Skip to main content

The Science of Gene Flow in Agriculture and Its Role in Coexistence

  • Chapter
  • First Online:
Book cover The Coexistence of Genetically Modified, Organic and Conventional Foods

Abstract

Gene flow is a natural process that occurs among sexually-compatible individuals in which cross pollination can result in viable seeds. Gene flow between individuals within and among populations via pollen occurs only when they have concurrent geography, overlapping flowering times, and share common pollinators. Given a population size sufficient to avoid genetic drift, alleles that have neither positive nor negative impact on fitness will persist in the population at an allelic frequency equal to their introduction level. Alleles for genes conferring a fitness effect will be selected naturally for or against depending on the selection pressure. For example, the frequency of alleles conferring disease resistance may increase in the population in generations where a certain pathogen is prevalent but not when it is absent, while alleles conferring herbicide resistance will neither increase nor decrease in the population in areas where the herbicide is not used. Favorable genotypes for a certain trait are usually fixed at a more rapid rate in self-pollinating than in outcrossing species. Genetic and biological features such as polyploidy, fecundity, and generation time also affect shifts in allele frequencies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aono, M., S. Wakiyama, M. Nagatsu, N. Nakajima, M. Tamaoki, A. Kubo, and H. Saji. 2006. Detection of feral transgenic oilseed rape with multiple-herbicide resistance in Japan. Environmental Biosafety Research 5: 77–87.

    Article  Google Scholar 

  • Arlen, P.A., R. Falconer, S. Cherukumilli, A. Cole, A.M. Cole, K.K. Oishi, and H. Daniell. 2007. Field production and functional evaluation of chloroplast-derived interferon-alpha2b. Plant Biotechnology Journal 5(4): 511–525.

    Article  Google Scholar 

  • American Seed Trade Association. 2011a. Guide to seed quality management practices. http://www.betterseed.org/resources/guide-to-seed-quality-management.

  • American Seed Trade Association. 2011b. The practice of coexistence in the seed industry: ASTA principles. http://www.betterseed.org/pdfs/issues/biotech/coexistence-in-seed-industry.pdf.

  • Bagavathiannan, M.V., and R.C. Van Acker. 2009. The biology and ecology of feral alfalfa (Medicago sativa L.) and its implications for novel trait confinement in North America. Critical Reviews in Plant Sciences 28(1–2): 69–87.

    Article  Google Scholar 

  • Bagavathiannan, M.V., R.H. Gulden, G.S. Begg, and R.C. Van Acker. 2010a. The demography of feral alfalfa (Medicago sativa L.) populations occurring in roadside habitats in Southern Manitoba, Canada: Implications for novel trait confinement. Environmental Science and Pollution Research 17(8): 1448–1459.

    Article  Google Scholar 

  • Bagavathiannan, M.V., B. Julier, P. Barre, R.H. Gulden, and R.C. Van Acker. 2010b. Genetic diversity of feral alfalfa (Medicago sativa L.) populations occurring in Manitoba, Canada and comparison with alfalfa cultivars: An analysis using SSR markers and phenotypic traits. Euphytica 173(3): 419–432.

    Article  Google Scholar 

  • Bagavathiannan, M.V., R.H. Gulden, and R.C. Van Acker. 2011a. The ability of alfalfa (Medicago sativa) to establish in a seminatural habitat under different seed dispersal times and disturbance. Weed Science 59(3): 314–320.

    Article  Google Scholar 

  • Bagavathiannan, M.V., R.H. Gulden, and R.C. Van Acker. 2011b. Occurrence of alfalfa (Medicago sativa L.) populations along roadsides in Southern Manitoba, Canada and their potential role in intraspecific gene flow. Transgenic Research 20(2): 397–407.

    Article  Google Scholar 

  • Barney, J.N., and J.M. DiTomaso. 2010a. Bioclimatic predictions of habitat suitability for the biofuel switchgrass in North America under current and future climate scenarios. Biomass and Bioenergy 34: 124–133.

    Article  Google Scholar 

  • Barney, J.N., and J.M. DiTomaso. 2010b. Invasive species biology, ecology, management and risk assessment: Evaluating and mitigating the invasion risk of biofuel crops. In Biotechnology in agriculture and forestry, ed. A. Schlitzberger, 263–284. New York: Springer.

    Google Scholar 

  • Berkey, D.A., B.R. Savoy, V.R. Jeanes, and J.D. Lehman. 2003. Pollen dispersal from transgenic cotton fields. In Proceedings of the Beltwide cotton conference, Nashville, TN.

    Google Scholar 

  • Boose, A.B., and J.S. Holt. 1999. Environmental effects on asexual reproduction in Arundo donax. Weed Research 39(2): 117–127.

    Article  Google Scholar 

  • Boss, P.K., L. Sreekantan, and M.R. Thomas. 2006. A grapevine Tfl1 homologue can delay flowering and alter floral development when overexpressed in heterologous species. Functional Plant Biology 33: 31–41.

    Article  Google Scholar 

  • Bradford, K.J. 2011. The potential impact of gene flow mitigation on agriculture. In The science of gene flow in agriculture and its role in co-existence, Washington, DC.

    Google Scholar 

  • Bradford, K.J., J.M. Alston, and N. Kalaitzandonakes. 2006. Regulation of biotechnology for specialty crops. In Regulating agricultural biotechnology: Economics and policy, ed. R. Just, et al., 683–697. New York: Springer.

    Chapter  Google Scholar 

  • Brule-Babel, A.L., C.J. Willenborg, L.F. Friesen, and R.C. Van Acker. 2006. Modeling the influence of gene flow and selection pressure on the frequency of a Ge herbicide-tolerant trait in non-Ge wheat and wheat volunteers. Crop Science 46(4): 1704–1710.

    Article  Google Scholar 

  • Brunner, A.M., S.P. DiFazio, and A.T. Groover. 2007. Forest genomics grows up and branches out. New Phytologist 174(4): 710–713.

    Article  Google Scholar 

  • Bunge J. 2014. Cargill sues syngenta over sale of GMO seeds unapproved in China. The Wall Street Journal. http://www.wsj.com/articles/cargill-sues-syngenta-says-gmo-seed-sales-hurt-u-s-corn-exports-to-china-1410542784.

  • Chandler, S., and J.M. Dunwell. 2008. Gene flow, risk assessment and the environmental release of transgenic plants. Critical Reviews in Plant Sciences 27(1): 25–49.

    Article  Google Scholar 

  • Chaney, D.E. 1985. Bloom dynamics in alfalfa (Medicago sativa L.): Implications for pollination and seed production. University of California, Agronomy and Range Science, Masters.

    Google Scholar 

  • Chase, C. 2006. Genetically engineered cytoplasmic male sterility. Trends in Plant Science 11: 4–9.

    Article  Google Scholar 

  • Clarke, J.L., and H. Daniell. 2011. Plastid biotechnology for crop production: Present status and future perspectives. Plant Molecular Biology 76(3–5): 211–220.

    Article  Google Scholar 

  • Cui, C., F. Song, Y. Tan, X. Zhou, W. Zhao, F. Ma, Y. Liu, J. Hussain, Y. Wang, G. Yang, and G. He. 2011. Stable chloroplast transformation of immature scutella and inflorescences in wheat (Triticum aestivum L.). Acta Biochimica et Biophysica Sinica (Shanghai) 43(4): 284–291.

    Article  Google Scholar 

  • Daniell, H. 2002. Molecular strategies for gene containment in transgenic crops. Nature Biotechnology 20(6): 581–586.

    Article  Google Scholar 

  • Daniell, H. 2007. Transgene containment by maternal inheritance: Effective or elusive? Proceedings of the National Academy of Sciences USA 104(17): 6879–6880.

    Article  Google Scholar 

  • Desquilbet, M., and D.S. Bullock. 2002. Who pays the costs of non-GMO segregation and identity preservation? In International Congress European Association of Agricultural Economists, Zaragoza, Spain.

    Google Scholar 

  • Dick, C., O. Hardy, F.A. Jones, and R. Petit. 2008. Spatial scales of pollen and seed-mediated gene flow in tropical rain forest trees. Tropical Plant Biology 1(1): 20–33.

    Article  Google Scholar 

  • Ding, J., H. Duan, Z. Deng, D. Zhao, G. Yi, R. McAvoy, and Y. Li. 2014. Molecular strategies for addressing gene flow problems and their potential applications in abiotic stress tolerant transgenic plants. Critical Reviews in Plant Sciences 33(2–3): 190–204.

    Article  Google Scholar 

  • DiTomaso, J.M., J.K. Reaser, C.P. Dionigi, O.C. Doering, E. Chilton, J.D. Schardt, and J.N. Barney. 2010. Biofuel vs bioinvasion: Seeding policy priorities. Environmental Science and Technology 44(18): 6906–6910.

    Article  Google Scholar 

  • DiTomaso, J.M., J.N. Barney, J.J. Mann, and G.B. Kyser. 2011. Potential for persistence of genes in the environment. In The science of gene flow in agriculture and its role in co-existence, 35–38. Washington, DC.

    Google Scholar 

  • DiTomaso, J., J. Barney, J. Mann, and G. Kyser. 2013. For switchgrass cultivated as biofuel in California, invasiveness limited by several steps. California Agriculture 67: 96–103.

    Article  Google Scholar 

  • Dunkle, R. 2011. Maintaining seed purity in the seed trade industry. In The science of gene flow in agriculture and its role in co-existence, Washington, DC.

    Google Scholar 

  • Ellstrand, N.C. 2014. Is gene flow the most important evolutionary force in plants? American Journal of Botany 101(5): 737–753.

    Article  Google Scholar 

  • Elorriaga, E., R. Meilan, C. Ma, J. Skinner, E. Etherington, A. Brunner, and S. Strauss. 2014a. A tapetal ablation transgene induces stable male sterility and slows field growth in Populus. Tree Genetics & Genomes 10(6): 1583–1593.

    Article  Google Scholar 

  • Elorriaga, E., R. Meilan, C. Ma, J. Skinner, E. Etherington, A. Brunner, and S.H. Strauss. 2014b. A tapetal ablation transgene induces stable male-sterility and slows field growth in Populus. Tree Genetics & Genomes 10: 1583–1593.

    Article  Google Scholar 

  • Elorriaga, E., A. Klocko, C. Ma, and S.H. Strauss. 2015. Crispr-Cas nuclease mutagenesis for genetic containment of genetically engineered forest trees. Minneapolis, MN: American Society of Plant Biologists Meeting.

    Google Scholar 

  • Evans, M.M.S., and J.L. Kermicle. 2001. Teosinte crossing barrier1, a locus governing hybridization of teosinte with maize. Theoretical and Applied Genetics 103(2–3): 259–265.

    Article  Google Scholar 

  • Feil, B., U. Weingartner, and P. Stamp. 2003. Controlling the release of pollen from genetically modified maize and increasing its grain yield by growing mixtures of male-sterile and male-fertile plants. Euphytica 130(2): 163–165.

    Article  Google Scholar 

  • Gaines, T., C. Preston, P. Byrne, W.B. Henry, and P. Westra. 2007. Adventitious presence of herbicide resistant wheat in certified and farm-saved seed lots. Crop Science 47(2): 751–756.

    Article  Google Scholar 

  • Garcia-Sogo, B., B. Pineda, L. Castelblanque, T. Anton, M. Medina, E. Roque, C. Torresi, J.P. Beltran, V. Moreno, and L.A. Canas. 2010. Efficient transformation of Kalanchoe Blossfeldiana and production of male-sterile plants by engineered anther ablation. Plant Cell Reports 29(1): 61–77.

    Article  Google Scholar 

  • Gealy, D.R., K.J. Bradford, L. Hall, R. Hellmich, A. Raybould, J. Wolt, and D. Zilberman. 2007. Implications of gene flow in the scale-up and commercial use of biotechnology-derived crops: Economic and policy considerations. Issue Paper 37.

    Google Scholar 

  • Hagler, J.R., S. Mueller, L.R. Teuber, and A. Van Deynze. 2011. Quantifying the area-wide dispersal patterns of honeybees in commercial alfalfa fields. In The science of gene flow in agriculture and its role in co-existence, Washington, DC, University of California, Davis.

    Google Scholar 

  • Halsey, M.E., K.M. Remund, C.A. Davis, M. Qualls, P.J. Eppard, and S.A. Berberich. 2005. Isolation of maize from pollen-mediated gene flow by time and distance. Crop Science 45(6): 2172–2185.

    Article  Google Scholar 

  • Hanson, M., and S. Bentolila. 2004. Interactions of mitochondrial and nuclear genes that affect male gametophyte development. Plant, Cell and Environment 16: S154–S169.

    Article  Google Scholar 

  • Harfouche, A., R. Meilan, and A. Altman. 2010. Tree genetic engineering and applications to sustainable forestry and biomass production. Trends in Biotechnology 29(1): 9–17.

    Article  Google Scholar 

  • Hills, M.J., L. Hall, P.G. Arnison, and A.G. Good. 2007. Genetic use restriction technologies (Gurts): Strategies to impede transgene movement. Trends in Plant Science 12(4): 177–183.

    Article  Google Scholar 

  • Hinchee, M., L. Mullinax, and W.H. Rottmann, ed. 2010. Woody biomass and purpose-grown trees as feedstocks for renewable energy. In Plant biotechnology for sustainable production of energy and co-products, Biotechnology in Agriculture and Forestry, NY: Springer.

    Google Scholar 

  • Hird, D.L., D. Worrall, R. Hodge, S. Smartt, W. Paul, and R. Scott. 1993. The anther-specific protein encoded by the Brassica napus and Arabidopsis thaliana A6 gene displays similarity to Β-1,3-glucanases. The Plant Journal 4(6): 1023–1033.

    Article  Google Scholar 

  • Irish, E.E., J.A. Langdale, and T.M. Nelson. 1994. Interactions between tassel seed genes and other sex-determining genes in maize. Developmental Genetics 15(2): 155–171.

    Article  Google Scholar 

  • Kalaitzandonakes, N.G. 2011. Economic impacts of gene flow. In The science of gene flow in agriculture and its role in co-existence, Washington, DC.

    Google Scholar 

  • Kalaitzandonakes, N.G., and A. Magnier. 2004. Biotech labeling standards and compliance costs in seed production. Choices 21: 1–6.

    Google Scholar 

  • Kalaitzandonakes, N., and J. Kaufman. 2006. GM crops impact starch industry. World Grain.

    Google Scholar 

  • Kalaitzandonakes, N., R. Maltsbarger, and J. Barnes. 2001. Global identity preservation costs in agricultural supply chains. Canadian Journal of Agricultural Economics 49(1): 605–615.

    Article  Google Scholar 

  • Kalaitzandonakes, N., J.M. Alston, and K.J. Bradford. 2007. Compliance costs for regulatory approval of new biotech crops. Nature Biotechnology 25(5): 509–511.

    Article  Google Scholar 

  • Kempe, K., M. Rubtsova, C. Berger, J. Kumlehn, C. Schollmeier, and M. Gills. 2010. Transgene excision from wheat chromosomes by phage Phic31 integrase. Plant Molecular Biology 72: 673–687.

    Article  Google Scholar 

  • Kermicle, J.L. 2006. A selfish gene governing pollen-pistil compatibility confers reproductive isolation between maize relatives. Genetics 172(1): 499–506.

    Article  Google Scholar 

  • Kermicle, J.L., and M.M.S. Evans. 2010. The Zea mays sexual compatibility gene Ga2: Naturally occurring alleles, their distribution, and role in reproductive isolation. Journal of Heredity 101(6): 737–749.

    Article  Google Scholar 

  • Kim, S.-Y., et al. 2007. Delayed flowering time in Arabidopsis and Brassica Rapa by the overexpression of Flowering Locus C (Flc) homologs isolated from Chinese Cabbage (Brassica Rapa L. Ssp. Pekinensis). Plant Cell Reports 26: 327–336.

    Article  Google Scholar 

  • Klocko, A., C. Ma, and S.H. Strauss. 2015. Containment technology for trees: A new frontier opens. In International Union of Forest Research Organizations Tree Biotechnology Meeting, Florence, Italy.

    Google Scholar 

  • Koltunow, A.M., J. Truettner, K.H. Cox, M. Wallroth, and R.B. Goldberg. 1990. Different temporal and spatial gene expression patterns occur during anther development. Plant Cell 2(12): 1201–1224.

    Article  Google Scholar 

  • Kuvshinov, V.V., K. Koivu, A. Kanerva, and E. Pehu. 2001. Molecular control of transgene escape from genetically modified plants. Plant Science 160(3): 517–522.

    Article  Google Scholar 

  • Kwit, C., H.S. Moon, S.I. Warwick, and C.N. Stewart Jr. 2011. Transgene introgression in crop relatives: Molecular evidence and mitigation strategies. Trends in Biotechnology 29(6): 284–293.

    Article  Google Scholar 

  • Lee, D., and E. Natesan. 2006. Evaluating genetic containment strategies for transgenic plants. Trends in Biotechnology 24(3): 109–114.

    Article  Google Scholar 

  • Lee, Y.H., K.H. Chung, H.U. Kim, Y.M. Jin, H.I. Kim, and B.S. Park. 2003. Induction of male sterile cabbage using a tapetum-specific promoter from Brassica Campestris L. Ssp. Pekinensis. Plant Cell Reports 22(4): 268–273.

    Article  Google Scholar 

  • Lee, S.M., K. Kang, H. Chung, S.H. Yoo, M. Xu, S.B. Lee, J.J. Cheong, H. Daniell, and M. Kim. 2006. Plastid transformation in the monocotyledonous cereal crop, rice (Oryza sativa) and transmission of transgenes to their progeny. Molecules and Cells 21: 401–410.

    Google Scholar 

  • Liu, Z., C. Zhou, and K. Wu. 2008. Creation and analysis of a novel chimeric promoter for the complete containment of pollen- and seed-mediated gene flow. Plant Cell Reports 27(6): 995–1004.

    Article  Google Scholar 

  • Maggio, I., and M.A.F.V. Gonçalves. 2015. Genome editing at the crossroads of delivery, specificity, and fidelity. Trends in Biotechnology 33(5): 280–291.

    Article  Google Scholar 

  • Magnier, A., S. Konduru, and N. Kalaitzandonakes. 2009. Market and welfare effects of trade disruption from unapproved biotech crops. Milwaukee, WI: Agricultural & Applied Economics Association.

    Google Scholar 

  • Mallory-Smith, C., and M. Zapiola. 2008. Gene flow from glyphosate-resistant crops. Pest Management Science 64(4): 428–440.

    Article  Google Scholar 

  • Mallory-Smith, C.A., and E. Sanchez Olguin. 2011. Gene flow from herbicide-resistant crops: It’s not just for transgenes. Journal of Agricultural Food Chemistry 59(11): 5813–5818.

    Article  Google Scholar 

  • Mann, J., J. Barney, G. Kyser, and J. DiTomaso. 2013. Miscanthus × Giganteus and Arundo donax shoot and rhizome tolerance of extreme moisture stress. GCB Bioenergy 5: 693–700.

    Article  Google Scholar 

  • Mariani, C., M.D. Beuckeleer, J. Truettner, J. Leemans, and R.B. Goldberg. 1990. Induction of male sterility in plants by a chimaeric ribonuclease gene. Nature 347(6295): 737–741.

    Article  Google Scholar 

  • Marmaduke, J. 2015. GMO Ban takes effect in Oregon’s Jackson County. Statesman Journal. Oregon; June 8, 2015. http://www.statesmanjournal.com/story/tech/science/environment/2015/06/08/gmo-ban-takes-effect-in-oregonsjackson-county/28699667.

  • Miller, J.K., and K.J. Bradford. 2010. The regulatory bottleneck for biotech specialty crops. Nature Biotechnology 10: 1012–1014.

    Article  Google Scholar 

  • Mlynarova, L., A.J. Conner, and J.-P. Nap. 2006. Directed microspore-specific recombination of transgenic alleles to prevent pollen-mediated transmission of transgenes. Plant Biotechnology Journal 4(4): 445–452.

    Article  Google Scholar 

  • Moon, H.S., and C.N. Stewart. 2011. An overview of male sterility strategies for transgene biocontainment. In The science of gene flow in agriculture and its role in co-existence, Washington, DC.

    Google Scholar 

  • Moon, H.S., Y. Li, and C.N. Stewart Jr. 2010. Keeping the genie in the bottle: Transgene biocontainment by excision in pollen. Trends in Biotechnology 28(1): 3–8.

    Article  Google Scholar 

  • Moon, H.S., L. Abercrombie, S. Eda, R. Blanvillain, J. Thomson, D. Ow, and C.J. Stewart. 2011. Transgene excision in pollen using a codon optimized serine resolvase Cinh-Rs2 site-specific recombination system. Plant Molecular Biology 75: 621–631.

    Article  Google Scholar 

  • National Alfalfa & Forage Alliance. 2008. (NAFA). Best management practices for roundup ready alfalfa seed production (January 22, 2008), http://www.alfalfa.org.

  • National Alfalfa & Forage Alliance. 2015. Grower opportunity zones & non-Ge seed production areas. https://www.alfalfa.org/CSCoexistenceDocs.html.

  • Nasrallah, J.B., and M.E. Nasrallah. 1988. The self-incompatibility genes of Brassica—Expression and structure. Heredity 61: 274.

    Google Scholar 

  • Nehra, N.S., M.R. Becwar, W.H. Rottmann, L. Pearson, K. Chowdhury, S. Chang, H.D. Wilde, R.J. Kodrzycki, C. Zhang, K.G. Gause, D.W. Parks, and M.A. Hinchee. 2005. Forest biotechnology: Innovative methods, emerging opportunities. In Vitro Cellular & Developmental Biology - Plant 41: 701–717.

    Article  Google Scholar 

  • Niewhof, M. 1990. Cytoplasmic-genetic male sterility in radish Raphanus Sativus L. identification of maintainers, inheritance of male sterility and effect of environmental factors. Euphytica 47: 171–177.

    Google Scholar 

  • Oliver, M.J., J.E. Quisenberry, N.L.G. Trolinder, and D.L. Keim. 1998. Control of plant gene expression. US Patent 5,723,765, United States Patent and Trademark Office.

    Google Scholar 

  • Pessel, F.D., J. Lecomte, V. Emeriau, M. Krouti, A. Messean, and P.H. Gouyon. 2001. Persistence of oilseed rape (Brassica napus L.) outside of cultivated fields. Theoretical and Applied Genetics 102(6–7): 841–846.

    Article  Google Scholar 

  • Putnam, D.H. 2006. Methods to enable coexistence of diverse production systems involving genetically engineered alfalfa. Agricultural Biotechnology in California Publication 8193. University of California. Available on-line: http://anrcatalog.ucdavis.edu.

  • Quinn, L., E. Scott, A. Endres, J. Barney, T. Voigt, and J. McCubbins. 2014. Resolving regulatory uncertainty: Legislative language for potentially invasive bioenergy feedstocks. GCB Bioenergy. doi:10.1111/gcbb.12216.

    Google Scholar 

  • Reagon, M., and A.A. Snow. 2006. Cultivated Helianthus annuus (Asteraceae) volunteers as a genetic “bridge” to weedy sunflower populations in North America. American Journal of Botany 93(1): 127–133.

    Article  Google Scholar 

  • Rieger, M.A., M. Lamond, C. Preston, S.B. Powles, and R.T. Roush. 2002. Pollen-mediated movement of herbicide resistance between commercial canola fields. Science 296(5577): 2386–2388.

    Article  Google Scholar 

  • Ruf, S., D. Karcher, and R. Bock. 2007. Determining the transgene containment level provided by chloroplast transformation. Proceedings of the National Academy of Sciences USA 104(17): 6998–7002.

    Article  Google Scholar 

  • Ruiz, O.N., and H. Daniell. 2005. Engineering cytoplasmic male sterility via the chloroplast genome by expression of Β-ketothiolase. Plant Physiology 138(3): 1232–1246.

    Article  Google Scholar 

  • Schafer, M.G., A.A. Ross, J.P. Londo, C.A. Burdick, E.H. Lee, S.E. Travers, P.K. VandeWater, and C.L. Sagers. 2011. The establishment of genetically engineered canola populations in the US. PLoS ONE 6(10): e25736.

    Article  Google Scholar 

  • Schnable, P., and R. Wise. 1998. The molecular basis of cytoplasmic male sterility and fertility restoration. Trends in Plant Science 3: 175–180.

    Article  Google Scholar 

  • Slavov, G.T., S. Leonardi, J. Burczyk, W.T. Adams, S.H. Strauss, and S.P. Difazio. 2009. Extensive pollen flow in two ecologically contrasting populations of Populus Trichocarpa. Molecular Ecology 18(2): 357–373.

    Article  Google Scholar 

  • Smith, L., D. Allen, and J. Barney. 2015. The thin green line: Sustainable bioenergy feedstocks or invaders in waiting. Neobiota 25: 47–71.

    Article  Google Scholar 

  • Stewart Jr., C.N. 2007. Biofuels and biocontainment. Nature Biotechnology 25(3): 283–284.

    Article  Google Scholar 

  • Stewart, C.N., Jr. 2013. Engineering male sterility or non-transgenic pollen, Google Patents.

    Google Scholar 

  • Stewart Jr., C.N., H. Moon, J. Abercrombie, L. Abercrombie, R. Millwood, C. Poovaiah, and S. Eda. 2012. Restriction enzyme mediated pollen ablation promises to be an effective species-independent male sterility and bioconfinement tool. In Vitro Cellular and Developmental Biology. Animal 48: S68.

    Google Scholar 

  • Strauss, S.H., A. Costanza, and A. Séguin. 2015. Genetically engineered trees: Paralysis from good intentions. Science 349(6250): 794–795.

    Article  Google Scholar 

  • Sundstrom, F.J., J. Williams, A. Van Deynze, and K.J. Bradford. 2003. Identity preservation of agricultural commodities. University of California Agriculture and Natural Resources. Publication 8077 http://Anrcatalog.Ucdavis.Edu.

  • Svab, Z., and P. Maliga. 2007. Exceptional transmission of plastids and mitochondria from the transplastomic pollen parent and its impact on transgene containment. Proceedings of the National Academy of Sciences USA 104: 7003–7008.

    Article  Google Scholar 

  • Teuber, L., S. Mueller, A. Van Deynze, S. Fitzpatrick, J. Hagler, and J. Arias. 2007. Seed-to-seed and hay-to-seed pollen mediated gene flow in alfalfa. In Proceedings of the North Central Weed Science Society, St. Louis, MO.

    Google Scholar 

  • Teuber, L.R., S. Mueller, J.R. Hagler, and A.E. Van Deynze. 2011. Gene flow in commercial alfalfa fields and implications to isolation and seed certification. In The science of gene flow in agriculture and its role in co-existence, Washington, DC, University of California.

    Google Scholar 

  • Thompson, C.J., B.J.P. Thompson, P.K. Ades, R. Cousens, P. Garnier-Gere, K. Landman, E. Newbigin, and M.A. Burgman. 2003. Model-based analysis of the likelihood of gene introgression from genetically modified crops into wild relatives. Ecological Modeling 162(3): 199–209.

    Article  Google Scholar 

  • Twell, D. 1995. Diphtheria toxin-mediated cell ablation in developing pollen: Vegetative Cell ablation blocks generative cell migration. Protoplasma 187(1–4): 144–154.

    Article  Google Scholar 

  • Uk, K., P. Seok, Y. Park, and Y. Jin. 1998. Pollen ablation of transgenic tobacco plants by expression of the diphtheria toxin a-chain gene under the control of a putative pectin esterase promoter from Chinese cabbage. Molecular Cell 30: 310–317.

    Google Scholar 

  • USDA. 2012. Animal and plant health inspection service, biotechnology regulatory service. Biotechnology permits, notifications, and petitions. http://www.aphis.usda.gov/biotechnology/brs_main.shtml.

  • USDA Biotechnology Regulatory Service. 2012. Petitions for nonregulated status granted or pending by Aphis:08-338-01p. http://www.aphis.usda.gov/biotechnology/not_reg.html.

  • Van Acker, R., A. Szumgalski, and L. Friesen. 2007. The potential benefits, risks and costs of genetic use restriction technologies. Canadian Journal of Plant Science 87: 753–762.

    Article  Google Scholar 

  • Van Deynze, A.E., D.H. Putnam, S. Orloff, T. Lanini, M. Canevari, R. Vargas, et al. 2004. Roundup ready alfalfa—An emerging technology. Oakland: University of California Division of Agriculture and Natural Resources. Publication 8145. http://anrcatalog.ucdavis.edu.

  • Van Deynze, A., F.J. Sundstrom, and K. Bradford. 2005. Pollen-mediated gene flow in California cotton depends on pollinator activity. Crop Science 45: 1565–1570.

    Article  Google Scholar 

  • Van Deynze, A., S. Fitzpatrick, B. Hammon, M. McCaslin, D.H. Putnam, L. Teuber et al. 2008. Gene flow in alfalfa: Biology, mitigation, and potential impact on production. Council for Agricultural and Science Technology, Ames, IA. P. 30. http://www.cast-science.org.

  • Van Deynze, A.E., R.B. Hutmacher, and K.J. Bradford. 2011. Gene flow between Gossypium hirsutum L. and Gossypium barbadense L. is asymmetric. Crop Science 51(1): 298–305.

    Article  Google Scholar 

  • Verma, D., and H. Daniell. 2007. Chloroplast vector systems for biotechnology applications. Plant Physiology 145(4): 1129–1143.

    Article  Google Scholar 

  • Warwick, S.I., A. Legere, M.J. Simard, and T. James. 2008. Do escaped transgenes persist in nature? The case of an herbicide resistance transgene in a weedy Brassica Rapa population. Molecular Ecology 17(5): 1387–1395.

    Article  Google Scholar 

  • Wei, H., R. Meilan, A. Brunner, J. Skinner, C. Ma, H. Gandhi, and S. Strauss. 2007. Field trial detects incomplete barstar attenuation of vegetative cytotoxicity in Populus trees containing a poplar leafy promoter: Barnase sterility transgene. Molecular Breeding 19(1): 69–85.

    Article  Google Scholar 

  • Weider, C., P. Stamp, N. Christov, A. Hüsken, X. Foueillassar, K.-H. Camp, and M. Munsch. 2009. Stability of cytoplasmic male sterility in maize under different environmental conditions. Crop Science 49(1): 77–84.

    Article  Google Scholar 

  • Willenborg, C.J., and R.C. Van Acker. 2008. The biology and ecology of hexaploid wheat (Triticum Aestivum L.) and its implications for trait confinement. Canadian Journal of Plant Science 88: 997–1013.

    Article  Google Scholar 

  • Zhang, C., K.H. Norris-Caneda, W.H. Rottmann, J.E. Gulledge, S. Chang, B.Y.-H. Kwan et al. 2012. Control of pollen-mediated gene flow in transgenic trees. Plant Physiology 159: 1319–1334. doi: 10.1104/pp.112.197228.

    Article  Google Scholar 

  • Zhou X, Jacobs TB, Xue LJ, Harding SA, Tsai CJ. 2015. Exploiting SNPs for biallelic CRISPR mutations in the outcrossing woody perennial Populus reveals 4-coumarate: CoA ligase specificity and redundancy. New Phytol 208:298–301. http://dx.doi.org/10.1111/nph.13470.

    Google Scholar 

Download references

Acknowledgments

Development of this report was supported by United States Department of Agriculture - National Institute of Food and Agriculture (USDA-NIFA) agreements 2010-33522-21774 (supplement) and 2011-37622-30724. Any opinions, findings, conclusions, or recommendations expressed in this report are those of the author(s) and do not necessarily reflect the view of the USDA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Allen Van Deynze .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Van Deynze, A. et al. (2016). The Science of Gene Flow in Agriculture and Its Role in Coexistence. In: Kalaitzandonakes, N., Phillips, P., Wesseler, J., Smyth, S. (eds) The Coexistence of Genetically Modified, Organic and Conventional Foods. Natural Resource Management and Policy, vol 49. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3727-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3727-1_2

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-3725-7

  • Online ISBN: 978-1-4939-3727-1

  • eBook Packages: Economics and FinanceEconomics and Finance (R0)

Publish with us

Policies and ethics