Skip to main content

The Fractal Geometry of the Human Brain: An Evolutionary Perspective

  • Chapter
  • First Online:
The Fractal Geometry of the Brain

Part of the book series: Springer Series in Computational Neuroscience ((NEUROSCI))

Abstract

The evolution of the brain in mammals is characterized by changes in size, architecture, and internal organization. Consequently, the geometry of the brain, and especially the size and shape of the cerebral cortex, has changed notably during evolution. Comparative studies of the cerebral cortex suggest that there are general architectural principles governing its growth and evolutionary development. In this chapter some of the design principles and operational modes that underlie the fractal geometry and information processing capacity of the cerebral cortex in primates, including humans, will be explored. It is shown that the development of the cortex coordinates folding with connectivity in a way that produces smaller and faster brains.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aboitiz F, Montiel JF. From tetrapods to primates: conserved developmental mechanisms in diverging ecological adaptations. Prog Brain Res. 2012;195:3–24.

    Article  PubMed  Google Scholar 

  2. Azevedo FAC, Carvalho LRB, Grinberg LT, Farfel JM, Ferretti REI, Leite REP, Filho WJ, Lent R, Herculano-Houzel S. Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain. J Comp Neurol. 2009;513:532–41.

    Article  PubMed  Google Scholar 

  3. Bayly PV, Taber LA, Kroenke CD. Mechanical forces in the cerebral cortical folding: a review of measurements and models. J Mech Behav Biomed Mater. 2014;29:568–81.

    Article  CAS  PubMed  Google Scholar 

  4. Bohland JW, Wu C, Barbas H, Bokil H, Bota M, Breiter HC et al. A proposal for a coordinated effort for the determination of brainwide neuroanatomical connectivity in model organisms at a mesoscopic scale. PLoS Comput Biol. 2009;5:e1000334.

    Google Scholar 

  5. Bok ST. Der Einfluss der in den Furchen und Windungen auftretenden Krümmungen der Grosshirnrinde auf die Rindenarchitektur. Z Ges Neurol Psychiat. 1929;121:682–750.

    Article  Google Scholar 

  6. Budd J, Kisvárday ZF. How do you wire a brain? Front Neuroanat. 2013;7:14.

    Google Scholar 

  7. Bullmore E, Sporns O. The economy of brain network organization. Nat Rev Neurosci. 2012;13:336–49.

    CAS  PubMed  Google Scholar 

  8. Buxhoeveden DP. Minicolumn size and human cortex. Prog Brain Res. 2012;195:219–35.

    Article  PubMed  Google Scholar 

  9. Buzsáki G, Logothetis N, Singer W. Scaling brain size, keeping time: evolutionary preservation of brain rhythms. Neuron. 2013;80:751–64.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Casanova MF. White matter volume increase and minicolumns in autism. Ann Neurol. 2004;56:453.

    Article  PubMed  Google Scholar 

  11. Casanova MF. Cortical organization: a description and interpretation of anatomical findings based on systems theory. Transl Neurosci. 2010;1:62–71.

    PubMed  PubMed Central  Google Scholar 

  12. Changizi MA. Principles underlying mammalian neocortical scaling. Biol Cybern. 2001;84:207–15.

    Article  CAS  PubMed  Google Scholar 

  13. Changizi MA. Scaling the brain and its connections. In: Kaas JH, editor. Evolution of nervous systems, vol. 3. New York: Academic; 2007. p. 167–80.

    Chapter  Google Scholar 

  14. Changizi MA, Shimojo S. Parcellation and area-area connectivity as a function of neocortex size. Brain Behav Evol. 2005;66:88–98.

    Article  PubMed  Google Scholar 

  15. Charvet CJ, Finlay B. Embracing covariation in brain evolution: large brains, extended development, and flexible primate social systems. Prog Brain Res. 2012;195:71–87.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Cheung AF, Pollen AA, Tavare A, DeProto J, Molnár Z. Comparative aspects of cortical neurogenesis in vertebrates. J Anat. 2007;211:164–76.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Chklovskii DB, Mel BW, Svoboda K. Cortical rewiring and information storage. Nature. 2004;431:782–8.

    Article  CAS  PubMed  Google Scholar 

  18. Da Costa NM, Martin KAC. Whose cortical column would that be? Front Neuroanat. 2010;4:16.

    Google Scholar 

  19. Di Ieva A, Grizzi F, Jelinek H, Pellionisz AJ, Losa GA. Fractals in the neurosciences, part I: general principles and basic neurosciences. Neuroscientist. 2013;20:403–17.

    Article  PubMed  Google Scholar 

  20. Di Ieva A, Esteban FJ, Grizzi F, Klonowski W, Martín-Landrove M. Fractals in the neurosciences, part II: clinical applications and future perspectives. Neuroscientist. 2015;21:30–43.

    Article  PubMed  Google Scholar 

  21. Douglas RJ, Martin KA. Neuronal circuits of the neocortex. Ann Rev Neurosci. 2004;27:419–51.

    Article  CAS  PubMed  Google Scholar 

  22. Finlay BL, Uchiyama R. Developmental mechanisms channeling cortical evolution. Trends Neurosci. 2015;38:69–76.

    Article  CAS  PubMed  Google Scholar 

  23. Frahm HD, Stephan H, Stephan M. Comparison of brain structure volumes in Insectivora and Primates. Part I. Neocortex. J Hirnforsch. 1982;23:375–89.

    CAS  PubMed  Google Scholar 

  24. Harrison KH, Hof PR, Wang SS-H. Scaling laws in the mammalian neocortex: does form provide clues to function? J Neurocytol. 2002;31:289–98.

    Article  CAS  PubMed  Google Scholar 

  25. Herculano-Houzel S. The human brain in numbers: a linearly scaled-up primate brain. Front Hum Neurosci. 2009;3:31.

    Google Scholar 

  26. Herculano-Houzel S. Neuronal scaling rules for primate brains: the primate advantage. Prog Brain Res. 2012;195:325–40.

    Article  PubMed  Google Scholar 

  27. Herculano-Houzel S, Collins CE, Wong P, Kaas JH, Lent R. The basic nonuniformity of the cerebral cortex. Proc Natl Acad Sci U S A. 2008;105:12593–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Herculano-Houzel S, Mota B, Wong P, Kaas JH. Connectivity-driven white matter scaling and folding in primate cerebral cortex. Proc Natl Acad Sci U S A. 2010;107:19008–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Herculano-Houzel S, Manger PR, Kaas JH. Brain scaling in mammalian evolution as a consequence of concerted and mosaic changes in numbers of neurons and average neuronal cell size. Front Neuroanat. 2014;8:77.

    Google Scholar 

  30. Hofman MA. Size and shape of the cerebral cortex in mammals. Part I. The cortical surface. Brain Behav Evol. 1985;27:28–40.

    Article  CAS  PubMed  Google Scholar 

  31. Hofman MA. Size and shape of the cerebral cortex in mammals. Part II. The cortical volume. Brain Behav Evol. 1988;32:17–26.

    Article  CAS  PubMed  Google Scholar 

  32. Hofman MA. On the evolution and geometry of the brain in mammals. Prog Neurobiol. 1989;32:137–58.

    Article  CAS  PubMed  Google Scholar 

  33. Hofman MA. The fractal geometry of convoluted brains. J Hirnforsch. 1991;32:103–11.

    CAS  PubMed  Google Scholar 

  34. Hofman MA. Brain evolution in hominids: are we at the end of the road. In: Falk D, Gibson KR, editors. Evolutionary anatomy of the primate cerebral cortex. Cambridge: Cambridge University Press; 2001. p. 113–27.

    Chapter  Google Scholar 

  35. Hofman MA. Design principles of the human brain: an evolutionary perspective. Prog Brain Res. 2012;195:373–90.

    Article  PubMed  Google Scholar 

  36. Hofman MA. Evolution of the human brain: when bigger is better. Front Neuroanat. 2014;8:15.

    Google Scholar 

  37. Hofman MA. Evolution of the human brain and intelligence: from matter to mind. In: Goldstein S, Naglieri JA, Princiotta D, editors. Handbook of intelligence: evolutionary theory, historical perspective and current concepts. Berlin: Springer; 2015. p. 65–82.

    Google Scholar 

  38. Innocenti GM, Vercelli A. Dendritic bundles, minicolumns, columns, and cortical output units. Front Neuroanat. 2010;4:11.

    Google Scholar 

  39. Innocenti GM, Vercelli A, Caminiti R. The diameter of cortical axons depends both on the area of origin and target. Cereb Cortex. 2013;24:2178–88.

    Article  PubMed  Google Scholar 

  40. Jerison HJ. Evolution of the brain and intelligence. New York: Academic; 1973.

    Google Scholar 

  41. Kaas JH. The evolution of neocortex in primates. Prog Brain Res. 2012;195:91–102.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Karbowski J. How does connectivity between cortical areas depend on brain size? Implications for efficient computation. J Comput Neurosci. 2003;15:347–56.

    Article  PubMed  Google Scholar 

  43. King RD. Computation of local fractal dimension values of the human cerebral cortex. Appl Math. 2014;5:1733–40.

    Article  Google Scholar 

  44. Kiselev VG, Hahn KR, Auer DP. Is the brain cortex a fractal? Neuroimage. 2003;20:1765–74.

    Article  PubMed  Google Scholar 

  45. Landman BS, Russo RL. On a pin versus block relationship for partitions of logic graphs. IEEE Trends Comput. 1971;20:1469–79.

    Article  Google Scholar 

  46. Laughlin SB, Sejnowski TJ. Communication in neural networks. Science. 2003;301:1870–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lefebvre L. Primate encephalization. Prog Brain Res. 2012;195:393–412.

    Article  PubMed  Google Scholar 

  48. Lewitus E, Keleva I, Kalinka AT, Tomancak, Huttner WB. An adaptive threshold in mammalian neocortical evolution. PLoS Biol. 2014;12:e1002000, 1–15.

    Google Scholar 

  49. Li L, Hu X, Preuss TM, Glasser MF, Damen FW, Qiu Y, Rilling JK. Mapping putative hubs in human, chimpanzee and rhesus macaque connectomes via diffusion tractography. Neuroimage. 2013;80:462–74.

    Article  PubMed  PubMed Central  Google Scholar 

  50. MacLeod C. The missing link: evolution of the primate cerebellum. Prog Brain Res. 2012;195:165–87.

    Article  PubMed  Google Scholar 

  51. Macphail EM, Bolhuis JJ. The evolution of intelligence: adaptive specializations versus general process. Biol Rev. 2001;76:341–64.

    Article  CAS  PubMed  Google Scholar 

  52. Mandelbrot BB. The fractal geometry of nature. San Francisco: Freeman; 1982.

    Google Scholar 

  53. Mota B, Herculano-Houzel S. How the cortex gets its folds: an inside-out, connectivity-driven model for the scaling of mammalian cortical folding. Front Neuroanat. 2012;6:3.

    Google Scholar 

  54. Mountcastle VB. The columnar organization of the brain. Brain. 1997;120:701–22.

    Article  PubMed  Google Scholar 

  55. Opris I, Casanova MF. Prefrontal cortical minicolumn: from executive control to disrupted cognitive processing. Brain. 2014;137:1863–75.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Preuss TM. The human brain: rewired and running hot. Ann NY Acad Sci. 2011;1125(S1):E183–91.

    Google Scholar 

  57. Rakic P. Evolution of the neocortex: a perspective from developmental biology. Nat Rev Neurosci. 2009;10:724–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ribeiro PFM, Ventura-Antunes L, Gabi M, Mota B, Grinberg LT, Farfel JM, et al. The human cerebal cortex is neither one nor many: neuronal distribution reveals two quantitative different zones in the gray matter, three in the white matter, and explains local variations in cortical folding. Front Neuroanat. 2013;7:28.

    Google Scholar 

  59. Rilling JK. Comparative primate neuroimaging: insights into human brain evolution. Trends Cogn Sci. 2014;18:45–55.

    Article  Google Scholar 

  60. Ringo JL, Doty RW, Demeter S, Simard PY. Time is of the essence: a conjecture that hemispheric specialization arises from interhemispheric conduction delay. Cereb Cortex. 1994;4:331–43.

    Article  CAS  PubMed  Google Scholar 

  61. Roth G, Dicke U. Evolution of the brain and intelligence in primates. Prog Brain Res. 2012;195:413–30.

    Article  PubMed  Google Scholar 

  62. Schoenemann PT. Evolution of the size and functional areas of the human brain. Ann Rev Anthropol. 2006;35:379–406.

    Article  Google Scholar 

  63. Schoenemann PT, Sheehan MJ, Glotzer ID. Prefrontal white matter volume is disproportionately larger in humans than in other primates. Nat Neurosci. 2005;8:242–52.

    Article  CAS  PubMed  Google Scholar 

  64. Semendeferi K, Damasio H. The brain and its main anatomical subdivisions in living hominoids using magnetic resonance imaging. J Hum Evol. 2000;38:317–32.

    Article  CAS  PubMed  Google Scholar 

  65. Sherwood CC, Smaers J. What’s the fuss over human frontal lobe evolution? Trends Cogn Sci. 2013;17:432–3.

    Article  PubMed  Google Scholar 

  66. Sherwood CC, Bauernfeind AL, Bianchi S, Raghanti MA, Hof PR. Human brain evolution writ large and small. Prog Brain Res. 2012;195:237–54.

    Article  PubMed  Google Scholar 

  67. Smaers JB, Soligo C. Brain reorganization, not relative brain size, primarily characterizes anthropoid brain evolution. Proc R Soc B. 2013;280:20130269.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Smaers JB, Schleicher A, Zilles K, Vinicius L. Frontal white matter volume in anthropoid primates. PLoS One. 2010;5:e9123.

    Google Scholar 

  69. Sporns O, Chilavo DR, Kaiser M, Hilgetag CC. Organization, development and function of complex brain networks. Trends Cogn Sci. 2004;8:418–25.

    Article  PubMed  Google Scholar 

  70. Sporns O, Honey CJ, Kötter R. Identification and classification of hubs in brain networks. PLoS One. 2007;2:e1049, 1–14.

    Google Scholar 

  71. Stephan H, Frahm HD, Baron G. New and revised data on volumes of brain structures in insectivores and primates. Folia Primatol. 1981;35:1–29.

    Article  CAS  PubMed  Google Scholar 

  72. Stoop N, Lagrange R, Terwage D, Reis PM, Dunkel J. Curvature-induced symmetry breaking determines elastic surface patterns. Nat Mater. 2015;14:337–42.

    Google Scholar 

  73. Striedter GF. Principles of brain evolution. Sunderland: Sinauer Associates; 2004.

    Google Scholar 

  74. Teffer K, Semendeferi K. Human prefrontal cortex: evolution, development, and pathology. Prog Brain Res. 2012;195:191–218.

    Article  PubMed  Google Scholar 

  75. Van den Heuvel MP, Sporns O. Rich-club organization of the human connectome. J Neurosci. 2011;31:15775–86.

    Article  PubMed  Google Scholar 

  76. Van Essen DC. A tension-based theory of morphogenesis and compact wiring in the central nervous system. Nature. 1997;385:313–8.

    Article  PubMed  Google Scholar 

  77. Wang SS-H, Shultz JR, Burish MJ, Harrison KH, Hof PR, Towns LC, Wagers MW, Wyatt KD. Functional trade-offs in white matter axonal scaling. J Neurosci. 2008;28:4047–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Wang X-J. Neurophysiological and computational principles of cortical rhythms in cognition. Physiol Rev. 2010;90:1195–268.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Watts DJ, Strogatz SH. Collective dynamics of ‘small-world’ networks. Nature. 1998;393:440–2.

    Article  CAS  PubMed  Google Scholar 

  80. Wedeen VJ, Rosene DL, Wang R, Dai G, Mortazavi F, Hagmann P, Kaas JH, Tseng WY. The geometric structure of the brain fiber pathway. Science. 2012;335:1628–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Wen Q, Chklovskii DB. Segregation of the brain into gray and white matter: a design minimizing conduction delays. PLoS Comp Biol. 2005;1:e78:617–630.

    Google Scholar 

  82. Willemet R. Reconsidering the evolution of brain, cognition, and behavior in birds and mammals. Front Psychol. 2013;4:396.

    Google Scholar 

  83. Zhang K, Sejnowski TJ. A universal scaling law between gray matter and white matter of cerebral cortex. Proc Natl Acad Sci U S A. 2000;97:5621–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel A. Hofman PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hofman, M.A. (2016). The Fractal Geometry of the Human Brain: An Evolutionary Perspective. In: Di Ieva, A. (eds) The Fractal Geometry of the Brain. Springer Series in Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3995-4_11

Download citation

Publish with us

Policies and ethics