Current Sheets in the Earth Magnetotail: Plasma and Magnetic Field Structure with Cluster Project Observations

  • Anatoli Petrukovich
  • Anton ArtemyevEmail author
  • Ivan Vasko
  • Rumi Nakamura
  • Lev Zelenyi
Part of the Space Sciences Series of ISSI book series (SSSI, volume 51)


Thin current sheets having kinetic scales are an important plasma structure, where the magnetic energy dissipation and charged particle acceleration are the most effective. It is believed that such current sheets are self-consistently formed by the specific nonadiabatic dynamics of charged particles and play a critical role in many space plasma and astrophysical objects. Current sheets in the near-Earth plasma environment, e.g., the magnetotail current sheet, are readily available for in-situ investigations. The dedicated multi-spacecraft Cluster mission have revealed basic properties of this current sheet, which are presented in this review: typical spatial profiles of magnetic field and current density, distributions of plasma temperature and density, role of heavy ions and electron currents, etc. Being important for the Earth magnetosphere physics, the new knowledge also could provide the basis for advancement in general plasma physics as well as in plasma astrophysics.


Current sheet Planetary magnetospheres Kinetic plasma structures 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. V. Angelopoulos, C.F. Kennel, F.V. Coroniti, R. Pellat, H.E. Spence, M.G. Kivelson, R.J. Walker, W. Baumjohann, W.C. Feldman, J.T. Gosling, Characteristics of ion flow in the quiet state of the inner plasma sheet. Geophys. Res. Lett. 20, 1711–1714 (1993). doi: 10.1029/93GL00847 ADSCrossRefGoogle Scholar
  2. J. Arons, Pulsar wind nebulae as cosmic pevatrons: a current sheet’s tale. Space Sci. Rev. 173, 341–367 (2012). doi: 10.1007/s11214-012-9885-1 ADSCrossRefGoogle Scholar
  3. A.V. Artemyev, A model of one-dimensional current sheet with parallel currents and normal component of magnetic field. Phys. Plasmas 18(2), 022104 (2011). doi: 10.1063/1.3552141 ADSCrossRefGoogle Scholar
  4. A.V. Artemyev, L.M. Zelenyi, Kinetic structure of current sheets in the Earth magnetotail. Space Sci. Rev. 178, 419–440 (2013). doi: 10.1007/s11214-012-9954-5 ADSCrossRefGoogle Scholar
  5. A.V. Artemyev, A.I. Neishtadt, L.M. Zelenyi, Ion motion in the current sheet with sheared magnetic field—Part 1: Quasi-adiabatic theory. Nonlinear Process. Geophys. 20(1), 163–178 (2013a). doi: 10.5194/npg-20-163-2013. ADSCrossRefGoogle Scholar
  6. A.V. Artemyev, A.I. Neishtadt, L.M. Zelenyi, Ion motion in the current sheet with sheared magnetic field—Part 2: Non-adiabatic effects. Nonlinear Process. Geophys. 20, 899–919 (2013b). doi: 10.5194/npg-20-899-2013 ADSCrossRefGoogle Scholar
  7. A.V. Artemyev, A.I. Neishtadt, L.M. Zelenyi, Rapid geometrical chaotization in slow-fast Hamiltonian systems. Phys. Rev. E 89(6), 060902 (2014a). doi: 10.1103/PhysRevE.89.060902 ADSCrossRefGoogle Scholar
  8. A.V. Artemyev, I.Y. Vasko, S. Kasahara, Thin current sheets in the Jovian magnetotail. Planet. Space Sci. 96, 133–145 (2014b). doi: 10.1016/j.pss.2014.03.012 ADSCrossRefGoogle Scholar
  9. A.V. Artemyev, A.A. Petrukovich, L.M. Zelenyi, H.V. Malova, V.Y. Popov, R. Nakamura, A. Runov, S. Apatenkov, Comparison of multi-point measurements of current sheet structure and analytical models. Ann. Geophys. 26, 2749–2758 (2008) ADSCrossRefGoogle Scholar
  10. A.V. Artemyev, A.A. Petrukovich, L.M. Zelenyi, R. Nakamura, H.V. Malova, V.Y. Popov, Thin embedded current sheets: cluster observations of ion kinetic structure and analytical models. Ann. Geophys. 27, 4075–4087 (2009) ADSCrossRefGoogle Scholar
  11. A.V. Artemyev, A.A. Petrukovich, R. Nakamura, L.M. Zelenyi, Proton velocity distribution in thin current sheets: cluster observations and theory of transient trajectories. J. Geophys. Res. 115, 12255 (2010). doi: 10.1029/2010JA015702 CrossRefGoogle Scholar
  12. A.V. Artemyev, A.A. Petrukovich, R. Nakamura, L.M. Zelenyi, Cluster statistics of thin current sheets in the Earth magnetotail: specifics of the dawn flank, proton temperature profiles and electrostatic effects. J. Geophys. Res. 116, 0923 (2011a). doi: 10.1029/2011JA016801 CrossRefGoogle Scholar
  13. A.V. Artemyev, W. Baumjohann, A.A. Petrukovich, R. Nakamura, I. Dandouras, A. Fazakerley, Proton/electron temperature ratio in the magnetotail. Ann. Geophys. 29, 2253–2257 (2011b). doi: 10.5194/angeo-29-2253-2011 ADSCrossRefGoogle Scholar
  14. A.V. Artemyev, A.A. Petrukovich, R. Nakamura, L.M. Zelenyi, Adiabatic electron heating in the magnetotail current sheet: cluster observations and analytical models. J. Geophys. Res. 117, 06219 (2012). doi: 10.1029/2012JA017513 Google Scholar
  15. A.V. Artemyev, A.A. Petrukovich, A.G. Frank, R. Nakamura, L.M. Zelenyi, Intense current sheets in the magnetotail: peculiarities of electron physics. J. Geophys. Res. 118, 2789–2799 (2013a). doi: 10.1002/jgra.50297 CrossRefGoogle Scholar
  16. A.V. Artemyev, A.A. Petrukovich, R. Nakamura, L.M. Zelenyi, Profiles of electron temperature and \(\mathrm{B}_{z}\) along Earth’s magnetotail. Ann. Geophys. 31, 1109–1114 (2013b). doi: 10.5194/angeo-31-1109-2013 ADSCrossRefGoogle Scholar
  17. Y. Asano, T. Mukai, M. Hoshino, Y. Saito, H. Hayakawa, T. Nagai, Evolution of the thin current sheet in a substorm observed by Geotail. J. Geophys. Res. 108, 1189 (2003). doi: 10.1029/2002JA009785 CrossRefGoogle Scholar
  18. Y. Asano, T. Mukai, M. Hoshino, Y. Saito, H. Hayakawa, T. Nagai, Current sheet structure around the near-Earth neutral line observed by Geotail. J. Geophys. Res. 109, 2212 (2004a). doi: 10.1029/2003JA010114 CrossRefGoogle Scholar
  19. Y. Asano, T. Mukai, M. Hoshino, Y. Saito, H. Hayakawa, T. Nagai, Statistical study of thin current sheet evolution around substorm onset. J. Geophys. Res. 109, 5213 (2004b). doi: 10.1029/2004JA010413 CrossRefGoogle Scholar
  20. M.J. Aschwanden, Particle acceleration and kinematics in solar flares—A synthesis of recent observations and theoretical concepts. Space Sci. Rev. 101, 1–227 (2002). doi: 10.1023/A:1019712124366 ADSCrossRefGoogle Scholar
  21. M. Ashour-Abdalla, J. Buechner, L.M. Zelenyi, The quasi-adiabatic ion distribution in the central plasma sheet and its boundary layer. J. Geophys. Res. 96, 1601–1609 (1991). doi: 10.1029/90JA01921 ADSCrossRefGoogle Scholar
  22. M. Ashour-Abdalla, J.P. Berchem, J. Buechner, L.M. Zelenyi, Shaping of the magnetotail from the mantle—Global and local structuring. J. Geophys. Res. 98, 5651–5676 (1993). doi: 10.1029/92JA01662 ADSCrossRefGoogle Scholar
  23. D.N. Baker, T.I. Pulkkinen, V. Angelopoulos, W. Baumjohann, R.L. McPherron, Neutral line model of substorms: past results and present view. J. Geophys. Res. 101, 12975–13010 (1996). doi: 10.1029/95JA03753 ADSCrossRefGoogle Scholar
  24. A. Balogh, C.M. Carr, M.H. Acuña, M.W. Dunlop, T.J. Beek, P. Brown, K. Fornaçon, E. Georgescu, K. Glassmeier, J. Harris, G. Musmann, T. Oddy, K. Schwingenschuh, The cluster magnetic field investigation: overview of in-flight performance and initial results. Ann. Geophys. 19, 1207–1217 (2001). doi: 10.5194/angeo-19-1207-2001 ADSCrossRefGoogle Scholar
  25. W. Baumjohann, G. Paschmann, C.A. Cattell, Average plasma properties in the central plasma sheet. J. Geophys. Res. 94, 6597–6606 (1989). doi: 10.1029/JA094iA06p06597 ADSCrossRefGoogle Scholar
  26. K.W. Behannon, L.F. Burlaga, N.F. Ness, The Jovian magnetotail and its current sheet. J. Geophys. Res. 86, 8385–8401 (1981). doi: 10.1029/JA086iA10p08385 ADSCrossRefGoogle Scholar
  27. M.K. Bird, D.B. Beard, The self-consistent geomagnetic tail under static conditions. Planet. Space Sci. 20, 2057–2072 (1972). doi: 10.1016/0032-0633(72)90062-1 ADSCrossRefGoogle Scholar
  28. J. Birn, Self-consistent magnetotail theory—General solution for the quiet tail with vanishing field-aligned currents. J. Geophys. Res. 84, 5143–5152 (1979). doi: 10.1029/JA084iA09p05143 ADSCrossRefGoogle Scholar
  29. J. Birn, E.R. Priest, Reconnection of Magnetic Fields: Magnetohydrodynamics and Collisionless Theory and Observations 2007 CrossRefGoogle Scholar
  30. J. Birn, K. Schindler, M. Hesse, Thin electron current sheets and their relation to auroral potentials. J. Geophys. Res. 109, 2217 (2004). doi: 10.1029/2003JA010303 Google Scholar
  31. J. Birn, R. Sommer, K. Schindler, Open and closed magnetospheric tail configurations and their stability. Astrophys. Space Sci. 35, 389–402 (1975). doi: 10.1007/BF00637005 ADSCrossRefGoogle Scholar
  32. J. Büchner, J. Kuska, Sausage mode instability of thin current sheets as a cause of magnetospheric substorms. Ann. Geophys. 17, 604–612 (1999). doi: 10.1007/s005850050788 ADSCrossRefGoogle Scholar
  33. J. Büchner, L.M. Zelenyi, Regular and chaotic charged particle motion in magnetotaillike field reversals. I—Basic theory of trapped motion. J. Geophys. Res. 94, 11821–11842 (1989). doi: 10.1029/JA094iA09p11821 ADSCrossRefGoogle Scholar
  34. J.L. Burch, T.E. Moore, R.B. Torbert, B. Giles, MMS Overview and Science Objectives. Space Sci. Rev. (2014) Google Scholar
  35. G.R. Burkhart, J. Chen, Particle motion in x-dependent Harris-like magnetotail models. J. Geophys. Res. 98, 89–97 (1993). doi: 10.1029/92JA01528 ADSCrossRefGoogle Scholar
  36. G.R. Burkhart, J.F. Drake, P.B. Dusenbery, T.W. Speiser, A particle model for magnetotail neutral sheet equilibria. J. Geophys. Res. 97, 13799–13815 (1992a). doi: 10.1029/92JA00495 ADSCrossRefGoogle Scholar
  37. G.R. Burkhart, J.F. Drake, P.B. Dusenbery, T.W. Speiser, Ion tearing in a magnetotail configuration with an embedded thin current sheet. J. Geophys. Res. 97, 16749–16756 (1992b). doi: 10.1029/92JA01523 ADSCrossRefGoogle Scholar
  38. S.W.H. Cowley, R. Pellat, A note on adiabatic solutions of the one-dimensional current sheet problem. Planet. Space Sci. 27, 265–271 (1979). doi: 10.1016/0032-0633(79)90069-2 ADSCrossRefGoogle Scholar
  39. J. Credland, G. Mecke, J. Ellwood, The cluster mission: ESA‘S spacefleet to the magnetosphere. Space Sci. Rev. 79, 33–64 (1997). doi: 10.1023/A:1004914822769 ADSCrossRefGoogle Scholar
  40. W. Daughton, The unstable eigenmodes of a neutral sheet. Phys. Plasmas 6, 1329–1343 (1999a). doi: 10.1063/1.873374 ADSCrossRefGoogle Scholar
  41. W. Daughton, Two-fluid theory of the drift kink instability. J. Geophys. Res. 104, 28701–28708 (1999b). doi: 10.1029/1999JA900388 ADSCrossRefGoogle Scholar
  42. W. Daughton, Electromagnetic properties of the lower-hybrid drift instability in a thin current sheet. Phys. Plasmas 10, 3103–3119 (2003). doi: 10.1063/1.1594724 ADSCrossRefGoogle Scholar
  43. E.A. Davey, M. Lester, S.E. Milan, R.C. Fear, C. Forsyth, The orientation and current density of the magnetotail current sheet: a statistical study of the effect of geomagnetic conditions. J. Geophys. Res. 117, 7217 (2012). doi: 10.1029/2012JA017715 Google Scholar
  44. M.K. Dougherty, L.W. Esposito, S.M. Krimigis, Saturn from Cassini-Huygens 2009. doi: 10.1007/978-1-4020-9217-6 CrossRefGoogle Scholar
  45. M.W. Dunlop, A. Balogh, K.-H. Glassmeier, P. Robert, Four-point cluster application of magnetic field analysis tools: the curlometer. J. Geophys. Res. 107, 1384 (2002). doi: 10.1029/2001JA005088 CrossRefGoogle Scholar
  46. J.W. Eastwood, Consistency of fields and particle motion in the ‘Speiser’ model of the current sheet. Planet. Space Sci. 20, 1555–1568 (1972). doi: 10.1016/0032-0633(72)90182-1 ADSCrossRefGoogle Scholar
  47. J.W. Eastwood, The warm current sheet model, and its implications on the temporal behaviour of the geomagnetic tail. Planet. Space Sci. 22, 1641–1668 (1974). doi: 10.1016/0032-0633(74)90108-1 ADSCrossRefGoogle Scholar
  48. N.V. Erkaev, V.S. Semenov, I.V. Kubyshkin, M.V. Kubyshkina, H.K. Biernat, MHD model of the flapping motions in the magnetotail current sheet. J. Geophys. Res. 114, 3206 (2009). doi: 10.1029/2008JA013728 CrossRefGoogle Scholar
  49. C.P. Escoubet, M. Fehringer, M. Goldstein, Introduction: the cluster mission. Ann. Geophys. 19, 1197–1200 (2001). doi: 10.5194/angeo-19-1197-2001 ADSCrossRefGoogle Scholar
  50. P. Francfort, R. Pellat, Magnetic merging in collisionless plasmas. Geophys. Res. Lett. 3, 433–436 (1976). doi: 10.1029/GL003i008p00433 ADSCrossRefGoogle Scholar
  51. J.T. Gosling, Magnetic reconnection in the solar wind. Space Sci. Rev. 172, 187–200 (2012). doi: 10.1007/s11214-011-9747-2 ADSCrossRefGoogle Scholar
  52. E.E. Grigorenko, H.V. Malova, A.V. Artemyev, O.V. Mingalev, E.A. Kronberg, R. Koleva, P.W. Daly, J.B. Cao, J.-A. Sauvaud, C.J. Owen, L.M. Zelenyi, Current sheet structure and kinetic properties of plasma flows during a near-Earth magnetic reconnection under the presence of a guide field. J. Geophys. Res. 118, 3265–3287 (2013). doi: 10.1002/jgra.50310 CrossRefGoogle Scholar
  53. G. Gustafsson, M. André, T. Carozzi, A.I. Eriksson, C.-G. Fälthammar, R. Grard, G. Holmgren, J.A. Holtet, N. Ivchenko, T. Karlsson, Y. Khotyaintsev, S. Klimov, H. Laakso, P.-A. Lindqvist, B. Lybekk, G. Marklund, F. Mozer, K. Mursula, A. Pedersen, B. Popielawska, S. Savin, K. Stasiewicz, P. Tanskanen, A. Vaivads, J.-E. Wahlund, First results of electric field and density observations by cluster EFW based on initial months of operation. Ann. Geophys. 19, 1219–1240 (2001). doi: 10.5194/angeo-19-1219-2001 ADSCrossRefGoogle Scholar
  54. E.G. Harris, On a plasma sheet separating regions of oppositely directed magnetic field. Nuovo Cimento 23, 115–123 (1962) CrossRefzbMATHGoogle Scholar
  55. M. Hoshino, A. Nishida, T. Mukai, Y. Saito, T. Yamamoto, S. Kokubun, Structure of plasma sheet in magnetotail: double-peaked electric current sheet. J. Geophys. Res. 101, 24775–24786 (1996). doi: 10.1029/96JA02313 ADSCrossRefGoogle Scholar
  56. P.L. Israelevich, A.I. Ershkovich, R. Oran, Current carriers in the bifurcated tail current sheet: ions or electrons? J. Geophys. Res. 113, 4215 (2008). doi: 10.1029/2007JA012541 CrossRefGoogle Scholar
  57. C.M. Jackman, C.S. Arridge, N. André, F. Bagenal, J. Birn, M.P. Freeman, X. Jia, A. Kidder, S.E. Milan, A. Radioti, J.A. Slavin, M.F. Vogt, M. Volwerk, A.P. Walsh, Large-scale structure and dynamics of the magnetotails of Mercury, Earth, Jupiter and Saturn. Space Sci. Rev. 182, 85–154 (2014). doi: 10.1007/s11214-014-0060-8 ADSCrossRefGoogle Scholar
  58. A.D. Johnstone, C. Alsop, S. Burge, P.J. Carter, A.J. Coates, A.J. Coker, A.N. Fazakerley, M. Grande, R.A. Gowen, C. Gurgiolo, B.K. Hancock, B. Narheim, A. Preece, P.H. Sheather, J.D. Winningham, R.D. Woodliffe, Peace: a plasma electron and current experiment. Space Sci. Rev. 79, 351–398 (1997). doi: 10.1023/A:1004938001388 ADSCrossRefGoogle Scholar
  59. J.R. Kan, On the structure of the magnetotail current sheet. J. Geophys. Res. 78, 3773–3781 (1973). doi: 10.1029/JA078i019p03773 ADSCrossRefGoogle Scholar
  60. J.R. Kan, W. Baumjohann, Isotropized magnetic-moment equation of state for the central plasma sheet. Geophys. Res. Lett. 17, 271–274 (1990). doi: 10.1029/GL017i003p00271 ADSCrossRefGoogle Scholar
  61. H. Karimabadi, W. Daughton, P.L. Pritchett, D. Krauss-Varban, Ion-ion kink instability in the magnetotail: 1. Linear theory. J. Geophys. Res. 108, 1400 (2003a). doi: 10.1029/2003JA010026 CrossRefGoogle Scholar
  62. H. Karimabadi, P.L. Pritchett, W. Daughton, D. Krauss-Varban, Ion-ion kink instability in the magnetotail: 2. Three-dimensional full particle and hybrid simulations and comparison with observations. J. Geophys. Res. 108, 1401 (2003b). doi: 10.1029/2003JA010109 CrossRefGoogle Scholar
  63. H. Karimabadi, V. Roytershteyn, C.G. Mouikis, L.M. Kistler, W. Daughton, Flushing effect in reconnection: effects of minority species of oxygen ions. Planet. Space Sci. 59, 526–536 (2011). doi: 10.1016/j.pss.2010.07.014 ADSCrossRefGoogle Scholar
  64. C.F. Kennel, Magnetospheres of the planets. Space Sci. Rev. 14, 511–533 (1973). doi: 10.1007/BF00214759 ADSCrossRefGoogle Scholar
  65. J. Kissinger, R.L. McPherron, T.-S. Hsu, V. Angelopoulos, Diversion of plasma due to high pressure in the inner magnetosphere during steady magnetospheric convection. J. Geophys. Res. 117, 5206 (2012). doi: 10.1029/2012JA017579 CrossRefGoogle Scholar
  66. D.B. Korovinskiy, A. Divin, N.V. Erkaev, V.V. Ivanova, I.B. Ivanov, V.S. Semenov, G. Lapenta, S. Markidis, H.K. Biernat, M. Zellinger, MHD modeling of the double-gradient (kink) magnetic instability. J. Geophys. Res. 118, 1146–1158 (2013). doi: 10.1002/jgra.50206 CrossRefGoogle Scholar
  67. T. Krallmann, J. Dreher, K. Schindler, On the stability of the ion-tearing mode in equilibria with embedded thin current sheets, in Int. Conf. Substorms, 1994, pp. 499–503 Google Scholar
  68. A.P. Kropotkin, H.V. Malova, M.I. Sitnov, Self-consistent structure of a thin anisotropic current sheet. J. Geophys. Res. 102, 22099–22106 (1997). doi: 10.1029/97JA01316 ADSCrossRefGoogle Scholar
  69. Y.H. Liu, L.M. Kistler, C.G. Mouikis, V. Roytershteyn, H. Karimabadi, The scale of the magnetotail reconnecting current sheet in the presence of \(\mathrm{O}^{+}\). Geophys. Res. Lett. 41, 4819–4827 (2014). doi: 10.1002/2014GL060440 ADSCrossRefGoogle Scholar
  70. A.T.Y. Lui, Potential plasma instabilities for substorm expansion onsets. Space Sci. Rev. 113, 127–206 (2004). doi: 10.1023/B:SPAC.0000042942.00362.4e ADSCrossRefGoogle Scholar
  71. S. Markidis, G. Lapenta, L. Bettarini, M. Goldman, D. Newman, L. Andersson, Kinetic simulations of magnetic reconnection in presence of a background \(\mathrm{O}^{+}\) population. J. Geophys. Res. (2011). doi: 10.1029/2011JA016429 Google Scholar
  72. D.J. McComas, H.E. Spence, C.T. Russell, M.A. Saunders, The average magnetic field draping and consistent plasma properties of the Venus magnetotail. J. Geophys. Res. 91, 7939–7953 (1986a). doi: 10.1029/JA091iA07p07939 ADSCrossRefGoogle Scholar
  73. D.J. McComas, S.J. Bame, C.T. Russell, R.C. Elphic, The near-Earth cross-tail current sheet—detailed ISEE 1 and 2 case studies. J. Geophys. Res. 91, 4287–4301 (1986b). doi: 10.1029/JA091iA04p04287 ADSCrossRefGoogle Scholar
  74. D.J. McComas, J.T. Gosling, C.T. Russell, J.A. Slavin, Magnetotails at unmagnetized bodies—comparison of comet Giacobini–Zinner and Venus. J. Geophys. Res. 92, 10111–10117 (1987). doi: 10.1029/JA092iA09p10111 ADSCrossRefGoogle Scholar
  75. S. Minami, A.I. Podgornyi, I.M. Podgornyi, Laboratory evidence of earthward electric field in the magnetotail current sheet. Geophys. Res. Lett. 20, 9–12 (1993). doi: 10.1029/92GL02492 ADSCrossRefGoogle Scholar
  76. O.V. Mingalev, I.V. Mingalev, M.N. Mel’nik, A.V. Artemyev, H.V. Malova, V.Y. Popov, S. Chao, L.M. Zelenyi, Kinetic models of current sheets with a sheared magnetic field. Plasma Phys. Rep. 38, 300–314 (2012). doi: 10.1134/S1063780X12030063 ADSCrossRefGoogle Scholar
  77. D.G. Mitchell, D.J. Williams, C.Y. Huang, L.A. Frank, C.T. Russell, Current carriers in the near-Earth cross-tail current sheet during substorm growth phase. Geophys. Res. Lett. 17, 583–586 (1990). doi: 10.1029/GL017i005p00583 ADSCrossRefGoogle Scholar
  78. R. Nakamura, W. Baumjohann, A. Runov, Y. Asano, Thin current sheets in the magnetotail observed by cluster. Space Sci. Rev. 122, 29–38 (2006). doi: 10.1007/s11214-006-6219-1 ADSCrossRefGoogle Scholar
  79. R. Nakamura, W. Baumjohann, M. Fujimoto, Y. Asano, A. Runov, C.J. Owen, A.N. Fazakerley, B. Klecker, H. Rème, E.A. Lucek, M. Andre, Y. Khotyaintsev, Cluster observations of an ion-scale current sheet in the magnetotail under the presence of a guide field. J. Geophys. Res. 113, 7 (2008). doi: 10.1029/2007JA012760 Google Scholar
  80. N.F. Ness, The Earth’s magnetic tail. J. Geophys. Res. 70, 2989–3005 (1965). doi: 10.1029/JZ070i013p02989 ADSCrossRefGoogle Scholar
  81. N.F. Ness, M.H. Acuna, L.F. Burlaga, J.E.P. Connerney, R.P. Lepping, Magnetic fields at Neptune. Science 246, 1473–1478 (1989). doi: 10.1126/science.246.4936.1473 ADSCrossRefGoogle Scholar
  82. E.N. Parker, Spontaneous current sheets in magnetic fields: with applications to stellar x-rays, in Spontaneous Current Sheets in Magnetic Fields: with Applications to Stellar x-Rays. International Series in Astronomy and Astrophysics, vol. 1 (Oxford University Press, New York, 1994) Google Scholar
  83. G. Paschmann, S.J. Schwartz, Issi Book on Analysis Methods for Multi-Spacecraft Data. ESA Special Publication, vol. 449 2000 Google Scholar
  84. A.A. Petrukovich, Dipole tilt effects in plasma sheet by: statistical model and extreme values. Ann. Geophys. 27, 1343–1352 (2009). doi: 10.5194/angeo-27-1343-2009 ADSCrossRefGoogle Scholar
  85. A.A. Petrukovich, Origins of plasma sheet \(B_{y}\). J. Geophys. Res. 116, 7217 (2011). doi: 10.1029/2010JA016386 Google Scholar
  86. A.A. Petrukovich, T. Mukai, S. Kokubun, S.A. Romanov, Y. Saito, T. Yamamoto, L.M. Zelenyi, Substorm-associated pressure variations in the magnetotail plasma sheet and lobe. J. Geophys. Res. 104, 4501–4514 (1999). doi: 10.1029/98JA02418 ADSCrossRefGoogle Scholar
  87. A.A. Petrukovich, W. Baumjohann, R. Nakamura, A. Balogh, T. Mukai, K.-H. Glassmeier, H. Reme, B. Klecker, Plasma sheet structure during strongly northward IMF. J. Geophys. Res. 108, 1258 (2003). doi: 10.1029/2002JA009738 CrossRefGoogle Scholar
  88. A.A. Petrukovich, T.L. Zhang, W. Baumjohann, R. Nakamura, A. Runov, A. Balogh, C. Carr, Oscillatory magnetic flux tube slippage in the plasma sheet. Ann. Geophys. 24, 1695–1704 (2006) ADSCrossRefGoogle Scholar
  89. A.A. Petrukovich, W. Baumjohann, R. Nakamura, A. Runov, A. Balogh, H. Rème, Thinning and stretching of the plasma sheet. J. Geophys. Res. 112, 10213 (2007). doi: 10.1029/2007JA012349 CrossRefGoogle Scholar
  90. A.A. Petrukovich, W. Baumjohann, R. Nakamura, A. Runov, Formation of current density profile in tilted current sheets. Ann. Geophys. 26, 3669–3676 (2008) ADSCrossRefGoogle Scholar
  91. A.A. Petrukovich, W. Baumjohann, R. Nakamura, H. Rème, Tailward and earthward flow onsets observed by cluster in a thin current sheet. J. Geophys. Res. 114, 9203 (2009). doi: 10.1029/2009JA014064 CrossRefGoogle Scholar
  92. A.A. Petrukovich, A.V. Artemyev, H.V. Malova, V.Y. Popov, R. Nakamura, L.M. Zelenyi, Embedded current sheets in the Earth magnetotail. J. Geophys. Res. 116, 1–25 (2011). doi: 10.1029/2010JA015749 Google Scholar
  93. A.A. Petrukovich, A.V. Artemyev, R. Nakamura, E.V. Panov, W. Baumjohann, Cluster observations of dBz/dx during growth phase magnetotail stretching intervals. J. Geophys. Res. 118, 5720–5730 (2013). doi: 10.1002/jgra.50550 CrossRefGoogle Scholar
  94. E. Priest, T. Forbes, Magnetic Reconnection 2000 CrossRefzbMATHGoogle Scholar
  95. P.L. Pritchett, F.V. Coroniti, A kinetic ballooning/interchange instability in the magnetotail. J. Geophys. Res. 115, 06301 (2010). doi: 10.1029/2009JA014752 Google Scholar
  96. P.L. Pritchett, F.V. Coroniti, Plasma sheet disruption by interchange-generated flow intrusions. Geophys. Res. Lett. 381, 10102 (2011). doi: 10.1029/2011GL047527 Google Scholar
  97. P.L. Pritchett, F.V. Coroniti, Structure and consequences of the kinetic ballooning/interchange instability in the magnetotail. J. Geophys. Res. 118, 146–159 (2013). doi: 10.1029/2012JA018143 CrossRefGoogle Scholar
  98. H. Rème, C. Aoustin, J.M. Bosqued, I. Dandouras, B. Lavraud, J.A. Sauvaud, A. Barthe, J. Bouyssou, T. Camus, O. Coeur-Joly, A. Cros, J. Cuvilo, F. Ducay, Y. Garbarowitz, J.L. Medale, E. Penou, H. Perrier, D. Romefort, J. Rouzaud, C. Vallat, D. Alcaydé, C. Jacquey, C. Mazelle, C. D’Uston, E. Möbius, L.M. Kistler, K. Crocker, M. Granoff, C. Mouikis, M. Popecki, M. Vosbury, B. Klecker, D. Hovestadt, H. Kucharek, E. Kuenneth, G. Paschmann, M. Scholer, N. Sckopke, E. Seidenschwang, C.W. Carlson, D.W. Curtis, C. Ingraham, R.P. Lin, J.P. McFadden, G.K. Parks, T. Phan, V. Formisano, E. Amata, M.B. Bavassano-Cattaneo, P. Baldetti, R. Bruno, G. Chionchio, A. di Lellis, M.F. Marcucci, G. Pallocchia, A. Korth, P.W. Daly, B. Graeve, H. Rosenbauer, V. Vasyliunas, M. McCarthy, M. Wilber, L. Eliasson, R. Lundin, S. Olsen, E.G. Shelley, S. Fuselier, A.G. Ghielmetti, W. Lennartsson, C.P. Escoubet, H. Balsiger, R. Friedel, J. Cao, R.A. Kovrazhkin, I. Papamastorakis, R. Pellat, J. Scudder, B. Sonnerup, First multispacecraft ion measurements in and near the Earth’s magnetosphere with the identical cluster ion spectrometry (CIS) experiment. Ann. Geophys. 19, 1303–1354 (2001). doi: 10.5194/angeo-19-1303-2001 ADSCrossRefGoogle Scholar
  99. F.J. Rich, V.M. Vasyliunas, R.A. Wolf, On the balance of stresses in the plasma sheet. J. Geophys. Res. 77, 4670–4676 (1972). doi: 10.1029/JA077i025p04670 ADSCrossRefGoogle Scholar
  100. Z.J. Rong, C. Shen, A.A. Petrukovich, W.X. Wan, Z.X. Liu, The analytic properties of the flapping current sheets in the Earth magnetotail. Planet. Space Sci. 58, 1215–1229 (2010). doi: 10.1016/j.pss.2010.04.016 ADSCrossRefGoogle Scholar
  101. Z.J. Rong, W.X. Wan, C. Shen, X. Li, M.W. Dunlop, A.A. Petrukovich, L.-N. Hau, T.L. Zhang, H. Rème, A.M. Du, E. Lucek, Profile of strong magnetic field \(\mathrm{B}_{y}\) component in magnetotail current sheets. J. Geophys. Res. 117, 6216 (2012). doi: 10.1029/2011JA017402 Google Scholar
  102. Z.J. Rong, W.X. Wan, C. Shen, A.A. Petrukovich, W. Baumjohann, M.W. Dunlop, Y.C. Zhang, Radial distribution of magnetic field in Earth magnetotail current sheet. Planet. Space Sci. (2014). doi: 10.1016/j.pss.2014.07.014 Google Scholar
  103. A. Runov, V.A. Sergeev, W. Baumjohann, R. Nakamura, S. Apatenkov, Y. Asano, M. Volwerk, Z. Vörös, T.L. Zhang, A. Petrukovich, A. Balogh, J. Sauvaud, B. Klecker, H. Rème, Electric current and magnetic field geometry in flapping magnetotail current sheets. Ann. Geophys. 23, 1391–1403 (2005a) ADSCrossRefGoogle Scholar
  104. A. Runov, V.A. Sergeev, R. Nakamura, W. Baumjohann, T.L. Zhang, Y. Asano, M. Volwerk, Z. Vörös, A. Balogh, H. Rème, Reconstruction of the magnetotail current sheet structure using multi-point cluster measurements. Planet. Space Sci. 53, 237–243 (2005b). doi: 10.1016/j.pss.2004.09.049 ADSCrossRefGoogle Scholar
  105. A. Runov, V.A. Sergeev, R. Nakamura, W. Baumjohann, S. Apatenkov, Y. Asano, T. Takada, M. Volwerk, Z. Vörös, T.L. Zhang, J. Sauvaud, H. Rème, A. Balogh, Local structure of the magnetotail current sheet: 2001 cluster observations. Ann. Geophys. 24, 247–262 (2006) ADSCrossRefGoogle Scholar
  106. K. Schindler, A self-consistent theory of the tail of the magnetosphere, in Earth’s Magnetospheric Processes, ed. by B.M. McCormac Astrophysics and Space Science Library, vol. 32, 1972, p. 200 CrossRefGoogle Scholar
  107. K. Schindler, A theory of the substorm mechanism. J. Geophys. Res. 79, 2803–2810 (1974). doi: 10.1029/JA079i019p02803 ADSCrossRefGoogle Scholar
  108. K. Schindler, Theories of tail structures. Space Sci. Rev. 23, 365–374 (1979). doi: 10.1007/BF00172245 ADSCrossRefGoogle Scholar
  109. K. Schindler, Physics of Space Plasma Activity (Cambridge University Press, Cambridge, 2006). doi: 10.2277/0521858976 CrossRefGoogle Scholar
  110. K. Schindler, J. Birn, Magnetotail theory. Space Sci. Rev. 44, 307–355 (1986). doi: 10.1007/BF00200819 ADSCrossRefGoogle Scholar
  111. K. Schindler, J. Birn, Models of two-dimensional embedded thin current sheets from Vlasov theory. J. Geophys. Res. 107, 1193 (2002). doi: 10.1029/2001JA000304 CrossRefGoogle Scholar
  112. K. Schindler, J. Birn, M. Hesse, Kinetic model of electric potentials in localized collisionless plasma structures under steady quasi-gyrotropic conditions. Phys. Plasmas 19(8), 082904 (2012). doi: 10.1063/1.4747162 ADSCrossRefGoogle Scholar
  113. V.A. Sergeev, D.G. Mitchell, C.T. Russell, D.J. Williams, Structure of the tail plasma/current sheet at \({\sim} 11 R_{E}\) and its changes in the course of a substorm. J. Geophys. Res. 98, 17345–17366 (1993). doi: 10.1029/93JA01151 ADSCrossRefGoogle Scholar
  114. V.A. Sergeev, D.A. Sormakov, S.V. Apatenkov, W. Baumjohann, R. Nakamura, A.V. Runov, T. Mukai, T. Nagai, Survey of large-amplitude flapping motions in the midtail current sheet. Ann. Geophys. 24, 2015–2024 (2006) ADSCrossRefGoogle Scholar
  115. A.S. Sharma, R. Nakamura, A. Runov, E.E. Grigorenko, H. Hasegawa, M. Hoshino, P. Louarn, C.J. Owen, A. Petrukovich, J. Sauvaud, V.S. Semenov, V.A. Sergeev, J.A. Slavin, B.U.Ö Sonnerup, L.M. Zelenyi, G. Fruit, S. Haaland, H. Malova, K. Snekvik, Transient and localized processes in the magnetotail: a review. Ann. Geophys. 26, 955–1006 (2008) ADSCrossRefGoogle Scholar
  116. M.A. Shay, M. Swisdak, Three-species collisionless reconnection: effect of \(\mathrm{O}^{+}\) on magnetotail reconnection. Phys. Rev. Lett. 93(17), 175001 (2004). doi: 10.1103/PhysRevLett.93.175001 ADSCrossRefGoogle Scholar
  117. C. Shen, Z.X. Liu, X. Li, M. Dunlop, E. Lucek, Z.J. Rong, Z.Q. Chen, C.P. Escoubet, H.V. Malova, A.T.Y. Lui, A. Fazakerley, A.P. Walsh, C. Mouikis, Flattened current sheet and its evolution in substorms. J. Geophys. Res. 113, 7 (2008). doi: 10.1029/2007JA012812 Google Scholar
  118. M.I. Sitnov, K. Schindler, Tearing stability of a multiscale magnetotail current sheet. Geophys. Res. Lett. 37, 8102 (2010). doi: 10.1029/2010GL042961 ADSCrossRefGoogle Scholar
  119. M.I. Sitnov, L.M. Zelenyi, H.V. Malova, A.S. Sharma, Thin current sheet embedded within a thicker plasma sheet: self-consistent kinetic theory. J. Geophys. Res. 105, 13029–13044 (2000). doi: 10.1029/1999JA000431 ADSCrossRefGoogle Scholar
  120. M.I. Sitnov, A.S. Sharma, P.N. Guzdar, P.H. Yoon, Reconnection onset in the tail of Earth’s magnetosphere. J. Geophys. Res. 107, 1256 (2002). doi: 10.1029/2001JA009148 CrossRefGoogle Scholar
  121. M.I. Sitnov, M. Swisdak, P.N. Guzdar, A. Runov, Structure and dynamics of a new class of thin current sheets. J. Geophys. Res. 111, 8204 (2006). doi: 10.1029/2005JA011517 CrossRefGoogle Scholar
  122. M.I. Sitnov, N. Buzulukova, M. Swisdak, V.G. Merkin, T.E. Moore, Spontaneous formation of dipolarization fronts and reconnection onset in the magnetotail. Geophys. Res. Lett. 40, 22–27 (2013). doi: 10.1029/2012GL054701 ADSCrossRefGoogle Scholar
  123. J.A. Slavin, B.J. Anderson, D.N. Baker, M. Benna, S.A. Boardsen, R.E. Gold, G.C. Ho, S.M. Imber, H. Korth, S.M. Krimigis, R.L. McNutt Jr., J.M. Raines, M. Sarantos, D. Schriver, S.C. Solomon, P. Trávníček, T.H. Zurbuchen, MESSENGER and Mariner 10 flyby observations of magnetotail structure and dynamics at Mercury. J. Geophys. Res. 117, 1215 (2012). doi: 10.1029/2011JA016900 Google Scholar
  124. E.J. Smith, L. Davis Jr., D.E. Jones, P.J. Coleman Jr., D.S. Colburn, P. Dyal, C.P. Sonett, A.M.A. Frandsen, The planetary magnetic field and magnetosphere of Jupiter: pioneer 10. J. Geophys. Res. 79, 3501 (1974). doi: 10.1029/JA079i025p03501 ADSCrossRefGoogle Scholar
  125. K. Snekvik, E. Tanskanen, N. Østgaard, L. Juusola, K. Laundal, E.I. Gordeev, A.L. Borg, Changes in the magnetotail configuration before near-Earth reconnection. J. Geophys. Res. 117, 2219 (2012). doi: 10.1029/2011JA017040 CrossRefGoogle Scholar
  126. T.W. Speiser, Particle trajectories in model current sheets, 1, analytical solutions. J. Geophys. Res. 70, 4219–4226 (1965). doi: 10.1029/JZ070i017p04219 ADSCrossRefGoogle Scholar
  127. T.W. Speiser, Particle trajectories in model current sheets, 2, applications to auroras using a geomagnetic tail model. J. Geophys. Res. 72, 3919–3932 (1967). doi: 10.1029/JZ072i015p03919 ADSCrossRefGoogle Scholar
  128. L.C. Steinhauer, M.P. McCarthy, E.C. Whipple, Multifluid model of a one-dimensional steady state magnetotail current sheet. J. Geophys. Res. 113, 4207 (2008). doi: 10.1029/2007JA012578 CrossRefGoogle Scholar
  129. K. Tummel, L. Chen, Z. Wang, X.Y. Wang, Y. Lin, Gyrokinetic theory of electrostatic lower-hybrid drift instabilities in a current sheet with guide field. Phys. Plasmas 21(5), 052104 (2014). doi: 10.1063/1.4875720 ADSCrossRefGoogle Scholar
  130. O.L. Vaisberg, L.M. Zeleny, Formation of the plasma mantle in the Venusian magnetosphere. Icarus 58, 412–430 (1984). doi: 10.1016/0019-1035(84)90087-3 ADSCrossRefGoogle Scholar
  131. I.Y. Vasko, A.V. Artemyev, V.Y. Popov, H.V. Malova, Kinetic models of two-dimensional plane and axially symmetric current sheets: group theory approach. Phys. Plasmas 20(2), 022110 (2013). doi: 10.1063/1.4792263 ADSCrossRefGoogle Scholar
  132. I.Y. Vasko, A.V. Artemyev, A.A. Petrukovich, R. Nakamura, L.M. Zelenyi, The structure of strongly tilted current sheets in the Earth magnetotail. Ann. Geophys. 32, 133–146 (2014a). doi: 10.5194/angeo-32-133-2014 ADSCrossRefGoogle Scholar
  133. I.Y. Vasko, L.M. Zelenyi, A.V. Artemyev, A.A. Petrukovich, H.V. Malova, T.L. Zhang, A.O. Fedorov, V.Y. Popov, S. Barabash, R. Nakamura, The structure of the Venusian current sheet. Planet. Space Sci. 96, 81–89 (2014b). doi: 10.1016/j.pss.2014.03.013 ADSCrossRefGoogle Scholar
  134. I.Y. Vasko, A.V. Artemyev, A.A. Petrukovich, H.V. Malova, Thin current sheets with strong bell-shape guide field: cluster observations and models with beams. Ann. Geophys. 32(10), 1349–1360 (2014). doi: 10.5194/angeo-32-1349-2014. ADSCrossRefGoogle Scholar
  135. C. Wang, L.R. Lyons, R.A. Wolf, T. Nagai, J.M. Weygand, A.T.Y. Lui, Plasma sheet \(PV^{5/3}\) and \(nV\) and associated plasma and energy transport for different convection strengths and AE levels. J. Geophys. Res. 114, 1–2 (2009). doi: 10.1029/2008JA013849 Google Scholar
  136. E. Whipple, R. Puetter, M. Rosenberg, A two-dimensional, time-dependent, near-Earth magnetotail. Adv. Space Res. 11, 133–142 (1991). doi: 10.1016/0273-1177(91)90024-E ADSCrossRefGoogle Scholar
  137. B. Wilken, P.W. Daly, U. Mall, K. Aarsnes, D.N. Baker, R.D. Belian, J.B. Blake, H. Borg, J. Büchner, M. Carter, J.F. Fennell, R. Friedel, T.A. Fritz, F. Gliem, M. Grande, K. Kecskemety, G. Kettmann, A. Korth, S. Livi, S. McKenna-Lawlor, K. Mursula, B. Nikutowski, C.H. Perry, Z.Y. Pu, J. Roeder, G.D. Reeves, E.T. Sarris, I. Sandahl, F. Søraas, J. Woch, Q.-G. Zong, First results from the RAPID imaging energetic particle spectrometer on board cluster. Ann. Geophys. 19, 1355–1366 (2001). doi: 10.5194/angeo-19-1355-2001 ADSCrossRefGoogle Scholar
  138. P.H. Yoon, A.T.Y. Lui, On the drift-sausage mode in one-dimensional current sheet. J. Geophys. Res. 106, 1939–1948 (2001). doi: 10.1029/2000JA000130 ADSCrossRefGoogle Scholar
  139. P.H. Yoon, A.T.Y. Lui, Model of ion- or electron-dominated current sheet. J. Geophys. Res. 109, 11213 (2004). doi: 10.1029/2004JA010555 CrossRefGoogle Scholar
  140. P.H. Yoon, A.T.Y. Lui, A class of exact two-dimensional kinetic current sheet equilibria. J. Geophys. Res. 110, 1202 (2005). doi: 10.1029/2003JA010308 CrossRefGoogle Scholar
  141. L.M. Zelenyi, A.V. Artemyev, A.A. Petrukovich, Earthward electric field in the magnetotail: cluster observations and theoretical estimates. Geophys. Res. Lett. 37, 6105 (2010). doi: 10.1029/2009GL042099 ADSCrossRefGoogle Scholar
  142. L.M. Zelenyi, M.I. Sitnov, H.V. Malova, A.S. Sharma, Thin and superthin ion current sheets. quasi-adiabatic and nonadiabatic models. Nonlinear Process. Geophys. 7, 127–139 (2000) ADSCrossRefGoogle Scholar
  143. L.M. Zelenyi, H.V. Malova, V.Y. Popov, D. Delcourt, A.S. Sharma, Nonlinear equilibrium structure of thin currents sheets: influence of electron pressure anisotropy. Nonlinear Process. Geophys. 11, 579–587 (2004) ADSCrossRefGoogle Scholar
  144. L.M. Zelenyi, H.V. Malova, V.Y. Popov, D.C. Delcourt, N.Y. Ganushkina, A.S. Sharma, “Matreshka” model of multilayered current sheet. Geophys. Res. Lett. 33, 5105 (2006). doi: 10.1029/2005GL025117 ADSCrossRefGoogle Scholar
  145. L.M. Zelenyi, A.V. Artemyev, H.V. Malova, V.Y. Popov, Marginal stability of thin current sheets in the Earth’s magnetotail. J. Atmos. Sol.-Terr. Phys. 70, 325–333 (2008). doi: 10.1016/j.jastp.2007.08.019 ADSCrossRefGoogle Scholar
  146. L.M. Zelenyi, A.V. Artemyev, K.V. Malova, A.A. Petrukovich, R. Nakamura, Metastability of current sheets. Phys. Usp. 53, 933–941 (2010). doi: 10.3367/UFNe.0180.201009g.0973 ADSCrossRefGoogle Scholar
  147. L.M. Zelenyi, H.V. Malova, A.V. Artemyev, V.Y. Popov, A.A. Petrukovich, Thin current sheets in collisionless plasma: equilibrium structure, plasma instabilities, and particle acceleration. Plasma Phys. Rep. 37, 118–160 (2011). doi: 10.1134/S1063780X1102005X ADSCrossRefGoogle Scholar
  148. L.M. Zelenyi, A.I. Neishtadt, A.V. Artemyev, D.L. Vainchtein, H.V. Malova, Quasiadiabatic dynamics of charged particles in a space plasma. Phys. Usp. 56, 347–394 (2013). doi: 10.3367/UFNe.0183.201304b.0365 ADSCrossRefGoogle Scholar
  149. T.L. Zhang, W. Baumjohann, R. Nakamura, A. Balogh, K. Glassmeier, A wavy twisted neutral sheet observed by CLUSTER. Geophys. Res. Lett. 29(19), 190000 (2002). doi: 10.1029/2002GL015544 CrossRefGoogle Scholar
  150. X. Zhou, V. Angelopoulos, A. Runov, M.I. Sitnov, F. Coroniti, P. Pritchett, Z.Y. Pu, Q. Zong, J.P. McFadden, D. Larson, K. Glassmeier, Thin current sheet in the substorm late growth phase: modeling of THEMIS observations. J. Geophys. Res. 114, 3223 (2009). doi: 10.1029/2008JA013777 Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Anatoli Petrukovich
    • 1
  • Anton Artemyev
    • 1
    Email author
  • Ivan Vasko
    • 1
  • Rumi Nakamura
    • 2
  • Lev Zelenyi
    • 1
  1. 1.Space Research Institute (IKI)RASMoscowRussia
  2. 2.Space Research Institute (IWF)OAWGrazAustria

Personalised recommendations