHungary

Personalised recommendations