Skip to main content

The Role of Genes and Development in the Evolution of the Primate Hand

  • Chapter
  • First Online:
The Evolution of the Primate Hand

Part of the book series: Developments in Primatology: Progress and Prospects ((DIPR))

Abstract

Primate hands are morphologically and functionally diverse. Morphological diversity is the product of variation in the developmental programs of the forelimb and hand, both among individuals within a species, and across species. In this chapter, I review the cell and molecular processes that regulate vertebrate hand development, from early embryonic patterning to postnatal growth of the musculoskeletal, neurovascular and integumentary systems. I also provide an overview of how these highly conserved developmental processes can be modulated, through changes in gene regulatory elements, to produce selectable phenotypic variation among individuals. Finally, I discuss how these developmental processes can constrain, or facilitate, the evolution of the primate hand in response to selection, through their effects on the magnitude and directionality of phenotypic variation within the hand, and phenotypic covariation between the hand and other parts of the body.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agarwal P, Wylie JN, Galceran J, Arkhitko O, Li CL, Deng CX, Grosschedl R, Bruneau BG (2003) Tbx5 is essential for forelimb bud initiation following patterning of the limb field in the mouse embryo. Development 130:623–633

    Article  CAS  PubMed  Google Scholar 

  • Arques CG, Doohan R, Sharpe J, Torres M (2007) Cell tracing reveals a dorsoventral lineage restriction plane in the mouse limb bud mesenchyme. Development 134:3713–3722

    Article  CAS  PubMed  Google Scholar 

  • Arthur W (2004) The effect of development on the direction of evolution: toward a twenty-first century consensus. Evol Dev 6:282–288

    Article  PubMed  Google Scholar 

  • Atchley W, Hall B (1991) A model for development and evolution of complex morphological structures. Biol Rev Camb Philos Soc 66:101–157

    Article  CAS  PubMed  Google Scholar 

  • Aversi-Ferreira TA, Diogo R, Potau JM, Bello G, Pastor JF, Aziz MA (2010) Comparative anatomical study of the forearm extensor muscles of Cebus libidinosus (Rylands et al., 2000; Primates, Cebidae), modern humans, and other primates, with comments on primate evolution, phylogeny, and manipulatory behavior. Anat Rec 293:2056–2070

    Article  CAS  Google Scholar 

  • Ballock RT, O’Keefe RJ (2003) The biology of the growth plate. J Bone Joint Surg Am 85:715–726

    PubMed  Google Scholar 

  • Bernstein RM, Leigh SR, Donovan SM, Monaco MH (2007) Hormones and body size evolution in papionin primates. Am J Phys Anthropol 132:247–260

    Article  PubMed  Google Scholar 

  • Bolter DR, Zihlman AL (2012) Skeletal development in Pan paniscus with comparisons to Pan troglodytes. Am J Phys Anthropol 147:629–636

    Article  PubMed  Google Scholar 

  • Brohmann H, Jagla K, Birchmeier C (2000) The role of Lbx1 in migration of muscle precursor cells. Development 127:437–445

    CAS  PubMed  Google Scholar 

  • Buckingham M, Bajard L, Chang T, Daubas P, Hadchouel J, Meilhac S, Montarras D, Rocancourt D, Relaix F (2003) The formation of skeletal muscle: from somite to limb. J Anat 202:59–68

    Article  PubMed  PubMed Central  Google Scholar 

  • Buxton P, Edwards C, Archer C, Francis-West P (2001) Growth/differentiation factor-5 (GDF-5) and skeletal development. J Bone Joint Surg Am 83(Suppl 1):s23–s30

    PubMed  Google Scholar 

  • Capdevila J, Izpisua Belmonte J (2001) Patterning mechanisms controlling vertebrate limb development. Annu Rev Cell Dev Biol 17:87–132

    Article  CAS  PubMed  Google Scholar 

  • Carroll RL (1988) Vertebrate paleontology and evolution. W.H. Freeman, New York

    Google Scholar 

  • Carroll SB (2005) Endless forms most beautiful: the new science of Evo Devo and the making of the animal kingdom. Norton, New York

    Google Scholar 

  • Carroll SB (2008) Evo-devo and an expanding evolutionary synthesis: a genetic theory of morphological evolution. Cell 134:25–36

    Article  CAS  PubMed  Google Scholar 

  • Carroll SB, Prud’homme B, Gompel N (2008) Regulating evolution. Sci Am 298:60–67

    Article  PubMed  Google Scholar 

  • Chevallier A, Kieny M, Mauger A (1977) Limb-somite relationship: origin of limb musculature. J Embryol Exp Morphol 41:245–258

    CAS  PubMed  Google Scholar 

  • Cheverud JM (1996) Developmental integration and the evolution of pleiotropy. Am Zool 36:44–50

    Article  Google Scholar 

  • Cooper KL, Hu JKH, ten Berge D, Fernandez-Teran M, Ros MA, Tabin CJ (2011) Initiation of proximal-distal patterning in the vertebrate limb by signals and growth. Science 332:1083–1086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cretekos CJ, Wang Y, Green ED, Martin JF, NISC Comparative Sequencing Program, Rasweiler JJ, Behringer RR (2008) Regulatory divergence modifies limb length between mammals. Genes Dev 22:141–151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Darwin C (1859) On the origin of species by means of natural selection. J. Murray, London

    Google Scholar 

  • Davis AP, Witte DP, Hsiehli HM, Potter SS, Capecchi MR (1995) Absence of radius and ulna in mice lacking Hoxa-11 and Hoxd-11. Nature 375:791–795

    Article  CAS  PubMed  Google Scholar 

  • DeLaurier A, Schweitzer R, Logan M (2006) Pitx1 determines the morphology of muscle, tendon, and bones of the hindlimb. Dev Biol 299:22–34

    Article  CAS  PubMed  Google Scholar 

  • Delpretti S, Zakany J, Duboule D (2012) A function for all posterior Hoxd genes during digit development? Dev Dyn 241:792–802

    Article  CAS  PubMed  Google Scholar 

  • Diogo R, Wood B (2011) Soft-tissue anatomy of the primates: phylogenetic analyses based on the muscles of the head, neck, pectoral region and upper limb, with notes on the evolution of these muscles. J Anat 219:273–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duboc V, Logan MPO (2011a) Pitx1 is necessary for normal initiation of hindlimb outgrowth through regulation of Tbx4 expression and shapes hindlimb morphologies via targeted growth control. Development 138:5301–5309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duboc V, Logan MPO (2011b) Regulation of limb bud initiation and limb-type morphology. Dev Dyn 240:1017–1027

    Article  CAS  PubMed  Google Scholar 

  • Duboule D (2002) Developmental biology: making progress with limb models. Nature 418:492–493

    Article  CAS  PubMed  Google Scholar 

  • Ducy P, Zhang R, Geoffroy V, Ridall AL, Karsenty G (1997) Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation. Cell 89:747–754

    Article  CAS  PubMed  Google Scholar 

  • Dudley AT, Ros MA, Tabin CJ (2002) A re-examination of proximodistal patterning during vertebrate limb development. Nature 418:539–544

    Article  CAS  PubMed  Google Scholar 

  • Duprez D (2002) Signals regulating muscle formation in the limb during embryonic development. Int J Dev Biol 46:915–925

    CAS  PubMed  Google Scholar 

  • Duprez D, Bell EJD, Richardson MK, Archer CW, Wolpert L, Brickell PM, Francis-West PH (1996) Overexpression of BMP-2 and BMP-4 alters the size and shape of developing skeletal elements in the chick limb. Mech Dev 57:145–157

    Article  CAS  PubMed  Google Scholar 

  • Eichmann A, Makinen T, Alitalo K (2005) Neural guidance molecules regulate vascular remodeling and vessel navigation. Genes Dev 19:1013–1021

    Article  CAS  PubMed  Google Scholar 

  • Eshkar-Oren I, Viukov SV, Salameh S, Krief S, Oh CD, Akiyama H, Gerber HP, Ferrara N, Zelzer E (2009) The forming limb skeleton serves as a signaling center for limb vasculature patterning via regulation of Vegf. Development 136:1263–1272

    Article  CAS  PubMed  Google Scholar 

  • Fleagle JG (1974) Dynamics of a brachiating siamang [Hylobates (Symphalangus) syndactylus]. Nature 248:259–260

    Article  CAS  PubMed  Google Scholar 

  • Grotewold L, Plum M, Dildrop R, Peters T, Ruther U (2001) Bambi is coexpressed with Bmp-4 during mouse embryogenesis. Mech Dev 100:327–330

    Article  CAS  PubMed  Google Scholar 

  • Hall BK (1995) Homology and embryonic development. Evol Biol 28:1–37

    CAS  Google Scholar 

  • Hallgrimsson B, Jamniczky H, Young NM, Rolian C, Parsons TE, Boughner JC, Marcucio RS (2009) Deciphering the palimpsest: studying the relationship between morphological integration and phenotypic covariation. Evol Biol 36:355–376

    Article  PubMed  PubMed Central  Google Scholar 

  • Hamrick MW (2003) Evolution and development of mammalian limb integumentary structures. J Exp Zool B 298B:152–163

    Article  Google Scholar 

  • Hamrick MW (2012) The developmental origins of mosaic evolution in the primate limb skeleton. Evol Biol 39:447–455

    Article  Google Scholar 

  • Harfe BD, Scherz PJ, Nissim S, Tian F, McMahon AP, Tabin CJ (2004) Evidence for an expansion-based temporal Shh gradient in specifying vertebrate digit identities. Cell 118:517–528

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto K, Yokouchi Y, Yamamoto M, Kuroiwa A (1999) Distinct signaling molecules control Hoxa-11 and Hoxa-13 expression in the muscle precursor and mesenchyme of the chick limb bud. Development 126:2771–2783

    CAS  PubMed  Google Scholar 

  • Hasson P (2011) “Soft” tissue patterning: muscles and tendons of the limb take their form. Dev Dyn 240:1100–1107

    Article  PubMed  Google Scholar 

  • Hendrikse JL, Parsons TE, Hallgrimsson B (2007) Evolvability as the proper focus of evolutionary developmental biology. Evol Dev 9:393–401

    Article  PubMed  Google Scholar 

  • Hoekstra HE, Coyne JA (2007) The locus of evolution: evo devo and the genetics of adaptation. Evolution 61:995–1016

    Article  PubMed  Google Scholar 

  • Hoffmann JN, Montag AG, Dominy NJ (2004) Meissner corpuscles and somatosensory acuity: the prehensile appendages of primates and elephants. Anat Rec A 281A:1138–1147

    Article  Google Scholar 

  • Holmberg J, Ingner G, Johansson C, Leander P, Hjalt TA (2008) PITX2 gain-of-function induced defects in mouse forelimb development. BMC Dev Biol 8:25

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hurle JM, Ros MA, Ganan Y, Macias D, Critchlow M, Hinchliffe JR (1990) Experimental analysis of the role of ECM in the patterning of the distal tendons of the developing limb bud. Cell Differ Dev 30:97–108

    Article  CAS  PubMed  Google Scholar 

  • Ikeda A, Matsumoto S, Tanaka H (1988) Comparative anatomical study of arteriographs of the hand of primates. Deep palmar arterial arches and their correlating arteries in Cercopithecidae, Pongidae and Hominidae. Acta Anat 133:30–34

    Article  CAS  PubMed  Google Scholar 

  • Inouye SE (1992) Ontogeny and allometry of African ape manual rays. J Hum Evol 23:107–138

    Article  Google Scholar 

  • Jamniczky HA, Boughner JC, Rolian C, Gonzalez PN, Powell CD, Schmidt EJ, Parsons TE, Bookstein FL, Hallgrimsson B (2010) Rediscovering Waddington in the post-genomic age. Bioessays 32:553–558

    Article  PubMed  Google Scholar 

  • Jones FC, Grabherr MG, Chan YF, Russell P, Mauceli E, Johnson J, Swofford R, Pirun M, Zody MC, White S, Birney E, Searle S, Schmutz J, Grimwood J, Dickson MC, Myers RM, Miller CT, Summers BR, Knecht AK, Brady SD, Zhang HL, Pollen AA, Howes T, Amemiya C et al (2012) The genomic basis of adaptive evolution in threespine sticklebacks. Nature 484:55–61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jungers WL (1984) Aspects of size and scaling in primate biology with special reference to the locomotor skeleton. Yearb Phys Anthropol 27:73–97

    Article  Google Scholar 

  • Kardon G (1998) Muscle and tendon morphogenesis in the avian hind limb. Development 125:4019–4032

    CAS  PubMed  Google Scholar 

  • Kardon G, Campbell JK, Tabin CJ (2002) Local extrinsic signals determine muscle and endothelial cell fate and patterning in the vertebrate limb. Dev Cell 3:533–545

    Article  CAS  PubMed  Google Scholar 

  • Karsenty G, Kronenberg HM, Settembre C (2009) Genetic control of bone formation. Annu Rev Cell Dev Biol 25:629–648

    Article  CAS  PubMed  Google Scholar 

  • Kavanagh E, Abiri M, Bland YS, Ashhurst DE (2002) Division and death of cells in developing synovial joints and long bones. Cell Biol Int 26:679–688

    Article  PubMed  Google Scholar 

  • Kiefer JC (2010) Primer and interviews: molecular mechanisms of morphological evolution. Dev Dyn 239:3497–3505

    Article  PubMed  PubMed Central  Google Scholar 

  • Kimmel RA, Turnbull DH, Blanquet V, Wurst W, Loomis C, Joyner AL (2000) Two lineage boundaries coordinate vertebrate apical ectodermal ridge formation. Genes Dev 14:1377–1389

    CAS  PubMed  PubMed Central  Google Scholar 

  • King M, Arnold JS, Shanske A, Morrow BE (2006) T-genes and limb bud development. Am J Med Genet A 140A:1407–1413

    Article  CAS  Google Scholar 

  • Kirkwood JK, Kember NF (1993) Comparative quantitative histology of mammalian growth plates. J Zool 231:543–562

    Article  Google Scholar 

  • Kraus P, Fraidenraich D, Loomis CA (2001) Some distal limb structures develop in mice lacking Sonic hedgehog signaling. Mech Dev 100:45–58

    Article  CAS  PubMed  Google Scholar 

  • Landmesser LT (2001) The acquisition of motoneuron subtype identity and motor circuit formation. Int J Dev Neurosci 19:175–182

    Article  CAS  PubMed  Google Scholar 

  • Lemelin P, Jungers WL (2007) Body size and scaling of the hands and feet of prosimian primates. Am J Phys Anthropol 133:828–840

    Article  PubMed  Google Scholar 

  • Li Y, Qiu Q, Watson SS, Schweitzer R, Johnson RL (2010) Uncoupling skeletal and connective tissue patterning: conditional deletion in cartilage progenitors reveals cell- autonomous requirements for Lmx1b in dorsal-ventral limb patterning. Development 137:1181–1188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mackenzie F, Ruhrberg C (2012) Diverse roles for VEGF-A in the nervous system. Development 139:1371–1380

    Article  CAS  PubMed  Google Scholar 

  • Mahr S, Burmester GR, Hilke D, Göbel U, Grützkau A, Häupl T, Hauschild M, Koczan D, Krenn V, Neidel J, Perka C, Radbruch A, Thiesen HJ, Müller B (2006) Cis- and trans-acting gene regulation is associated with osteoarthritis. Am J Hum Genet 78:793–803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maiolino S, Boyer DM, Rosenberger A (2011) Morphological correlates of the grooming claw in distal phalanges of platyrrhines and other primates: a preliminary study. Anat Rec 294:1975–1990

    Article  Google Scholar 

  • Mankoo BS, Collins NS, Ashby P, Grigorieva E, Pevny LH, Candia A, Wright CVE, Rigby PWJ, Pachnis V (1999) Mox2 is a component of the genetic hierarchy controlling limb muscle development. Nature 400:69–73

    Article  CAS  PubMed  Google Scholar 

  • Margulies EH, Kardia SLR, Innis JW (2001) A comparative molecular analysis of developing mouse forelimbs and hindlimbs using Serial Analysis of Gene Expression (SAGE). Genome Res 11:1686–1698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin A, Maher S, Summerhurst K, Davidson D, Murphy P (2012) Differential deployment of paralogous Wnt genes in the mouse and chick embryo during development. Evol Dev 14:178–195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mayr E (1961) Cause and effect in biology. Science 134:1501–1506

    Article  CAS  PubMed  Google Scholar 

  • Minguillon C, Del Buono J, Logan MP (2005) Tbx5 and Tbx4 are not sufficient to determine limb-specific morphologies but have common roles in initiating limb outgrowth. Dev Cell 8:75–84

    Article  CAS  PubMed  Google Scholar 

  • Montavon T, Le Garrec JF, Kerszberg M, Duboule D (2008) Modeling Hox gene regulation in digits: reverse collinearity and the molecular origin of thumbness. Genes Dev 22:346–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naiche LA, Papaioannou VE (2003) Loss of Tbx4 blocks hindlimb development and affects vascularization and fusion of the allantois. Development 130:2681–2693

    Article  CAS  PubMed  Google Scholar 

  • Noro M, Yuguchi H, Sato T, Tsuihiji T, Yonei-Tamura S, Yokoyama H, Wakamatsu Y, Tamura K (2011) Role of paraxial mesoderm in limb/flank regionalization of the trunk lateral plate. Dev Dyn 240:1639–1649

    Article  PubMed  Google Scholar 

  • Ohuchi H, Nakagawa T, Yamamoto A, Araga A, Ohata T, Ishimaru Y, Yoshioka H, Kuwana T, Nohno T, Yamasaki M, Itoh N, Noji S (1997) The mesenchymal factor, FGF10, initiates and maintains the outgrowth of the chick limb bud through interaction with FGF8, an apical ectodermal factor. Development 124:2235–2244

    CAS  PubMed  Google Scholar 

  • Parr BA, McMahon AP (1995) Dorsalizing signal Wnt-7a required for normal polarity of D-V and A-P axes of mouse limb. Nature 374:350–353

    Article  CAS  PubMed  Google Scholar 

  • Pascoal S, Carvalho CR, Rodriguez-León J, Delfini MC, Duprez D, Thorsteindóttir S, Palmeirim I (2007) A molecular clock operates during chick autopod proximal-distal outgrowth. J Mol Biol 368:303–309

    Article  CAS  PubMed  Google Scholar 

  • Patel BA (2010) The interplay between speed, kinetics, and hand postures during primate terrestrial locomotion. Am J Phys Anthropol 141:222–234

    PubMed  Google Scholar 

  • Pavlicev M, Norgard EA, Fawcett GL, Cheverud JM (2011) Evolution of pleiotropy: epistatic interaction pattern supports a mechanistic model underlying variation in genotype-phenotype map. J Exp Zool B 316B:371–385

    Article  Google Scholar 

  • Prabhakar S, Noonan JP, Paabo S, Rubin EM (2006) Accelerated evolution of conserved noncoding sequences in humans. Science 314:786

    Article  CAS  PubMed  Google Scholar 

  • Prabhakar S, Visel A, Akiyama JA, Shoukry M, Lewis KD, Holt A, Plajzer-Frick I, Morrison H, FitzPatrick DR, Afzal V, Pennacchio LA, Rubin EM, Noonan JP (2008) Human-specific gain of function in a developmental enhancer. Science 321:1346–1350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Renehan WE, Munger BL (1990) The development of Meissner corpuscles in primate digital skin. Brain Res Dev Brain Res 51:35–44

    Article  CAS  PubMed  Google Scholar 

  • Reno PL, McCollum MA, Cohn MJ, Meindl RS, Hamrick M, Lovejoy CO (2008) Patterns of correlation and covariation of anthropoid distal forelimb segments correspond to Hoxd expression territories. J Exp Zool B 310B:240–258

    Article  Google Scholar 

  • Richmond BG (2007) Biomechanics of phalangeal curvature. J Hum Evol 53:678–690

    Article  PubMed  Google Scholar 

  • Rolian C (2009) Integration and evolvability in primate hands and feet. Evol Biol 36:100–117

    Article  Google Scholar 

  • Rolian C (2014) Genes, development, and evolvability in primate evolution. Evol Anthropol 23:93–104

    Article  PubMed  Google Scholar 

  • Rolian C, Lieberman DE, Hallgrimsson B (2010) The coevolution of human hands and feet. Evolution 64:1558–1568

    Article  PubMed  Google Scholar 

  • Rolian C, Willmore KE (2009) Morphological integration at 50: patterns and processes of integration in biological anthropology. Evol Biol 36:1–4

    Article  Google Scholar 

  • Rosello-Diez A, Ros MA, Torres M (2011) Diffusible signals, not autonomous mechanisms, determine the main proximodistal limb subdivision. Science 332:1086–1088

    Article  CAS  PubMed  Google Scholar 

  • Sadler TW, Langman J (2009) Langman’s medical embryology, 11th edn. Lippincott William & Wilkins, Baltimore

    Google Scholar 

  • Sanger TJ, Norgard EA, Pletscher LS, Bevilacqua M, Brooks VR, Sandell LJ, Cheverud JM (2011) Developmental and genetic origins of murine long bone length variation. J Exp Zool B 316B:146–161

    Article  Google Scholar 

  • Sato TN, Loughna S, Davis EC, Visconti RP, Richardson CD (2002) Selective functions of angiopoietins and vascular endothelial growth factor on blood vessels: the concept of “vascular domain”. Cold Spring Harb Symp Quant Biol 67:171–180

    Article  CAS  PubMed  Google Scholar 

  • Saxod R (1996) Ontogeny of the cutaneous sensory organs. Microsc Res Tech 34:313–333

    Article  CAS  PubMed  Google Scholar 

  • Schoenwolf GC, Bleyl SB, Brauer PR, Francis-West PH (2009) Larsen’s Human Embryology, 4th edn. Churchill Livingstone/Elsevier, Philadelphia

    Google Scholar 

  • Schweitzer R, Zelzer E, Volk T (2010) Connecting muscles to tendons: tendons and musculoskeletal development in flies and vertebrates. Development 137:2807–2817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sholtis SJ, Noonan JP (2010) Gene regulation and the origins of human biological uniqueness. Trends Genet 26:110–118

    Article  CAS  PubMed  Google Scholar 

  • Shou SM, Scott V, Reed C, Hitzemann R, Stadler HS (2005) Transcriptome analysis of the murine forelimb and hindlimb autopod. Dev Dyn 234:74–89

    Article  CAS  PubMed  Google Scholar 

  • Shubin N, Tabin C, Carroll S (2009) Deep homology and the origins of evolutionary novelty. Nature 457:818–823

    Article  CAS  PubMed  Google Scholar 

  • Smith RJ, Jungers WL (1997) Body mass in comparative primatology. J Hum Evol 32:523–559

    Article  CAS  PubMed  Google Scholar 

  • Stern DL, Orgogozo V (2008) The loci of evolution: how predictable is genetic evolution? Evolution 62:2155–2177

    Article  PubMed  PubMed Central  Google Scholar 

  • Straus WL (1930) Parallelism in the interosseous muscles of primate hand and foot. Anat Rec 45:279 (abstract)

    Google Scholar 

  • Straus WL (1942) Rudimentary digits in primates. Q Rev Biol 17:228–243

    Article  Google Scholar 

  • Stricker S, Mundlos S (2011) Mechanisms of digit formation: human malformation syndromes tell the story. Dev Dyn 240:990–1004

    Article  PubMed  Google Scholar 

  • Summerbell D (1977) Reduction of rate of outgrowth, cell density, and cell-division following removal of apical ectodermal ridge of chick limb-bud. J Embryol Exp Morphol 40:1–21

    Google Scholar 

  • Sun X, Mariani FV, Martin GR (2002) Functions of FGF signalling from the apical ectodermal ridge in limb development. Nature 418:501–508

    Article  CAS  PubMed  Google Scholar 

  • Sutter NB, Bustamante CD, Chase K, Gray MM, Zhao K, Zhu L, Padhukasahasram B, Karlins E, Davis S, Jones PG, Quignon P, Johnson GS, Parker HG, Fretwell N, Mosher DS, Lawler DF, Satyaraj E, Nordborg M, Lark KG, Wayne RK, Ostrander EA (2007) A single IGF1 allele is a major determinant of small size in dogs. Science 316:112–115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tabin C, Wolpert L (2007) Rethinking the proximodistal axis of the vertebrate limb in the molecular era. Genes Dev 21:1433–1442

    Article  CAS  PubMed  Google Scholar 

  • Taher L, Collette NM, Murugesh D, Maxwell E, Ovcharenko I, Loots GG (2011) Global gene expression analysis of murine limb development. PLoS One 6:e28358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tickle C, Wolpert L (2002) The progress zone—alive or dead? Nat Cell Biol 4:E216–E217

    Article  CAS  PubMed  Google Scholar 

  • Tozer S, Bonnin MA, Relaix F, Di Savino S, Garcia-Villalba P, Coumailleau P, Duprez D (2007) Involvement of vessels and PDGFB in muscle splitting during chick limb development. Development 134:2579–2591

    Article  CAS  PubMed  Google Scholar 

  • van der Eerden B, Karperien M, Wit J (2003) Systemic and local regulation of the growth plate. Endocr Rev 24:782–801

    Article  PubMed  CAS  Google Scholar 

  • Vargesson N, Kostakopoulou K, Drossopoulou G, Papageorgiou S, Tickle C (2001) Characterisation of Hoxa gene expression in the chick limb bud in response to FGF. Dev Dyn 220:87–90

    Article  CAS  PubMed  Google Scholar 

  • Vega JA, Garcia-Suarez O, Montano JA, Pardo B, Cobo JM (2009) The Meissner and Pacinian sensory corpuscles revisited new data from the last decade. Microsc Res Tech 72:299–309

    Article  PubMed  Google Scholar 

  • Vieira JM, Schwarz Q, Ruhrberg C (2007) Selective requirements for nrp1 ligands during neurovascular patterning. Development 134:1833–1843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Villavicencio-Lorini P, Kuss P, Friedrich J, Haupt J, Farooq M, Turkmen S, Duboule D, Hecht J, Mundlos S (2010) Homeobox genes d11-d13 and a13 control mouse autopod cortical bone and joint formation. J Clin Invest 120:1994–2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wagner GP (1996) Homologues, natural kinds and the evolution of modularity. Am Zool 36:36–43

    Article  Google Scholar 

  • Wagner GP, Pavlicev M, Cheverud JM (2007) The road to modularity. Nat Rev Genet 8:921–931

    Article  CAS  PubMed  Google Scholar 

  • Wagner GP, Vargas AO (2008) On the nature of thumbs. Genome Biol 9:213

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wilsman N, Farnum C, Leiferman E, Fry M, Barreto C (1996) Differential growth by growth plates as a function of multiple parameters of chondrocytic kinetics. J Orthop Res 14:927–936

    Article  CAS  PubMed  Google Scholar 

  • Woltering JM, Duboule D (2010) The origin of digits: expression patterns versus regulatory mechanisms. Dev Cell 18:526–532

    Article  CAS  PubMed  Google Scholar 

  • Wray GA (2007) The evolutionary significance of cis-regulatory mutations. Nat Rev Genet 8:206–216

    Article  CAS  PubMed  Google Scholar 

  • Yokouchi Y, Sasaki H, Kuroiwa A (1991) Homeobox gene-expression correlated with the bifurcation process of limb cartilage development. Nature 353:443–445

    Article  CAS  PubMed  Google Scholar 

  • Young NM, Hallgrimsson B (2005) Serial homology and the evolution of mammalian limb covariation structure. Evolution 59:2691–2704

    Article  PubMed  Google Scholar 

  • Zakany J, Duboule D (1999) Hox genes in digit development and evolution. Cell Tissue Res 296:19–25

    Article  CAS  PubMed  Google Scholar 

  • Zakany J, Duboule D (2007) The role of Hox genes during vertebrate limb development. Curr Opin Genet Dev 17:359–366

    Article  CAS  PubMed  Google Scholar 

  • Zakany J, Fromental-Ramain C, Warot X, Duboule D (1997) Regulation of number and size of digits by posterior Hox genes: a dose-dependent mechanism with potential evolutionary implications. Proc Natl Acad Sci U S A 94:13695–13700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeller R, Lopez-Rios J, Zuniga A (2009) Vertebrate limb bud development: moving towards integrative analysis of organogenesis. Nat Rev Genet 10:845–858

    Article  CAS  PubMed  Google Scholar 

  • Zuzarte-Luis V, Hurle JM (2005) Programmed cell death in the embryonic vertebrate limb. Semin Cell Dev Biol 16:261–269

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Thank you to the editors for inviting me to participate in this volume, especially to Pierre Lemelin for sharing his strepsirrhine hand data. Heather Jamniczky and Benedikt Hallgrimsson provided comments on a draft of this chapter, and their input is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Campbell Rolian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rolian, C. (2016). The Role of Genes and Development in the Evolution of the Primate Hand. In: Kivell, T., Lemelin, P., Richmond, B., Schmitt, D. (eds) The Evolution of the Primate Hand. Developments in Primatology: Progress and Prospects. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3646-5_5

Download citation

Publish with us

Policies and ethics