Skip to main content

Disruption of Auditory Function by Thyroid Hormone Receptor Mutations

  • Chapter
  • First Online:
Thyroid Hormone Disruption and Neurodevelopment

Part of the book series: Contemporary Clinical Neuroscience ((CCNE))

  • 724 Accesses

Abstract

More than a century ago, associations between deaf-mutism, cretinism, and goiter were reported. Since then, our understanding for the role of T3 and its receptors in auditory system development has greatly advanced. Much of current understanding is due to the creation of genetic mouse models that have allowed for the dissection of individual components of thyroid hormone action, including the thyroid hormone receptors. This chapter highlights our existing knowledge for the role of T3 and the thyroid hormone receptors, TRα and TRβ, in cochlear development and auditory function that have obtained from these important genetic models. It also discusses auditory deficits in humans with the syndrome of resistance to thyroid hormone caused by mutations in the thyroid hormone receptors. It concludes by briefly discussing where the deficiencies in our understanding of thyroid hormone action in cochlear development remain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abel ED, Boers ME, Pazos-Moura C, Moura E, Kaulbach H, Zakaria M, Lowell B, Radovick S, Liberman MC, Wondisford F (1999) Divergent roles for thyroid hormone receptor beta isoforms in the endocrine axis and auditory system. J Clin Invest 104(3):291–300. doi:10.1172/JCI6397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arrojo EDR, Fonseca TL, Werneck-de-Castro JP, Bianco AC (2013) Role of the type 2 iodothyronine deiodinase (D2) in the control of thyroid hormone signaling. Biochim Biophys Acta 1830(7):3956–3964. doi:10.1016/j.bbagen.2012.08.019

    Article  CAS  Google Scholar 

  • Bochukova E, Schoenmakers N, Agostini M, Schoenmakers E, Rajanayagam O, Keogh JM, Henning E, Reinemund J, Gevers E, Sarri M, Downes K, Offiah A, Albanese A, Halsall D, Schwabe JW, Bain M, Lindley K, Muntoni F, Vargha-Khadem F, Dattani M, Farooqi IS, Gurnell M, Chatterjee K (2012) A mutation in the thyroid hormone receptor alpha gene. N Engl J Med 366(3):243–249. doi:10.1056/NEJMoa1110296

    Article  CAS  PubMed  Google Scholar 

  • Bradley DJ, Towle HC, Young WS III (1992) Spatial and temporal expression of alpha- and beta-thyroid hormone receptor mRNAs, including the beta 2-subtype, in the developing mammalian nervous system. J Neurosci 12(6):2288–2302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bradley DJ, Towle HC, Young WS III (1994) Alpha and beta thyroid hormone receptor (TR) gene expression during auditory neurogenesis: evidence for TR isoform-specific transcriptional regulation in vivo. Proc Natl Acad Sci U S A 91(2):439–443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brucker-Davis F, Skarulis MC, Pikus A, Ishizawar D, Mastroianni MA, Koby M, Weintraub BD (1996) Prevalence and mechanisms of hearing loss in patients with resistance to thyroid hormone. J Clin Endocrinol Metab 81(8):2768–2772. doi:10.1210/jcem.81.8.8768826

    Article  CAS  PubMed  Google Scholar 

  • Campos-Barros A, Amma LL, Faris JS, Shailam R, Kelley MW, Forrest D (2000) Type 2 iodothyronine deiodinase expression in the cochlea before the onset of hearing. Proc Natl Acad Sci U S A 97(3):1287–1292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cordas EA, Ng L, Hernandez A, Kaneshige M, Cheng SY, Forrest D (2012) Thyroid hormone receptors control developmental maturation of the middle ear and the size of the ossicular bones. Endocrinology 153(3):1548–1560. doi:10.1210/en.2011-1834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DeLong GR, Stanbury JB, Fierro-Benitez R (1985) Neurological signs in congenital iodine-deficiency disorder (endemic cretinism). Dev Med Child Neurol 27(3):317–324

    Article  CAS  PubMed  Google Scholar 

  • Deol MS (1973) An experimental approach to the understanding and treatment of hereditary syndromes with congenital deafness and hypothyroidism. J Med Genet 10(3):235–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deol MS (1976) The role of thyroxine in the differentiation of the organ of Corti. Acta Otolaryngol 81(5–6):429–435

    Article  CAS  PubMed  Google Scholar 

  • Dettling J, Franz C, Zimmermann U, Lee SC, Bress A, Brandt N, Feil R, Pfister M, Engel J, Flamant F, Ruttiger L, Knipper M (2014) Autonomous functions of murine thyroid hormone receptor TRalpha and TRbeta in cochlear hair cells. Mol Cell Endocrinol 382(1):26–37. doi:10.1016/j.mce.2013.08.025

    Article  CAS  PubMed  Google Scholar 

  • Dumitrescu AM, Refetoff S (2013) The syndromes of reduced sensitivity to thyroid hormone. Biochim Biophys Acta 1830(7):3987–4003. doi:10.1016/j.bbagen.2012.08.005

    Article  CAS  PubMed  Google Scholar 

  • Ferrara AM, Onigata K, Ercan O, Woodhead H, Weiss RE, Refetoff S (2012) Homozygous thyroid hormone receptor beta-gene mutations in resistance to thyroid hormone: three new cases and review of the literature. J Clin Endocrinol Metab 97(4):1328–1336. doi:10.1210/jc.2011-2642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Forrest D, Erway LC, Ng L, Altschuler R, Curran T (1996) Thyroid hormone receptor beta is essential for development of auditory function. Nat Genet 13(3):354–357. doi:10.1038/ng0796-354

    Article  CAS  PubMed  Google Scholar 

  • Fraser JS (1932) The pathology of deaf-mutism. Proc R Soc Med 25(6):861–878

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gauthier K, Plateroti M, Harvey CB, Williams GR, Weiss RE, Refetoff S, Willott JF, Sundin V, Roux JP, Malaval L, Hara M, Samarut J, Chassande O (2001) Genetic analysis reveals different functions for the products of the thyroid hormone receptor alpha locus. Mol Cell Biol 21(14):4748–4760. doi:10.1128/MCB.21.14.4748-4760.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gillespie PG, Muller U (2009) Mechanotransduction by hair cells: models, molecules, and mechanisms. Cell 139(1):33–44. doi:10.1016/j.cell.2009.09.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Griffith AJ, Szymko YM, Kaneshige M, Quinonez RE, Kaneshige K, Heintz KA, Mastroianni MA, Kelley MW, Cheng SY (2002) Knock-in mouse model for resistance to thyroid hormone (RTH): an RTH mutation in the thyroid hormone receptor beta gene disrupts cochlear morphogenesis. J Assoc Res Otolaryngol 3(3):279–288. doi:10.1007/s101620010092

    Article  PubMed  PubMed Central  Google Scholar 

  • Hinojosa R (1977) A note on development of Corti’s organ. Acta Otolaryngol 84(3–4):238–251

    Article  CAS  PubMed  Google Scholar 

  • Jones I, Srinivas M, Ng L, Forrest D (2003) The thyroid hormone receptor beta gene: structure and functions in the brain and sensory systems. Thyroid 13(11):1057–1068. doi:10.1089/105072503770867228

    Article  CAS  PubMed  Google Scholar 

  • Kaneshige M, Kaneshige K, Zhu X, Dace A, Garrett L, Carter TA, Kazlauskaite R, Pankratz DG, Wynshaw-Boris A, Refetoff S, Weintraub B, Willingham MC, Barlow C, Cheng S (2000) Mice with a targeted mutation in the thyroid hormone beta receptor gene exhibit impaired growth and resistance to thyroid hormone. Proc Natl Acad Sci U S A 97(24):13209–13214. doi:10.1073/pnas.230285997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaneshige M, Suzuki H, Kaneshige K, Cheng J, Wimbrow H, Barlow C, Willingham MC, Cheng S (2001) A targeted dominant negative mutation of the thyroid hormone alpha 1 receptor causes increased mortality, infertility, and dwarfism in mice. Proc Natl Acad Sci U S A 98(26):15095–15100. doi:10.1073/pnas.261565798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kelley MW (2006) Regulation of cell fate in the sensory epithelia of the inner ear. Nat Rev Neurosci 7(11):837–849. doi:10.1038/nrn1987

    Article  CAS  PubMed  Google Scholar 

  • Killick R, Richardson GP (1997) Antibodies to the sulphated, high molecular mass mouse tectorin stain hair bundles and the olfactory mucus layer. Hear Res 103(1–2):131–141

    Article  CAS  PubMed  Google Scholar 

  • Knipper M, Bandtlow C, Gestwa L, Kopschall I, Rohbock K, Wiechers B, Zenner HP, Zimmermann U (1998) Thyroid hormone affects Schwann cell and oligodendrocyte gene expression at the glial transition zone of the VIIIth nerve prior to cochlea function. Development 125(18):3709–3718

    Article  CAS  PubMed  Google Scholar 

  • Knipper M, Gestwa L, Ten Cate WJ, Lautermann J, Brugger H, Maier H, Zimmermann U, Rohbock K, Kopschall I, Wiechers B, Zenner HP (1999) Distinct thyroid hormone-dependent expression of TrKB and p75NGFR in nonneuronal cells during the critical TH-dependent period of the cochlea. J Neurobiol 38(3):338–356

    Article  CAS  PubMed  Google Scholar 

  • Knipper M, Richardson G, Mack A, Muller M, Goodyear R, Limberger A, Rohbock K, Kopschall I, Zenner HP, Zimmermann U (2001) Thyroid hormone-deficient period prior to the onset of hearing is associated with reduced levels of beta-tectorin protein in the tectorial membrane: implication for hearing loss. J Biol Chem 276(42):39046–39052. doi:10.1074/jbc.M103385200

    Article  CAS  PubMed  Google Scholar 

  • Koenig RJ, Lazar MA, Hodin RA, Brent GA, Larsen PR, Chin WW, Moore DD (1989) Inhibition of thyroid hormone action by a non-hormone binding c-erbA protein generated by alternative mRNA splicing. Nature 337(6208):659–661. doi:10.1038/337659a0

    Article  CAS  PubMed  Google Scholar 

  • Kros CJ, Ruppersberg JP, Rusch A (1998) Expression of a potassium current in inner hair cells during development of hearing in mice. Nature 394(6690):281–284. doi:10.1038/28401

    Article  CAS  PubMed  Google Scholar 

  • Lautermann J, ten Cate WJ (1997) Postnatal expression of the alpha-thyroid hormone receptor in the rat cochlea. Hear Res 107(1–2):23–28

    Article  CAS  PubMed  Google Scholar 

  • Lazar MA, Hodin RA, Darling DS, Chin WW (1988) Identification of a rat c-erbA alpha-related protein which binds deoxyribonucleic acid but does not bind thyroid hormone. Mol Endocrinol 2(10):893–901

    Article  CAS  PubMed  Google Scholar 

  • Leao RN, Sun H, Svahn K, Berntson A, Youssoufian M, Paolini AG, Fyffe RE, Walmsley B (2006) Topographic organization in the auditory brainstem of juvenile mice is disrupted in congenital deafness. J Physiol 571(Pt 3):563–578. doi:10.1113/jphysiol.2005.098780

    Article  CAS  PubMed  Google Scholar 

  • Legan PK, Rau A, Keen JN, Richardson GP (1997) The mouse tectorins. Modular matrix proteins of the inner ear homologous to components of the sperm-egg adhesion system. J Biol Chem 272(13):8791–8801

    Article  CAS  PubMed  Google Scholar 

  • Legan PK, Lukashkina VA, Goodyear RJ, Kossi M, Russell IJ, Richardson GP (2000) A targeted deletion in alpha-tectorin reveals that the tectorial membrane is required for the gain and timing of cochlear feedback. Neuron 28(1):273–285

    Article  CAS  PubMed  Google Scholar 

  • Leger J, Ecosse E, Roussey M, Lanoe JL, Larroque B (2011) Subtle health impairment and socioeducational attainment in young adult patients with congenital hypothyroidism diagnosed by neonatal screening: a longitudinal population-based cohort study. J Clin Endocrinol Metab 96(6):1771–1782. doi:10.1210/jc.2010-2315

    Article  CAS  PubMed  Google Scholar 

  • Lichtenberger-Geslin L, Dos Santos S, Hassani Y, Ecosse E, Van Den Abbeele T, Leger J (2013) Factors associated with hearing impairment in patients with congenital hypothyroidism treated since the neonatal period: a national population-based study. J Clin Endocrinol Metab 98(9):3644–3652. doi:10.1210/jc.2013-1645

    Article  CAS  PubMed  Google Scholar 

  • Lukashkin AN, Richardson GP, Russell IJ (2010) Multiple roles for the tectorial membrane in the active cochlea. Hear Res 266(1–2):26–35. doi:10.1016/j.heares.2009.10.005

    Article  PubMed  Google Scholar 

  • Mallo M (2001) Formation of the middle ear: recent progress on the developmental and molecular mechanisms. Dev Biol 231(2):410–419. doi:10.1006/dbio.2001.0154

    Article  CAS  PubMed  Google Scholar 

  • McKinley MP, O’Loughlin VD (2012) Human anatomy, 3rd edn. McGraw-Hill, New York

    Google Scholar 

  • Morte B, Manzano J, Scanlan T, Vennstrom B, Bernal J (2002) Deletion of the thyroid hormone receptor alpha 1 prevents the structural alterations of the cerebellum induced by hypothyroidism. Proc Natl Acad Sci U S A 99(6):3985–3989. doi:10.1073/pnas.062413299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mustapha M, Weil D, Chardenoux S, Elias S, El-Zir E, Beckmann JS, Loiselet J, Petit C (1999) An alpha-tectorin gene defect causes a newly identified autosomal recessive form of sensorineural pre-lingual non-syndromic deafness, DFNB21. Hum Mol Genet 8(3):409–412

    Article  CAS  PubMed  Google Scholar 

  • Mustapha M, Fang Q, Gong TW, Dolan DF, Raphael Y, Camper SA, Duncan RK (2009) Deafness and permanently reduced potassium channel gene expression and function in hypothyroid Pit1dw mutants. J Neurosci 29(4):1212–1223. doi:10.1523/JNEUROSCI.4957-08.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ng L, Rusch A, Amma LL, Nordstrom K, Erway LC, Vennstrom B, Forrest D (2001) Suppression of the deafness and thyroid dysfunction in Thrb-null mice by an independent mutation in the Thra thyroid hormone receptor alpha gene. Hum Mol Genet 10(23):2701–2708

    Article  CAS  PubMed  Google Scholar 

  • Ng L, Goodyear RJ, Woods CA, Schneider MJ, Diamond E, Richardson GP, Kelley MW, Germain DL, Galton VA, Forrest D (2004) Hearing loss and retarded cochlear development in mice lacking type 2 iodothyronine deiodinase. Proc Natl Acad Sci U S A 101(10):3474–3479. doi:10.1073/pnas.0307402101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ng L, Hernandez A, He W, Ren T, Srinivas M, Ma M, Galton VA, St Germain DL, Forrest D (2009) A protective role for type 3 deiodinase, a thyroid hormone-inactivating enzyme, in cochlear development and auditory function. Endocrinology 150(4):1952–1960. doi:10.1210/en.2008-1419

    Article  CAS  PubMed  Google Scholar 

  • Ng L, Kelley MW, Forrest D (2013) Making sense with thyroid hormone—the role of T(3) in auditory development. Nat Rev Endocrinol 9(5):296–307. doi:10.1038/nrendo.2013.58

    Article  CAS  PubMed  Google Scholar 

  • Ng L, et al. (2015). Age-related hearing loss and degeneration of cochlear hair cells in mice lacking thyroid hormone receptor beta1.” Endocrinol 156(10):3853–3865.

    Google Scholar 

  • Oppenheimer JH, Schwartz HL, Strait KA (1994) Thyroid hormone action 1994: the plot thickens. Eur J Endocrinol 130(1):15–24

    Article  CAS  PubMed  Google Scholar 

  • Parrilla R, Mixson AJ, McPherson JA, McClaskey JH, Weintraub BD (1991) Characterization of seven novel mutations of the c-erbA beta gene in unrelated kindreds with generalized thyroid hormone resistance. Evidence for two “hot spot” regions of the ligand binding domain. J Clin Invest 88(6):2123–2130. doi:10.1172/JCI115542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pyott SJ, Meredith AL, Fodor AA, Vazquez AE, Yamoah EN, Aldrich RW (2007) Cochlear function in mice lacking the BK channel alpha, beta1, or beta4 subunits. J Biol Chem 282(5):3312–3324. doi:10.1074/jbc.M608726200

    Article  CAS  PubMed  Google Scholar 

  • Quignodon L, Vincent S, Winter H, Samarut J, Flamant F (2007) A point mutation in the activation function 2 domain of thyroid hormone receptor alpha1 expressed after CRE-mediated recombination partially recapitulates hypothyroidism. Mol Endocrinol 21(10):2350–2360. doi:10.1210/me.2007-0176

    Article  CAS  PubMed  Google Scholar 

  • Raphael Y, Altschuler RA (2003) Structure and innervation of the cochlea. Brain Res Bull 60(5–6):397–422

    Article  PubMed  Google Scholar 

  • Rau A, Legan PK, Richardson GP (1999) Tectorin mRNA expression is spatially and temporally restricted during mouse inner ear development. J Comp Neurol 405(2):271–280

    Article  CAS  PubMed  Google Scholar 

  • Refetoff S, DeWind LT, DeGroot LJ (1967) Familial syndrome combining deaf-mutism, stuppled epiphyses, goiter and abnormally high PBI: possible target organ refractoriness to thyroid hormone. J Clin Endocrinol Metab 27(2):279–294. doi:10.1210/jcem-27-2-279

    Article  CAS  PubMed  Google Scholar 

  • Rovet J, Walker W, Bliss B, Buchanan L, Ehrlich R (1996) Long-term sequelae of hearing impairment in congenital hypothyroidism. J Pediatr 128(6):776–783

    Article  CAS  PubMed  Google Scholar 

  • Rubel EW, Fritzsch B (2002) Auditory system development: primary auditory neurons and their targets. Annu Rev Neurosci 25:51–101. doi:10.1146/annurev.neuro.25.112701.142849

    Article  CAS  PubMed  Google Scholar 

  • Rusch A, Erway LC, Oliver D, Vennstrom B, Forrest D (1998) Thyroid hormone receptor beta-dependent expression of a potassium conductance in inner hair cells at the onset of hearing. Proc Natl Acad Sci U S A 95(26):15758–15762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rusch A, Ng L, Goodyear R, Oliver D, Lisoukov I, Vennstrom B, Richardson G, Kelley MW, Forrest D (2001) Retardation of cochlear maturation and impaired hair cell function caused by deletion of all known thyroid hormone receptors. J Neurosci 21(24):9792–9800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakurai A, Miyamoto T, Refetoff S, DeGroot LJ (1990) Dominant negative transcriptional regulation by a mutant thyroid hormone receptor-beta in a family with generalized resistance to thyroid hormone. Mol Endocrinol 4(12):1988–1994. doi:10.1210/mend-4-12-1988

    Article  CAS  PubMed  Google Scholar 

  • Sap J, Munoz A, Damm K, Goldberg Y, Ghysdael J, Leutz A, Beug H, Vennstrom B (1986) The c-erb-A protein is a high-affinity receptor for thyroid hormone. Nature 324(6098):635–640. doi:10.1038/324635a0

    Article  CAS  PubMed  Google Scholar 

  • Schoenmakers N, Moran C, Peeters RP, Visser T, Gurnell M, Chatterjee K (2013) Resistance to thyroid hormone mediated by defective thyroid hormone receptor alpha. Biochim Biophys Acta 1830(7):4004–4008. doi:10.1016/j.bbagen.2013.03.018

    Article  CAS  PubMed  Google Scholar 

  • Schwartz HL, Strait KA, Ling NC, Oppenheimer JH (1992) Quantitation of rat tissue thyroid hormone binding receptor isoforms by immunoprecipitation of nuclear triiodothyronine binding capacity. J Biol Chem 267(17):11794–11799

    Article  CAS  PubMed  Google Scholar 

  • Sharlin DS, Visser TJ, Forrest D (2011) Developmental and cell-specific expression of thyroid hormone transporters in the mouse cochlea. Endocrinology 152(12):5053–5064. doi:10.1210/en.2011-1372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sprenkle PM, McGee J, Bertoni JM, Walsh EJ (2001a) Consequences of hypothyroidism on auditory system function in Tshr mutant (hyt) mice. J Assoc Res Otolaryngol 2(4):312–329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sprenkle PM, McGee J, Bertoni JM, Walsh EJ (2001b) Development of auditory brainstem responses (ABRs) in Tshr mutant mice derived from euthyroid and hypothyroid dams. J Assoc Res Otolaryngol 2(4):330–347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szarama KB, Gavara N, Petralia RS, Chadwick RS, Kelley MW (2013) Thyroid hormone increases fibroblast growth factor receptor expression and disrupts cell mechanics in the developing organ of Corti. BMC Dev Biol 13:6. doi:10.1186/1471-213X-13-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tritsch NX, Bergles DE (2010) Developmental regulation of spontaneous activity in the Mammalian cochlea. J Neurosci 30(4):1539–1550. doi:10.1523/JNEUROSCI.3875-09.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tritsch NX, Yi E, Gale JE, Glowatzki E, Bergles DE (2007) The origin of spontaneous activity in the developing auditory system. Nature 450(7166):50–55. doi:10.1038/nature06233

    Article  CAS  PubMed  Google Scholar 

  • Uziel A, Rabie A, Marot M (1980) The effect of hypothyroidism on the onset of cochlear potentials in developing rats. Brain Res 182(1):172–175

    Article  CAS  PubMed  Google Scholar 

  • Uziel A, Gabrion J, Ohresser M, Legrand C (1981) Effects of hypothyroidism on the structural development of the organ of Corti in the rat. Acta Otolaryngol 92(5–6):469–480

    Article  CAS  PubMed  Google Scholar 

  • Uziel A, Legrand C, Ohresser M, Marot M (1983) Maturational and degenerative processes in the organ of Corti after neonatal hypothyroidism. Hear Res 11(2):203–218

    Article  CAS  PubMed  Google Scholar 

  • van Mullem A, van Heerebeek R, Chrysis D, Visser E, Medici M, Andrikoula M, Tsatsoulis A, Peeters R, Visser TJ (2012) Clinical phenotype and mutant TRalpha1. N Engl J Med 366(15):1451–1453. doi:10.1056/NEJMc1113940

    Article  PubMed  Google Scholar 

  • van Mullem AA, Chrysis D, Eythimiadou A, Chroni E, Tsatsoulis A, de Rijke YB, Visser WE, Visser TJ, Peeters RP (2013) Clinical phenotype of a new type of thyroid hormone resistance caused by a mutation of the TRalpha1 receptor: consequences of LT4 treatment. J Clin Endocrinol Metab 98(7):3029–3038. doi:10.1210/jc.2013-1050

    Article  CAS  PubMed  Google Scholar 

  • Verhoeven K, Van Laer L, Kirschhofer K, Legan PK, Hughes DC, Schatteman I, Verstreken M, Van Hauwe P, Coucke P, Chen A, Smith RJ, Somers T, Offeciers FE, Van de Heyning P, Richardson GP, Wachtler F, Kimberling WJ, Willems PJ, Govaerts PJ, Van Camp G (1998) Mutations in the human alpha-tectorin gene cause autosomal dominant non-syndromic hearing impairment. Nat Genet 19(1):60–62. doi:10.1038/ng0598-60

    Article  CAS  PubMed  Google Scholar 

  • Visser WE, Friesema EC, Jansen J, Visser TJ (2008) Thyroid hormone transport in and out of cells. Trends Endocrinol Metab 19(2):50–56. doi:10.1016/j.tem.2007.11.003

    Article  CAS  PubMed  Google Scholar 

  • Wangemann P (2006) Supporting sensory transduction: cochlear fluid homeostasis and the endocochlear potential. J Physiol 576(Pt 1):11–21. doi:10.1113/jphysiol.2006.112888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weber T, Zimmermann U, Winter H, Mack A, Kopschall I, Rohbock K, Zenner HP, Knipper M (2002) Thyroid hormone is a critical determinant for the regulation of the cochlear motor protein prestin. Proc Natl Acad Sci U S A 99(5):2901–2906. doi:10.1073/pnas.052609899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weinberger C, Thompson CC, Ong ES, Lebo R, Gruol DJ, Evans RM (1986) The c-erb-A gene encodes a thyroid hormone receptor. Nature 324(6098):641–646. doi:10.1038/324641a0

    Article  CAS  PubMed  Google Scholar 

  • Winter H, Braig C, Zimmermann U, Geisler HS, Franzer JT, Weber T, Ley M, Engel J, Knirsch M, Bauer K, Christ S, Walsh EJ, McGee J, Kopschall I, Rohbock K, Knipper M (2006) Thyroid hormone receptors TRalpha1 and TRbeta differentially regulate gene expression of Kcnq4 and prestin during final differentiation of outer hair cells. J Cell Sci 119(Pt 14):2975–2984. doi:10.1242/jcs.03013

    Article  CAS  PubMed  Google Scholar 

  • Winter H, Braig C, Zimmermann U, Engel J, Rohbock K, Knipper M (2007) Thyroid hormone receptor alpha1 is a critical regulator for the expression of ion channels during final differentiation of outer hair cells. Histochem Cell Biol 128(1):65–75. doi:10.1007/s00418-007-0294-6

    Article  CAS  PubMed  Google Scholar 

  • Winter H, Ruttiger L, Muller M, Kuhn S, Brandt N, Zimmermann U, Hirt B, Bress A, Sausbier M, Conscience A, Flamant F, Tian Y, Zuo J, Pfister M, Ruth P, Lowenheim H, Samarut J, Engel J, Knipper M (2009) Deafness in TRbeta mutants is caused by malformation of the tectorial membrane. J Neurosci 29(8):2581–2587. doi:10.1523/JNEUROSCI.3557-08.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Lazar MA (2000) The mechanism of action of thyroid hormones. Annu Rev Physiol 62:439–466. doi:10.1146/annurev.physiol.62.1.439

    Article  CAS  PubMed  Google Scholar 

  • Zoeller RT, Rovet J (2004) Timing of thyroid hormone action in the developing brain: clinical observations and experimental findings. J Neuroendocrinol 16(10):809–818. doi:10.1111/j.1365-2826.2004.01243.x

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David S. Sharlin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sharlin, D.S. (2016). Disruption of Auditory Function by Thyroid Hormone Receptor Mutations. In: Koibuchi, N., Yen, P.M. (eds) Thyroid Hormone Disruption and Neurodevelopment. Contemporary Clinical Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3737-0_9

Download citation

Publish with us

Policies and ethics