Skip to main content

Mislocalization of Mitochondrial Intermembrane Space Proteins

  • Chapter
  • First Online:
Mitochondria and Cell Death

Part of the book series: Cell Death in Biology and Diseases ((CELLDEATH))

  • 1454 Accesses

Abstract

In this chapter, we describe the unique properties of the mitochondrial intermembrane space (IMS) and its role in apoptosis signalling. We delineate the current models of mitochondrial outer membrane permeabilization (MOMP) during apoptosis and highlight the role of single cell imaging studies in understanding the kinetics of this process. Finally, we will discuss the individual IMS proteins that are released during MOMP and their respective role in the initiation of caspase-dependent and caspase-independent apoptosis.

Author contributed equally with all other contributors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Apaf-1:

Apoptotic protease-activating factor 1

ATP:

Adenosine 5′-(tetrahydrogen triphosphate)

Bcl-2:

B-cell lymphoma-2

CARD:

Caspase recruitment domain

CASPASE:

Cysteinyl aspartate-specific proteinase

cFLIP:

Cellular FLICE-like inhibitory protein

CHX:

Cycloheximide

c-IAP1:

Cellular-inhibitor of apoptosis 1

c-IAP2:

Cellular-inhibitor of apoptosis 2

Cyt-c:

Cytochrome-c

dATP:

Deoxyadenosine 5′-(tetrahydrogen triphosphate)

DD:

Death domain

DED:

Death effector domin

DISC:

Death-inducing signaling complex

FADD:

Fas-associated protein with death domain

FasL:

Fas ligand

FITC:

Fluorescein isothiocyanate

FLIP:

FLICE-like inhibitory protein

GFP:

Green fluorescent protein

IAP:

Inhibitor of apoptosis protein

ICAD:

Inhibitor of caspase-activated DNase

IMS:

Intermembrane space

kDa:

Kilodaltons

MOMP:

Mitochondrial outer membrane permeabilization

PARP:

Poly(ADP-ribose) polymerase

siRNA:

Small interfering RNA

Smac:

Second mitochondria-derived activator of caspases

TNF-α:

Tumor necrosis factor-alpha

TNFR:

Tumor necrosis factor receptor

TRADD:

TNF receptor-associated death domain protein

TRAIL:

Tumor necrosis factor-related apoptosis-inducing ligand

XIAP:

x-Linked inhibitor of apoptosis protein

YFP:

Yellow fluorescent protein

Z-VAD:

Benzyloxycarbonyl-Val-Ala-Asp(O-methyl)-fmk

References

  • Abou-Sleiman PM, Muqit MM, Wood NW (2006) Expanding insights of mitochondrial dysfunction in Parkinson’s disease. Nat Rev Neurosci 7:207–219

    Article  CAS  PubMed  Google Scholar 

  • Adrain C, Creagh EM, Martin SJ (2001) Apoptosis-associated release of Smac/DIABLO from mitochondria requires active caspases and is blocked by Bcl-2. EMBO J 20:6627–6636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Adrain C, Murphy BM, Martin SJ (2005) Molecular ordering of the caspase activation cascade initiated by the cytotoxic T lymphocyte/natural killer (CTL/NK) protease granzyme B. J Biol Chem 280:4663–4673

    Article  CAS  PubMed  Google Scholar 

  • Andreu-Fernandez V, Genoves A, Lee TH, Stellato M, Lucantoni F, Orzaez M, Mingarro I, Aguilar MI, Perez-Paya E (2014) Peptides derived from the transmembrane domain of Bcl-2 proteins as potential mitochondrial priming tools. ACS Chem Biol 9(8):1799–1811

    Article  CAS  PubMed  Google Scholar 

  • Arnoult D, Gaume B, Karbowski M, Sharpe JC, Cecconi F, Youle RJ (2003) Mitochondrial release of AIF and EndoG requires caspase activation downstream of Bax/Bak-mediated permeabilization. EMBO J 22:4385–4399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arnoult D, Parone P, Martinou JC, Antonsson B, Estaquier J, Ameisen JC (2002) Mitochondrial release of apoptosis-inducing factor occurs downstream of cytochrome c release in response to several proapoptotic stimuli. J Cell Biol 159:923–929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Artus C, Boujrad H, Bouharrour A, Brunelle MN, Hoos S, Yuste VJ, Lenormand P, Rousselle JC, Namane A, England P, Lorenzo HK, Susin SA (2010) AIF promotes chromatinolysis and caspase-independent programmed necrosis by interacting with histone H2AX. EMBO J 29:1585–1599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Austin S, St-Pierre J (2012) PGC1alpha and mitochondrial metabolism--emerging concepts and relevance in ageing and neurodegenerative disorders. J Cell Sci 125:4963–4971

    Article  CAS  PubMed  Google Scholar 

  • Baritaud M, Boujrad H, Lorenzo HK, Krantic S, Susin SA (2010) Histone H2AX: The missing link in AIF-mediated caspase-independent programmed necrosis. Cell Cycle 9:3166–3173

    Article  CAS  PubMed  Google Scholar 

  • Barry M, Heibein JA, Pinkoski MJ, Lee SF, Moyer RW, Green DR, Bleackley RC (2000) Granzyme B short-circuits the need for caspase 8 activity during granule-mediated cytotoxic T-lymphocyte killing by directly cleaving Bid. Mol Cell Biol 20:3781–3794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bartke T, Pohl C, Pyrowolakis G, Jentsch S (2004) Dual role of BRUCE as an antiapoptotic IAP and a chimeric E2/E3 ubiquitin ligase. Mol Cell 14:801–811

    Article  CAS  PubMed  Google Scholar 

  • Bhola PD, Mattheyses AL, Simon SM (2009) Spatial and temporal dynamics of mitochondrial membrane permeability waves during apoptosis. Biophys J 97:2222–2231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown D, Yu BD, Joza N, Benit P, Meneses J, Firpo M, Rustin P, Penninger JM, Martin GR (2006) Loss of Aif function causes cell death in the mouse embryo, but the temporal progression of patterning is normal. Proc Natl Acad Sci U S A 103:9918–9923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buttner S, Habernig L, Broeskamp F, Ruli D, Vogtle FN, Vlachos M, Macchi F, Kuttner V, Carmona-Gutierrez D, Eisenberg T, Ring J, Markaki M, Taskin AA, Benke S, Ruckenstuhl C, Braun R, Van den Haute C, Bammens T, van der Perren A, Frohlich KU, Winderickx J, Kroemer G, Baekelandt V, Tavernarakis N, Kovacs GG, Dengjel J, Meisinger C, Sigrist SJ, Madeo F (2013) Endonuclease G mediates alpha-synuclein cytotoxicity during Parkinson’s disease. EMBO J 32:3041–3054

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Certo M, Del Gaizo MV, Nishino M, Wei G, Korsmeyer S, Armstrong SA, Letai A (2006) Mitochondria primed by death signals determine cellular addiction to antiapoptotic BCL-2 family members. Cancer Cell 9:351–365

    Article  CAS  PubMed  Google Scholar 

  • Chai J, Du C, Wu J-W, Kyin S, Wang X, Shi Y (2000) Structural and biochemical basis of apoptotic activation by Smac/DIABLO. Nature 406:855

    Article  CAS  PubMed  Google Scholar 

  • Chandra D, Bratton SB, Person MD, Tian Y, Martin AG, Ayres M, Fearnhead HO, Gandhi V, Tang DG (2006) Intracellular nucleotides act as critical prosurvival factors by binding to cytochrome c and inhibiting apoptosome. Cell 125:1333–1346

    Article  CAS  PubMed  Google Scholar 

  • Chao DT, Korsmeyer SJ (1998) BCL-2 family: regulators of cell death. Annu Rev Immunol 16:395–419

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Willis SN, Wei A, Smith BJ, Fletcher JI, Hinds MG, Colman PM, Day CL, Adams JM, Huang DC (2005) Differential targeting of prosurvival Bcl-2 proteins by their BH3-only ligands allows complementary apoptotic function. Mol Cell 17:393–403

    Article  CAS  PubMed  Google Scholar 

  • Cheng J, Zhu Y, He S, Lu Y, Chen J, Han B, Petrillo M, Wrzeszczynski KO, Yang S, Dai P, Zhai S, Han D, Zhang MQ, Li W, Liu X, Li H, Chen ZY, Yuan H (2011) Functional mutation of SMAC/DIABLO, encoding a mitochondrial proapoptotic protein, causes human progressive hearing loss DFNA64. Am J Hum Genet 89:56–66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheung EC, Joza N, Steenaart NA, McClellan KA, Neuspiel M, McNamara S, MacLaurin JG, Rippstein P, Park DS, Shore GC, McBride HM, Penninger JM, Slack RS (2006) Dissociating the dual roles of apoptosis-inducing factor in maintaining mitochondrial structure and apoptosis. EMBO J 25:4061–4073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cho BB, Toledo-Pereyra LH (2008) Caspase-independent programmed cell death following ischemic stroke. J Invest Surg 21:141–147

    Article  PubMed  Google Scholar 

  • Colbeau A, Nachbaur J, Vignais PM (1971) Enzymic characterization and lipid composition of rat liver subcellular membranes. Biochim Biophys Acta 249:462–492

    Article  CAS  PubMed  Google Scholar 

  • Colell A, Ricci J-E, Tait S, Milasta S, Maurer U, Bouchier-Hayes L, Fitzgerald P, Guio-Carrion A, Waterhouse NJ, Li CW, Mari B, Barbry P, Newmeyer DD, Beere HM, Green DR (2007) GAPDH and autophagy preserve survival after apoptotic cytochrome c release in the absence of caspase activation. Cell 129:983–997

    Article  CAS  PubMed  Google Scholar 

  • Colombini M (1979) A candidate for the permeability pathway of the outer mitochondrial membrane. Nature 279:643–645

    Article  CAS  PubMed  Google Scholar 

  • Colombini M (2012) VDAC structure, selectivity, and dynamics. Biochim Biophys Acta 1818:1457–1465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cortese JD, Voglino AL, Hackenbrock CR (1991) Ionic strength of the intermembrane space of intact mitochondria as estimated with fluorescein-BSA delivered by low pH fusion. J Cell Biol 113:1331–1340

    Article  CAS  PubMed  Google Scholar 

  • Cote J, Ruiz-Carrillo A (1993) Primers for mitochondrial DNA replication generated by endonuclease G. Science 261:765–769

    Article  CAS  PubMed  Google Scholar 

  • Crimi M, Esposti MD (2011) Apoptosis-induced changes in mitochondrial lipids. Biochim Biophys Acta 1813:551–557

    Article  CAS  PubMed  Google Scholar 

  • Cullen SP, Martin SJ (2008) Mechanisms of granule-dependent killing. Cell Death Differ 15:251–262

    Article  CAS  PubMed  Google Scholar 

  • Czabotar PE, Lessene G, Strasser A, Adams JM (2014) Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy. Nat Rev Mol Cell Biol 15:49–63

    Article  CAS  PubMed  Google Scholar 

  • de Kroon AI, Dolis D, Mayer A, Lill R, de Kruijff B (1997) Phospholipid composition of highly purified mitochondrial outer membranes of rat liver and Neurospora crassa. Is cardiolipin present in the mitochondrial outer membrane? Biochim Biophys Acta 1325:108–116

    Article  PubMed  Google Scholar 

  • Delettre C, Lenaers G, Griffoin JM, Gigarel N, Lorenzo C, Belenguer P, Pelloquin L, Grosgeorge J, Turc-Carel C, Perret E, Astarie-Dequeker C, Lasquellec L, Arnaud B, Ducommun B, Kaplan J, Hamel CP (2000) Nuclear gene OPA1, encoding a mitochondrial dynamin-related protein, is mutated in dominant optic atrophy. Nat Genet 26:207–210

    Article  CAS  PubMed  Google Scholar 

  • Deveraux QL, Roy N, Stennicke HR, Van Arsdale T, Zhou Q, Srinivasula SM, Alnemri ES, Salvesen GS, Reed JC (1998) IAPs block apoptotic events induced by caspase-8 and cytochrome c by direct inhibition of distinct caspases. EMBO J 17:2215–2223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dewson G, Kluck RM (2009) Mechanisms by which Bak and Bax permeabilise mitochondria during apoptosis. J Cell Sci 122:2801–2808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Du C, Fang M, Li Y, Li L, Wang X (2000) Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 102:33

    Article  CAS  PubMed  Google Scholar 

  • Düßmann H, Rehm M, Kögel D, Prehn JHM (2003) Outer mitochondrial membrane permeabilization during apoptosis triggers caspase-independent mitochondrial and caspase-dependent plasma membrane potential depolarization: a single-cell analysis. J Cell Sci 116:525–536

    Article  PubMed  CAS  Google Scholar 

  • Edlich F, Banerjee S, Suzuki M, Cleland MM, Arnoult D, Wang C, Neutzner A, Tjandra N, Youle RJ (2011) Bcl-x(L) retrotranslocates Bax from the mitochondria into the cytosol. Cell 145:104–116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferramosca A, Zara V (2013) Biogenesis of mitochondrial carrier proteins: molecular mechanisms of import into mitochondria. Biochim Biophys Acta 1833:494–502

    Article  CAS  PubMed  Google Scholar 

  • Finkel T (2011) Signal transduction by reactive oxygen species. J Cell Biol 194:7–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fischer M, Riemer J (2013) The mitochondrial disulfide relay system: roles in oxidative protein folding and beyond. Int J Cell Biol 2013:12

    Article  CAS  Google Scholar 

  • Flanagan L, Sebastia J, Delgado ME, Lennon JC, Rehm M (2011) Dimerization of Smac is crucial for its mitochondrial retention by XIAP subsequent to mitochondrial outer membrane permeabilization. Biochim Biophys Acta 1813:819–826

    Article  CAS  PubMed  Google Scholar 

  • Flanagan L, Sebastia J, Tuffy LP, Spring A, Lichawska A, Devocelle M, Prehn JHM, Rehm M (2010) XIAP impairs Smac release from the mitochondria during apoptosis. Cell Death Dis 1, e49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fletcher JI, Meusburger S, Hawkins CJ, Riglar DT, Lee EF, Fairlie WD, Huang DC, Adams JM (2008) Apoptosis is triggered when prosurvival Bcl-2 proteins cannot restrain Bax. Proc Natl Acad Sci U S A 105:18081–18087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frezza C, Cipolat S, Martins de Brito O, Micaroni M, Beznoussenko GV, Rudka T, Bartoli D, Polishuck RS, Danial NN, De Strooper B, Scorrano L (2006) OPA1 controls apoptotic cristae remodeling independently from mitochondrial fusion. Cell 126:177–189

    Article  CAS  PubMed  Google Scholar 

  • Fuertes G, Garcia-Saez AJ, Esteban-Martin S, Gimenez D, Sanchez-Munoz OL, Schwille P, Salgado J (2010) Pores formed by Baxalpha5 relax to a smaller size and keep at equilibrium. Biophys J 99:2917–2925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fulda S, Debatin KM (2006) Extrinsic versus intrinsic apoptosis pathways in anticancer chemotherapy. Oncogene 25:4798–4811

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Saez AJ, Coraiola M, Serra MD, Mingarro I, Muller P, Salgado J (2006) Peptides corresponding to helices 5 and 6 of Bax can independently form large lipid pores. FEBS J 273:971–981

    Article  CAS  PubMed  Google Scholar 

  • Garcia Fernandez M, Troiano L, Moretti L, Nasi M, Pinti M, Salvioli S, Dobrucki J, Cossarizza A (2002) Early changes in intramitochondrial cardiolipin distribution during apoptosis. Cell Growth Differ 13:449–455

    PubMed  Google Scholar 

  • Goldstein JC, Waterhouse NJ, Juin P, Evan GI, Green DR (2000) The coordinate release of cytochrome c during apoptosis is rapid, complete and kinetically invariant. Nat Cell Biol 2:156

    Article  CAS  PubMed  Google Scholar 

  • Gonçalves RB, Sanches D, Souza TLF, Silva JL, Oliveira AC (2008) The proapoptotic protein smac/DIABLO dimer Has the highest stability as measured by pressure and urea denaturation†. Biochemistry 47:3832–3841

    Article  PubMed  CAS  Google Scholar 

  • Gonzalvez F, Pariselli F, Dupaigne P, Budihardjo I, Lutter M, Antonsson B, Diolez P, Manon S, Martinou JC, Goubern M, Wang X, Bernard S, Petit PX (2005) tBid interaction with cardiolipin primarily orchestrates mitochondrial dysfunctions and subsequently activates Bax and Bak. Cell Death Differ 12:614–626

    Article  CAS  PubMed  Google Scholar 

  • Green DR, Kroemer G (2004) The pathophysiology of mitochondrial cell death. Science (New York, NY) 305:626–629

    Article  CAS  Google Scholar 

  • Gross A, McDonnell JM, Korsmeyer SJ (1999) BCL-2 family members and the mitochondria in apoptosis. Genes Dev 13:1899–1911

    Article  CAS  PubMed  Google Scholar 

  • Han J, Goldstein LA, Gastman BR, Froelich CJ, Yin XM, Rabinowich H (2004) Degradation of Mcl-1 by granzyme B: implications for Bim-mediated mitochondrial apoptotic events. J Biol Chem 279:22020–22029

    Article  CAS  PubMed  Google Scholar 

  • Hanske J, Toffey JR, Morenz AM, Bonilla AJ, Schiavoni KH, Pletneva EV (2012) Conformational properties of cardiolipin-bound cytochrome c. Proc Natl Acad Sci 109:125–130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hao Y, Sekine K, Kawabata A, Nakamura H, Ishioka T, Ohata H, Katayama R, Hashimoto C, Zhang X, Noda T, Tsuruo T, Naito M (2004) Apollon ubiquitinates SMAC and caspase-9, and has an essential cytoprotection function. Nat Cell Biol 6:849–860

    Article  CAS  PubMed  Google Scholar 

  • Haraguchi M, Torii S, Matsuzawa S, Xie Z, Kitada S, Krajewski S, Yoshida H, Mak TW, Reed JC (2000) Apoptotic protease activating factor 1 (Apaf-1)-independent cell death suppression by Bcl-2. J Exp Med 191:1709–1720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heibein JA, Goping IS, Barry M, Pinkoski MJ, Shore GC, Green DR, Bleackley RC (2000) Granzyme B-mediated cytochrome c release is regulated by the Bcl-2 family members bid and Bax. J Exp Med 192:1391–1402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hovius R, Thijssen J, van der Linden P, Nicolay K, de Kruijff B (1993) Phospholipid asymmetry of the outer membrane of rat liver mitochondria. Evidence for the presence of cardiolipin on the outside of the outer membrane. FEBS Lett 330:71–76

    Article  CAS  PubMed  Google Scholar 

  • Hu J, Dong L, Outten CE (2008) The redox environment in the mitochondrial intermembrane space is maintained separately from the cytosol and matrix. J Biol Chem 283:29126–29134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huber HJ, Dussmann H, Kilbride SM, Rehm M, Prehn JH (2011) Glucose metabolism determines resistance of cancer cells to bioenergetic crisis after cytochrome-c release. Mol Syst Biol 7:470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hung V, Zou P, Rhee HW, Udeshi ND, Cracan V, Svinkina T, Carr SA, Mootha VK, Ting AY (2014) Proteomic mapping of the human mitochondrial intermembrane space in live cells via ratiometric APEX tagging. Mol Cell 55:332–341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jenkins MR, Griffiths GM (2010) The synapse and cytolytic machinery of cytotoxic T cells. Curr Opin Immunol 22:308–313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • John GB, Shang Y, Li L, Renken C, Mannella CA, Selker JM, Rangell L, Bennett MJ, Zha J (2005) The mitochondrial inner membrane protein mitofilin controls cristae morphology. Mol Biol Cell 16:1543–1554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones JM, Datta P, Srinivasula SM, Ji W, Gupta S, Zhang Z, Davies E, Hajnoczky G, Saunders TL, Van Keuren ML, Fernandes-Alnemri T, Meisler MH, Alnemri ES (2003) Loss of Omi mitochondrial protease activity causes the neuromuscular disorder of mnd2 mutant mice. Nature 425:721–727

    Article  CAS  PubMed  Google Scholar 

  • Joza N, Oudit GY, Brown D, Benit P, Kassiri Z, Vahsen N, Benoit L, Patel MM, Nowikovsky K, Vassault A, Backx PH, Wada T, Kroemer G, Rustin P, Penninger JM (2005) Muscle-specific loss of apoptosis-inducing factor leads to mitochondrial dysfunction, skeletal muscle atrophy, and dilated cardiomyopathy. Mol Cell Biol 25:10261–10272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kagan VE, Tyurin VA, Jiang J, Tyurina YY, Ritov VB, Amoscato AA, Osipov AN, Belikova NA, Kapralov AA, Kini V, Vlasova II, Zhao Q, Zou M, Di P, Svistunenko DA, Kurnikov IV, Borisenko GG (2005) Cytochrome c acts as a cardiolipin oxygenase required for release of proapoptotic factors. Nat Chem Biol 1:223–232

    Article  CAS  PubMed  Google Scholar 

  • Karbowski M, Lee YJ, Gaume B, Jeong SY, Frank S, Nechushtan A, Santel A, Fuller M, Smith CL, Youle RJ (2002) Spatial and temporal association of Bax with mitochondrial fission sites, Drp1, and Mfn2 during apoptosis. J Cell Biol 159:931–938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawamata H, Manfredi G (2010) Import, maturation, and function of SOD1 and its copper chaperone CCS in the mitochondrial intermembrane space. Antioxid Redox Signal 13:1375–1384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim H-E, Du F, Fang M, Wang X (2005) Formation of apoptosome is initiated by cytochrome c-induced dATP hydrolysis and subsequent nucleotide exchange on Apaf-1. Proc Natl Acad Sci U S A 102:17545–17550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kischkel FC, Hellbardt S, Behrmann I, Germer M, Pawlita M, Krammer PH, Peter ME (1995) Cytotoxicity-dependent APO-1 (Fas/CD95)-associated proteins form a death-inducing signaling complex (DISC) with the receptor. EMBO J 14:5579–5588

    CAS  PubMed  PubMed Central  Google Scholar 

  • Klein JA, Longo-Guess CM, Rossmann MP, Seburn KL, Hurd RE, Frankel WN, Bronson RT, Ackerman SL (2002) The harlequin mouse mutation downregulates apoptosis-inducing factor. Nature 419:367–374

    Article  CAS  PubMed  Google Scholar 

  • Kostrzewa A, Pali T, Froncisz W, Marsh D (2000) Membrane location of spin-labeled cytochrome c determined by paramagnetic relaxation agents. Biochemistry 39:6066–6074

    Article  CAS  PubMed  Google Scholar 

  • Krammer PH (2000) CD95’s deadly mission in the immune system. Nature 407:789–795

    Article  CAS  PubMed  Google Scholar 

  • Kuwana T, Bouchier-Hayes L, Chipuk JE, Bonzon C, Sullivan BA, Green DR, Newmeyer DD (2005) BH3 domains of BH3-only proteins differentially regulate Bax-mediated mitochondrial membrane permeabilization both directly and indirectly. Mol Cell 17:525–535

    Article  CAS  PubMed  Google Scholar 

  • Lee BI, Lee DJ, Cho KJ, Kim GW (2005) Early nuclear translocation of endonuclease G and subsequent DNA fragmentation after transient focal cerebral ischemia in mice. Neurosci Lett 386:23–27

    Article  CAS  PubMed  Google Scholar 

  • Letai A, Bassik MC, Walensky LD, Sorcinelli MD, Weiler S, Korsmeyer SJ (2002) Distinct BH3 domains either sensitize or activate mitochondrial apoptosis, serving as prototype cancer therapeutics. Cancer Cell 2:183–192

    Article  CAS  PubMed  Google Scholar 

  • Li K, Li Y, Shelton JM, Richardson JA, Spencer E, Chen ZJ, Wang X, Williams RS (2000) Cytochrome c deficiency causes embryonic lethality and attenuates stress-induced apoptosis. Cell 101:389–399

    Article  CAS  PubMed  Google Scholar 

  • Li LY, Luo X, Wang X (2001) Endonuclease G is an apoptotic DNase when released from mitochondria. Nature 412:95–99

    Article  CAS  PubMed  Google Scholar 

  • Lindner AU, Concannon CG, Boukes GJ, Cannon MD, Llambi F, Ryan D, Boland K, Kehoe J, McNamara DA, Murray F, Kay EW, Hector S, Green DR, Huber HJ, Prehn JH (2013) Systems analysis of BCL2 protein family interactions establishes a model to predict responses to chemotherapy. Cancer Res 73:519–528

    Article  CAS  PubMed  Google Scholar 

  • Liu JR, Opipari AW, Tan L, Jiang Y, Zhang Y, Tang H, Nunez G (2002) Dysfunctional apoptosome activation in ovarian cancer: implications for chemoresistance. Cancer Res 62:924–931

    CAS  PubMed  Google Scholar 

  • Liu X, Kim CN, Yang J, Jemmerson R, Wang X (1996) Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell 86:147–157

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Sun C, Olejniczak ET, Meadows RP, Betz SF, Oost T, Herrmann J, Wu JC, Fesik SW (2000) Structural basis for binding of Smac/DIABLO to the XIAP BIR3 domain. Nature 408:1004–1008

    Article  CAS  PubMed  Google Scholar 

  • Llambi F, Moldoveanu T, Tait SW, Bouchier-Hayes L, Temirov J, McCormick LL, Dillon CP, Green DR (2011) A unified model of mammalian BCL-2 protein family interactions at the mitochondria. Mol Cell 44:517–531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luetjens CM, Kögel D, Reimertz C, Düßmann H, Renz A, Schulze-Osthoff K, Nieminen A-L, Poppe M, Prehn JHM (2001) Multiple kinetics of mitochondrial cytochrome cRelease in drug-induced apoptosis. Mol Pharmacol 60:1008–1019

    CAS  PubMed  Google Scholar 

  • Lutter M, Fang M, Luo X, Nishijima M, Xie X, Wang X (2000) Cardiolipin provides specificity for targeting of tBid to mitochondria. Nat Cell Biol 2:754–761

    Article  CAS  PubMed  Google Scholar 

  • Mahrus S, Craik CS (2005) Selective chemical functional probes of granzymes A and B reveal granzyme B is a major effector of natural killer cell-mediated lysis of target cells. Chem Biol 12:567–577

    Article  CAS  PubMed  Google Scholar 

  • Mannella CA (2006) Structure and dynamics of the mitochondrial inner membrane cristae. Biochim Biophys Acta 1763:542–548

    Article  CAS  PubMed  Google Scholar 

  • Mannella CA, Pfeiffer DR, Bradshaw PC, Moraru II, Slepchenko B, Loew LM, Hsieh CE, Buttle K, Marko M (2001) Topology of the mitochondrial inner membrane: dynamics and bioenergetic implications. IUBMB Life 52:93–100

    Article  CAS  PubMed  Google Scholar 

  • Martin AG, Fearnhead HO (2002) Apocytochrome c blocks caspase-9 activation and Bax-induced apoptosis. J Biol Chem 277:50834–50841

    Article  CAS  PubMed  Google Scholar 

  • Martin SJ, Amarante-Mendes GP, Shi L, Chuang TH, Casiano CA, O’Brien GA, Fitzgerald P, Tan EM, Bokoch GM, Greenberg AH, Green DR (1996) The cytotoxic cell protease granzyme B initiates apoptosis in a cell-free system by proteolytic processing and activation of the ICE/CED-3 family protease, CPP32, via a novel two-step mechanism. EMBO J 15:2407–2416

    CAS  PubMed  PubMed Central  Google Scholar 

  • Martinou J-C, Youle Richard J (2011) Mitochondria in apoptosis: Bcl-2 family members and mitochondrial dynamics. Dev Cell 21:92–101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martins LM, Iaccarino I, Tenev T, Gschmeissner S, Totty NF, Lemoine NR, Savopoulos J, Gray CW, Creasy CL, Dingwall C, Downward J (2002) The serine protease Omi/HtrA2 regulates apoptosis by binding XIAP through a reaper-like motif. J Biol Chem 277:439–444

    Article  CAS  PubMed  Google Scholar 

  • Mavridou DA, Ferguson SJ, Stevens JM (2013) Cytochrome c assembly. IUBMB Life 65:209–216

    Article  CAS  PubMed  Google Scholar 

  • Medema JP, Toes RE, Scaffidi C, Zheng TS, Flavell RA, Melief CJ, Peter ME, Offringa R, Krammer PH (1997) Cleavage of FLICE (caspase-8) by granzyme B during cytotoxic T lymphocyte-induced apoptosis. Eur J Immunol 27:3492–3498

    Article  CAS  PubMed  Google Scholar 

  • Metkar SS, Wang B, Ebbs ML, Kim JH, Lee YJ, Raja SM, Froelich CJ (2003) Granzyme B activates procaspase-3 which signals a mitochondrial amplification loop for maximal apoptosis. J Cell Biol 160:875–885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mikhailov V, Mikhailova M, Degenhardt K, Venkatachalam MA, White E, Saikumar P (2003) Association of Bax and Bak homo-oligomers in mitochondria. Bax requirement for Bak reorganization and cytochrome c release. J Biol Chem 278:5367–5376

    Article  CAS  PubMed  Google Scholar 

  • Mizutani Y, Katsuoka Y, Bonavida B (2010) Prognostic significance of second mitochondria-derived activator of caspase (Smac/DIABLO) expression in bladder cancer and target for therapy. Int J Oncol 37:503–508

    Article  CAS  PubMed  Google Scholar 

  • Montessuit S, Somasekharan SP, Terrones O, Lucken-Ardjomande S, Herzig S, Schwarzenbacher R, Manstein DJ, Bossy-Wetzel E, Basanez G, Meda P, Martinou JC (2010) Membrane remodeling induced by the dynamin-related protein Drp1 stimulates Bax oligomerization. Cell 142:889–901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Munoz-Pinedo C, Guio-Carrion A, Goldstein JC, Fitzgerald P, Newmeyer DD, Green DR (2006) Different mitochondrial intermembrane space proteins are released during apoptosis in a manner that is coordinately initiated but can vary in duration. Proc Natl Acad Sci 103:11573–11578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okada H, Suh WK, Jin J, Woo M, Du C, Elia A, Duncan GS, Wakeham A, Itie A, Lowe SW, Wang X, Mak TW (2002) Generation and characterization of Smac/DIABLO-deficient mice. Mol Cell Biol 22:3509–3517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olichon A, Guillou E, Delettre C, Landes T, Arnaune-Pelloquin L, Emorine LJ, Mils V, Daloyau M, Hamel C, Amati-Bonneau P, Bonneau D, Reynier P, Lenaers G, Belenguer P (2006) Mitochondrial dynamics and disease, OPA1. Biochim Biophys Acta 1763:500–509

    Article  CAS  PubMed  Google Scholar 

  • Osman C, Haag M, Potting C, Rodenfels J, Dip PV, Wieland FT, Brugger B, Westermann B, Langer T (2009) The genetic interactome of prohibitins: coordinated control of cardiolipin and phosphatidylethanolamine by conserved regulators in mitochondria. J Cell Biol 184:583–596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Otera H, Ohsakaya S, Nagaura Z, Ishihara N, Mihara K (2005) Export of mitochondrial AIF in response to proapoptotic stimuli depends on processing at the intermembrane space. EMBO J 24:1375–1386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ow Y-LP, Green DR, Hao Z, Mak TW (2008) Cytochrome c: functions beyond respiration. Nat Rev Mol Cell Biol 9:532–542

    Article  CAS  PubMed  Google Scholar 

  • Palmieri F, Pierri CL, De Grassi A, Nunes-Nesi A, Fernie AR (2011) Evolution, structure and function of mitochondrial carriers: a review with new insights. Plant J 66:161–181

    Article  CAS  PubMed  Google Scholar 

  • Palumaa P, Kangur L, Voronova A, Sillard R (2004) Metal-binding mechanism of Cox17, a copper chaperone for cytochrome c oxidase. Biochem J 382:307–314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Polster BM, Basanez G, Etxebarria A, Hardwick JM, Nicholls DG (2005) Calpain I induces cleavage and release of apoptosis-inducing factor from isolated mitochondria. J Biol Chem 280:6447–6454

    Article  CAS  PubMed  Google Scholar 

  • Porcelli AM, Ghelli A, Zanna C, Pinton P, Rizzuto R, Rugolo M (2005) pH difference across the outer mitochondrial membrane measured with a green fluorescent protein mutant. Biochem Biophys Res Commun 326:799–804

    Article  CAS  PubMed  Google Scholar 

  • Portt L, Norman G, Clapp C, Greenwood M, Greenwood MT (2011) Anti-apoptosis and cell survival: a review. Biochim Biophys Acta 1813:238–259

    Article  CAS  PubMed  Google Scholar 

  • Quan LT, Tewari M, O’Rourke K, Dixit V, Snipas SJ, Poirier GG, Ray C, Pickup DJ, Salvesen GS (1996) Proteolytic activation of the cell death protease Yama/CPP32 by granzyme B. Proc Natl Acad Sci U S A 93:1972–1976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rehling P, Brandner K, Pfanner N (2004) Mitochondrial import and the twin-pore translocase. Nat Rev Mol Cell Biol 5:519–530

    Article  CAS  PubMed  Google Scholar 

  • Rehm M, Dussmann H, Janicke RU, Tavare JM, Kogel D, Prehn JH (2002) Single-cell fluorescence resonance energy transfer analysis demonstrates that caspase activation during apoptosis is a rapid process. Role of caspase-3. J Biol Chem 277:24506–24514

    Article  CAS  PubMed  Google Scholar 

  • Rehm M, Dussmann H, Prehn JHM (2003) Real-time single cell analysis of Smac/DIABLO release during apoptosis. J Cell Biol 162:1031–1043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rehm M, Huber HJ, Dussmann H, Prehn JH (2006) Systems analysis of effector caspase activation and its control by X-linked inhibitor of apoptosis protein. EMBO J 25:4338–4349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rehm M, Huber HJ, Hellwig CT, Anguissola S, Dussmann H, Prehn JH (2009) Dynamics of outer mitochondrial membrane permeabilization during apoptosis. Cell Death Differ 16:613–623

    Article  CAS  PubMed  Google Scholar 

  • Revillion F, Pawlowski V, Hornez L, Peyrat JP (2000) Glyceraldehyde-3-phosphate dehydrogenase gene expression in human breast cancer. Eur J Cancer 36:1038–1042

    Article  CAS  PubMed  Google Scholar 

  • Riemer J, Bulleid N, Herrmann JM (2009) Disulfide formation in the ER and mitochondria: Two solutions to a common process. Science (New York, NY) 324:1284–1287

    Article  CAS  Google Scholar 

  • Rotonda J, Garcia-Calvo M, Bull HG, Geissler WM, McKeever BM, Willoughby CA, Thornberry NA, Becker JW (2001) The three-dimensional structure of human granzyme B compared to caspase-3, key mediators of cell death with cleavage specificity for aspartic acid in P1. Chem Biol 8:357–368

    Article  CAS  PubMed  Google Scholar 

  • Rousalova I, Krepela E (2010) Granzyme B-induced apoptosis in cancer cells and its regulation (review). Int J Oncol 37:1361–1378

    CAS  PubMed  Google Scholar 

  • Rytomaa M, Kinnunen PK (1994) Evidence for two distinct acidic phospholipid-binding sites in cytochrome c. J Biol Chem 269:1770–1774

    CAS  PubMed  Google Scholar 

  • Sattler M, Liang H, Nettesheim D, Meadows RP, Harlan JE, Eberstadt M, Yoon HS, Shuker SB, Chang BS, Minn AJ, Thompson CB, Fesik SW (1997) Structure of Bcl-xL-Bak peptide complex: recognition between regulators of apoptosis. Science (New York, NY) 275:983–986

    Article  CAS  Google Scholar 

  • Scaffidi C, Fulda S, Srinivasan A, Friesen C, Li F, Tomaselli KJ, Debatin KM, Krammer PH, Peter ME (1998) Two CD95 (APO-1/Fas) signaling pathways. EMBO J 17:1675–1687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schellenberg B, Wang P, Keeble JA, Rodriguez-Enriquez R, Walker S, Owens TW, Foster F, Tanianis-Hughes J, Brennan K, Streuli CH, Gilmore AP (2013) Bax exists in a dynamic equilibrium between the cytosol and mitochondria to control apoptotic priming. Mol Cell 49:959–971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scorrano L, Ashiya M, Buttle K, Weiler S, Oakes SA, Mannella CA, Korsmeyer SJ (2002) A distinct pathway remodels mitochondrial cristae and mobilizes cytochrome c during apoptosis. Dev Cell 2:55–67

    Article  CAS  PubMed  Google Scholar 

  • Shi Y (2002) A conserved tetrapeptide motif: potentiating apoptosis through IAP-binding. Cell Death Differ 9:93–95

    Article  CAS  PubMed  Google Scholar 

  • Sinibaldi F, Howes BD, Droghetti E, Polticelli F, Piro MC, Di Pierro D, Fiorucci L, Coletta M, Smulevich G, Santucci R (2013) Role of lysines in cytochrome c-cardiolipin interaction. Biochemistry 52:4578–4588

    Article  CAS  PubMed  Google Scholar 

  • Srinivasula SM, Fernandes-Alnemri T, Zangrilli J, Robertson N, Armstrong RC, Wang L, Trapani JA, Tomaselli KJ, Litwack G, Alnemri ES (1996) The Ced-3/interleukin 1beta converting enzyme-like homolog Mch6 and the lamin-cleaving enzyme Mch2alpha are substrates for the apoptotic mediator CPP32. J Biol Chem 271:27099–27106

    Article  CAS  PubMed  Google Scholar 

  • Strauss KM, Martins LM, Plun-Favreau H, Marx FP, Kautzmann S, Berg D, Gasser T, Wszolek Z, Muller T, Bornemann A, Wolburg H, Downward J, Riess O, Schulz JB, Kruger R (2005) Loss of function mutations in the gene encoding Omi/HtrA2 in Parkinson’s disease. Hum Mol Genet 14:2099–2111

    Article  CAS  PubMed  Google Scholar 

  • Susin SA, Lorenzo HK, Zamzami N, Marzo I, Snow BE, Brothers GM, Mangion J, Jacotot E, Costantini P, Loeffler M, Larochette N, Goodlett DR, Aebersold R, Siderovski DP, Penninger JM, Kroemer G (1999) Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 397:441–446

    Article  CAS  PubMed  Google Scholar 

  • Susin SA, Zamzami N, Castedo M, Hirsch T, Marchetti P, Macho A, Daugas E, Geuskens M, Kroemer G (1996) Bcl-2 inhibits the mitochondrial release of an apoptogenic protease. J Exp Med 184:1331–1341

    Article  CAS  PubMed  Google Scholar 

  • Sutton VR, Davis JE, Cancilla M, Johnstone RW, Ruefli AA, Sedelies K, Browne KA, Trapani JA (2000) Initiation of apoptosis by granzyme B requires direct cleavage of bid, but not direct granzyme B-mediated caspase activation. J Exp Med 192:1403–1414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki M, Youle RJ, Tjandra N (2000) Structure of Bax: coregulation of dimer formation and intracellular localization. Cell 103:645–654

    Article  CAS  PubMed  Google Scholar 

  • Suzuki Y, Imai Y, Nakayama H, Takahashi K, Takio K, Takahashi R (2001) A serine protease, HtrA2, is released from the mitochondria and interacts with XIAP, inducing cell death. Mol Cell 8:613–621

    Article  CAS  PubMed  Google Scholar 

  • Tait SW, Green DR (2008) Caspase-independent cell death: leaving the set without the final cut. Oncogene 27:6452–6461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tait SW, Parsons MJ, Llambi F, Bouchier-Hayes L, Connell S, Munoz-Pinedo C, Green DR (2010) Resistance to caspase-independent cell death requires persistence of intact mitochondria. Dev Cell 18:802–813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Talanian RV, Yang X, Turbov J, Seth P, Ghayur T, Casiano CA, Orth K, Froelich CJ (1997) Granule-mediated killing: pathways for granzyme B-initiated apoptosis. J Exp Med 186:1323–1331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tamura Y, Endo T, Iijima M, Sesaki H (2009) Ups1p and Ups2p antagonistically regulate cardiolipin metabolism in mitochondria. J Cell Biol 185:1029–1045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tatsuta T, Model K, Langer T (2005) Formation of membrane-bound ring complexes by prohibitins in mitochondria. Mol Biol Cell 16:248–259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Terziyska N, Lutz T, Kozany C, Mokranjac D, Mesecke N, Neupert W, Herrmann JM, Hell K (2005) Mia40, a novel factor for protein import into the intermembrane space of mitochondria is able to bind metal ions. FEBS Lett 579:179–184

    Article  CAS  PubMed  Google Scholar 

  • Tikoo A, O’Reilly L, Day CL, Verhagen AM, Pakusch M, Vaux DL (2002) Tissue distribution of Diablo/Smac revealed by monoclonal antibodies. Cell Death Differ 9:710–716

    Article  CAS  PubMed  Google Scholar 

  • Uren RT, Dewson G, Bonzon C, Lithgow T, Newmeyer DD, Kluck RM (2005) Mitochondrial release of pro-apoptotic proteins: ELECTROSTATIC INTERACTIONS CAN HOLD Cytochrome c BUT NOT Smac/DIABLO TO MITOCHONDRIAL MEMBRANES. J Biol Chem 280:2266–2274

    Article  CAS  PubMed  Google Scholar 

  • Vahsen N, Cande C, Briere JJ, Benit P, Joza N, Larochette N, Mastroberardino PG, Pequignot MO, Casares N, Lazar V, Feraud O, Debili N, Wissing S, Engelhardt S, Madeo F, Piacentini M, Penninger JM, Schagger H, Rustin P, Kroemer G (2004) AIF deficiency compromises oxidative phosphorylation. EMBO J 23:4679–4689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Loo G, Schotte P, van Gurp M, Demol H, Hoorelbeke B, Gevaert K, Rodriguez I, Ruiz-Carrillo A, Vandekerckhove J, Declercq W, Beyaert R, Vandenabeele P (2001) Endonuclease G: a mitochondrial protein released in apoptosis and involved in caspase-independent DNA degradation. Cell Death Differ 8:1136–1142

    Article  PubMed  CAS  Google Scholar 

  • van Loo G, van Gurp M, Depuydt B, Srinivasula SM, Rodriguez I, Alnemri ES, Gevaert K, Vandekerckhove J, Declercq W, Vandenabeele P (2002) The serine protease Omi/HtrA2 is released from mitochondria during apoptosis. Omi interacts with caspase-inhibitor XIAP and induces enhanced caspase activity. Cell Death Differ 9:20–26

    Article  PubMed  Google Scholar 

  • Vande Walle L, Van Damme P, Lamkanfi M, Saelens X, Vandekerckhove J, Gevaert K, Vandenabeele P (2007) Proteome-wide Identification of HtrA2/Omi Substrates. J Proteome Res 6:1006–1015

    Article  CAS  PubMed  Google Scholar 

  • Verhagen AM, Ekert PG, Pakusch M, Silke J, Connolly LM, Reid GE, Moritz RL, Simpson RJ, Vaux DL (2000) Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins. Cell 102:43–53

    Article  CAS  PubMed  Google Scholar 

  • Vogel F, Bornhovd C, Neupert W, Reichert AS (2006) Dynamic subcompartmentalization of the mitochondrial inner membrane. J Cell Biol 175:237–247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vogtle FN, Burkhart JM, Rao S, Gerbeth C, Hinrichs J, Martinou JC, Chacinska A, Sickmann A, Zahedi RP, Meisinger C (2012) Intermembrane space proteome of yeast mitochondria. Mol Cell Proteomics 11:1840–1852

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vucic D, Deshayes K, Ackerly H, Pisabarro MT, Kadkhodayan S, Fairbrother WJ, Dixit VM (2002) SMAC negatively regulates the anti-apoptotic activity of melanoma inhibitor of apoptosis (ML-IAP). J Biol Chem 277:12275–12279

    Article  CAS  PubMed  Google Scholar 

  • Walczak H, Krammer PH (2000) The CD95 (APO-1/Fas) and the TRAIL (APO-2L) apoptosis systems. Exp Cell Res 256:58–66

    Article  CAS  PubMed  Google Scholar 

  • Waterhouse NJ, Goldstein JC, von Ahsen O, Schuler M, Newmeyer DD, Green DR (2001) Cytochrome c maintains mitochondrial transmembrane potential and ATP generation after outer mitochondrial membrane permeabilization during the apoptotic process. J Cell Biol 153:319–328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei MC, Zong W-X, Cheng EHY, Lindsten T, Panoutsakopoulou V, Ross AJ, Roth KA, MacGregor GR, Thompson CB, Korsmeyer SJ (2001) Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science 292:727–730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Westphal D, Dewson G, Menard M, Frederick P, Iyer S, Bartolo R, Gibson L, Czabotar PE, Smith BJ, Adams JM, Kluck RM (2014) Apoptotic pore formation is associated with in-plane insertion of Bak or Bax central helices into the mitochondrial outer membrane. Proc Natl Acad Sci U S A 111:E4076–E4085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilkinson JC, Wilkinson AS, Galban S, Csomos RA, Duckett CS (2008) Apoptosis-inducing factor is a target for ubiquitination through interaction with XIAP. Mol Cell Biol 28:237–247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Willis SN, Chen L, Dewson G, Wei A, Naik E, Fletcher JI, Adams JM, Huang DC (2005) Proapoptotic Bak is sequestered by Mcl-1 and Bcl-xL, but not Bcl-2, until displaced by BH3-only proteins. Genes Dev 19:1294–1305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Willis SN, Fletcher JI, Kaufmann T, van Delft MF, Chen L, Czabotar PE, Ierino H, Lee EF, Fairlie WD, Bouillet P, Strasser A, Kluck RM, Adams JM, Huang DC (2007) Apoptosis initiated when BH3 ligands engage multiple Bcl-2 homologs, not Bax or Bak. Science (New York, NY) 315:856–859

    Article  CAS  Google Scholar 

  • Wu G, Chai J, Suber TL, Wu JW, Du C, Wang X, Shi Y (2000) Structural basis of IAP recognition by Smac/DIABLO. Nature 408:1008–1012

    Article  CAS  PubMed  Google Scholar 

  • Würstle ML, Rehm M (2014) A systems biology analysis of apoptosome formation and apoptosis execution supports allosteric procaspase-9 activation. J Biol Chem 289:26277–26289

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xu R, Hu Q, Ma Q, Liu C, Wang G (2014) The protease Omi regulates mitochondrial biogenesis through the GSK3[beta]/PGC-1[alpha] pathway. Cell Death Dis 5, e1373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ye B, Maret W, Vallee BL (2001) Zinc metallothionein imported into liver mitochondria modulates respiration. Proc Natl Acad Sci U S A 98:2317–2322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin XM, Oltvai ZN, Korsmeyer SJ (1994) BH1 and BH2 domains of Bcl-2 are required for inhibition of apoptosis and heterodimerization with Bax. Nature 369:321–323

    Article  CAS  PubMed  Google Scholar 

  • Youle RJ, Karbowski M (2005) Mitochondrial fission in apoptosis. Nat Rev Mol Cell Biol 6:657–663

    Article  CAS  PubMed  Google Scholar 

  • Youle RJ, Strasser A (2008) The BCL-2 protein family: opposing activities that mediate cell death. Nat Rev Mol Cell Biol 9:47–59

    Article  CAS  PubMed  Google Scholar 

  • Yuste VJ, Moubarak RS, Delettre C, Bras M, Sancho P, Robert N, d’Alayer J, Susin SA (2005) Cysteine protease inhibition prevents mitochondrial apoptosis-inducing factor (AIF) release. Cell Death Differ 12:1445–1448

    Article  CAS  PubMed  Google Scholar 

  • Zanna C, Ghelli A, Porcelli AM, Martinuzzi A, Carelli V, Rugolo M (2005) Caspase-independent death of Leber’s hereditary optic neuropathy cybrids is driven by energetic failure and mediated by AIF and Endonuclease G. Apoptosis 10:997–1007

    Article  CAS  PubMed  Google Scholar 

  • Zutz A, Gompf S, Schagger H, Tampe R (2009) Mitochondrial ABC proteins in health and disease. Biochim Biophys Acta 1787:681–690

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. H. M. Prehn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Flanagan, L., Lucantoni, F., Prehn, J.H.M. (2016). Mislocalization of Mitochondrial Intermembrane Space Proteins. In: Hockenbery, D. (eds) Mitochondria and Cell Death. Cell Death in Biology and Diseases. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3612-0_3

Download citation

Publish with us

Policies and ethics