Advertisement

Plasma Sources in Planetary Magnetospheres: Mercury

  • J. M. Raines
  • G. A. DiBraccio
  • T. A. Cassidy
  • D. C. Delcourt
  • M. Fujimoto
  • X. Jia
  • V. Mangano
  • A. Milillo
  • M. Sarantos
  • J. A. Slavin
  • P. Wurz
Chapter
Part of the Space Sciences Series of ISSI book series (SSSI, volume 52)

Keywords

Solar Wind Plasma Sheet Solar Wind Plasma Hybrid Simulation Reconnection Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. I.I. Alexeev, E.S. Belenkaya, J.A. Slavin, H. Korth, B.J. Anderson, D.N. Baker, S.A. Boardsen, C.L. Johnson, M.E. Purucker, M. Sarantos, S.C. Solomon, Mercury’s magnetospheric magnetic field after the first two MESSENGER flybys. Icarus 209, 23–39 (2010) ADSCrossRefGoogle Scholar
  2. B.J. Anderson, M.H. Acuna, D.A. Lohr, J. Scheifele, A. Raval, H. Korth, J.A. Slavin, The magnetometer instrument on MESSENGER. Space Sci. Rev. 131, 417–450 (2007) ADSCrossRefGoogle Scholar
  3. B.J. Anderson et al., The global magnetic field of Mercury from MESSENGER orbital observations. Science 333, 1859–1862 (2011). doi: 10.1126/science.1211001 ADSCrossRefGoogle Scholar
  4. B.J. Anderson, C.L. Johnson, H. Korth, R.M. Winslow, J.E. Borovsky, M.E. Purucker, J.A. Slavin, S.C. Solomon, M.T. Zuber, R.L. McNutt Jr., Low-degree structure in Mercury’s planetary magnetic field. J. Geophys. Res. 117, E00L12 (2012). doi: 10.1029/2012JE004159 Google Scholar
  5. B.J. Anderson, C.L. Johnson, H. Korth, J.A. Slavin, R.M. Winslow, R.J. Phillips, R.L. McNutt Jr., S.C. Solomon, Steady-state field-aligned currents at Mercury. Geophys. Res. Lett. 41, 7444–7452 (2014). doi: 10.1002/2014GL061677 ADSCrossRefGoogle Scholar
  6. G.B. Andrews et al., The energetic particle and plasma spectrometer instrument on the MESSENGER spacecraft. Space Sci. Rev. 131, 523–556 (2007). doi: 10.1007/s11214-007-9272-5 ADSCrossRefGoogle Scholar
  7. V. Angelopoulos, C.F. Kennel, F.V. Coroniti, R. Pellat, M.G. Kivelson, R.J. Walker, C.T. Russell, W. Baumjohann, W.C. Feldman, J.T. Gosling, Statistical characteristics of bursty bulk flow events. J. Geophys. Res. 99, 21257–21280 (1994) ADSCrossRefGoogle Scholar
  8. T.P. Armstrong, S.M. Krimigis, L.J. Lanzerotti, A reinterpretation of the reported energetic particle fluxes in the vicinity of Mercury. J. Geophys. Res. 80, 4015–4017 (1975). doi: 10.1029/JA080i028p04015 ADSCrossRefGoogle Scholar
  9. M. Ashour-Abdalla, L.M. Zelenyi, J.-M. Bosqued, V. Peroomian, Z. Whang, D. Schriver, R.L. Richard, The formation of the wall region: Consequences in the near-Earth magnetotail. Geophys. Res. Lett. 19, 1739 (1992) ADSCrossRefGoogle Scholar
  10. M. Ashour-Abdalla, M. El-Alaoui, M.L. Goldstein, M. Zhou, D. Schriver, R. Richard, R. Walker, M.G. Kivelson, K.J. Hwang, Observations and simulations of non-local acceleration of electrons in magnetotail magnetic reconnection events. Nat. Phys. 7, 360–365 (2011) CrossRefGoogle Scholar
  11. D.N. Baker, J.A. Simpson, J.H. Eraker, A model of impulsive acceleration and transport of energetic particles in Mercury’s magnetosphere. J. Geophys. Res. 91, 8742–8748 (1986) ADSCrossRefGoogle Scholar
  12. D.N. Baker, T.I. Pulkkinen, V. Angelopoulos, W. Baumjohann, R.L. McPherron, Neutral line model of substorms: Past results and present view. J. Geophys. Res. 101, 12975–13010 (1996) ADSCrossRefGoogle Scholar
  13. D.N. Baker, G. Poh, D. Odstrcil, C.N. Arge, M. Benna, C.L. Johnson, H. Korth, D.J. Gershman, G.C. Ho, W.E. McClintock, T.A. Cassidy, A. Merkel, J.M. Raines, D. Schriver, J.A. Slavin, S.C. Solomon, Solar wind forcing at Mercury: WSA-ENLIL model results. J. Geophys. Res. Space Phys. 118, 45–57 (2013) ADSCrossRefGoogle Scholar
  14. W. Baumjohann, G. Paschmann, Determination of the polytropic index in the plasma sheet. Geophys. Res. Lett. 16, 295–298 (1989) ADSCrossRefGoogle Scholar
  15. R. Behrisch, W. Eckstein, Sputtering by Particle Bombardment: Experiments and Computer Calculations from Threshold to MeV Energies (Springer, Berlin, 2007), p. 110 Google Scholar
  16. J. Benkhoff, J. van Casteren, H. Hayakawa, M. Fujimoto, H. Laakso, M. Novara, P. Ferri, H.R. Middleton, R. Ziethe, BepiColombo-comprehensive exploration of Mercury: Mission overview and science goals. Planet. Space Sci. 58, 2–20 (2010) ADSCrossRefGoogle Scholar
  17. M. Benna et al., Modeling of the magnetosphere of Mercury at the time of the first MESSENGER flyby. Icarus 209, 3–10 (2010). doi: 10.1016/j.icarus.2009.11.036 ADSCrossRefGoogle Scholar
  18. A. Benninghoven, Developments in secondary ion mass spectroscopy and applications to surface studies. Surf. Sci. 53, 596–625 (1975). doi: 10.1016/0039-6028(75)90158-2 ADSCrossRefGoogle Scholar
  19. T.A. Bida, R.M. Killen, T.H. Morgan, Discovery of calcium in Mercury’s atmosphere. Nature 404, 159–161 (2000) ADSCrossRefGoogle Scholar
  20. S.A. Boardsen, B.J. Anderson, M.H. Acuña, J.A. Slavin, H. Korth, S.C. Solomon, Narrow-band ultra-low-frequency wave observations by MESSENGER during its January 2008 flyby through Mercury’s magnetosphere. Geophys. Res. Lett. 36, L01104 (2009). doi: 10.1029/2008GL036034 ADSGoogle Scholar
  21. S.A. Boardsen, T. Sundberg, J.A. Slavin, B.J. Anderson, H. Korth, S.C. Solomon, L.G. Blomberg, Observations of Kelvin-Helmholtz waves along the dusk-side boundary of Mercury’s magnetosphere during MESSENGER’s third flyby. Geophys. Res. Lett. 37, L12101 (2010). doi: 10.1029/2010GL043606 ADSCrossRefGoogle Scholar
  22. S.A. Boardsen, J.A. Slavin, B.J. Anderson, H. Korth, D. Schriver, S.C. Solomon, Survey of coherent \(\sim1~\mbox{Hz}\) waves in Mercury’s inner magnetosphere from MESSENGER observations. J. Geophys. Res. 117, A00M05 (2012). doi: 10.1029/2012JA017822 ADSGoogle Scholar
  23. P. Borin, M. Bruno, G. Cremonese, F. Marzari, Estimate of the neutral atoms’ contribution to the Mercury exosphere caused by a new flux of micrometeoroids. Astron. Astrophys. 517, A89 (2010) ADSCrossRefGoogle Scholar
  24. A.L. Broadfoot, S. Kumar, M.J.S. Belton, Mercury’s atmosphere from Mariner 10: Preliminary results. Science 185, 166–169 (1974) ADSCrossRefGoogle Scholar
  25. A.L. Broadfoot, D.E. Shemansky, S. Kumar, Mariner 10: Mercury atmosphere. Geophys. Res. Lett. 3, 577–580 (1976) ADSCrossRefGoogle Scholar
  26. A.L. Broadfoot, S.S. Clapp, F.E. Stuart, Mariner 10 ultraviolet spectrometer: Airglow experiment. Space Sci. Instrum. 3, 199–208 (1977) ADSGoogle Scholar
  27. M. Bruno, G. Cremonese, S. Marchi, Neutral sodium atoms release from the surfaces of the Moon and Mercury induced by meteoroid impacts. Planet. Space Sci. 55, 1494–1501 (2007) ADSCrossRefGoogle Scholar
  28. J. Büchner, L.M. Zelenyi, Regular and chaotic charged particle motion in magnetotaillike field reversals: 1. Basic theory of trapped motion. J. Geophys. Res. 94, 11821–11842 (1989). doi: 10.1029/JA094iA09p11821 ADSCrossRefGoogle Scholar
  29. M.H. Burger, R.M. Killen, R.J. Vervack, E.T. Bradley, W.E. McClintock, M. Sarantos, M. Benna, N. Mouawad, Monte Carlo modeling of sodium in Mercury’s exosphere during the first two MESSENGER flybys. Icarus 209, 63–74 (2010). doi: 10.1016/j.icarus.2010.05.007 ADSCrossRefGoogle Scholar
  30. M.H. Burger, R.M. Killen, W.E. McClintock, R.J. Vervack Jr., A.W. Merkel, A.L. Sprague, M. Sarantos, Modeling MESSENGER observations of calcium in Mercury’s exosphere. J. Geophys. Res. 117, E00L11 (2012). doi: 10.1029/2012JE004158 ADSGoogle Scholar
  31. M.H. Burger, R.M. Killen, W.E. McClintock, A.W. Merkel, R.J. Vervack Jr., T.A. Cassidy, M. Sarantos, Seasonal variations in Mercury’s dayside calcium exosphere. Icarus 238, 51–58 (2014) ADSCrossRefGoogle Scholar
  32. L.F. Burlaga, Magnetic fields and plasmas in the inner heliosphere: Helios results. Planet. Space Sci. 49, 1619–1627 (2001) ADSCrossRefGoogle Scholar
  33. M.N. Caan, R.L. Mcpherron, C.T. Russell, Solar wind and substorm-related changes in lobes of geomagnetic tail. J. Geophys. Res. 78, 8087–8096 (1973) ADSCrossRefGoogle Scholar
  34. T.A. Cassidy, A.W. Merkel, M.H. Burger, M. Sarantos, R.M. Killen, W.E. McClintock, R.J. Vervack, Mercury’s seasonal sodium exosphere: MESSENGER orbital observations. Icarus 248, 547–559 (2015). doi: 10.1016/j.icarus.2014.10.037 ADSCrossRefGoogle Scholar
  35. S.P. Christon, J. Feynman, J.A. Slavin, Dynamic substorm injections—Similar magnetospheric phenomena at Earth and Mercury, in Magnetotail Physics, ed. by A.T.Y. Lui (Johns Hopkins University Press, Baltimore, 1987), pp. 393–400 Google Scholar
  36. M.J. Cintala, Impact induced thermal effects in the lunar and Mercurian regoliths. J. Geophys. Res. 97, 947–973 (1992) ADSCrossRefGoogle Scholar
  37. J.B. Cladis, Parallel acceleration and transport of ions from polar ionosphere to plasma sheet. Geophys. Res. Lett. 13, 893 (1986) ADSCrossRefGoogle Scholar
  38. J.B. Cladis, H.L. Collin, O.W. Lennartsson, T.E. Moore, W.K. Peterson, C.T. Russell, Observations of centrifugal acceleration during compression of magnetosphere. Geophys. Res. Lett. 27, 915 (2000) ADSCrossRefGoogle Scholar
  39. S.W.H. Cowley, The causes of convection in the Earth’s magnetosphere: A review of developments during the IMS. J. Geophys. Res. 20, 531–565 (1982) Google Scholar
  40. S.W.H. Cowley, The distant geomagnetic tail in theory and observation, in AGU Monograph on “Magnetic Reconnection in Space and Laboratory Plasmas”, vol. 30 (1984), p. 228 CrossRefGoogle Scholar
  41. G. Cremonese, M. Bruno, V. Mangano, S. Marchi, A. Milillo, Release of neutral sodium atoms from the surface of Mercury induced by meteoroid impacts. Icarus 177, 122–128 (2005) ADSCrossRefGoogle Scholar
  42. D.C. Delcourt, Particle acceleration by inductive electric fields in the inner magnetosphere. J. Atmos. Sol.-Terr. Phys. 64, 551 (2002) ADSCrossRefGoogle Scholar
  43. D.C. Delcourt, On the supply of heavy planetary material to the magnetotail of Mercury. Ann. Geophys. 31, 1673 (2013) ADSCrossRefGoogle Scholar
  44. D.C. Delcourt, J.-A. Sauvaud, R.F. Martin Jr., T.E. Moore, On the nonadiabatic precipitation of ions from the near-Earth plasma sheet. J. Geophys. Res. 101, 17409 (1996) ADSCrossRefGoogle Scholar
  45. D.C. Delcourt, T.E. Moore, S. Orsini, A. Millilo, J.-A. Sauvaud, Centrifugal acceleration of ions near Mercury. Geophys. Res. Lett. 29, 32 (2002). doi: 10.1029/2001GL013829 ADSCrossRefGoogle Scholar
  46. D.C. Delcourt, S. Grimald, F. Leblanc, J.-J. Berthelier, A. Millilo, A. Mura, S. Orsini, T.E. Moore, A quantitative model of the planetary \(\mathrm{Na}^{+}\) contribution to Mercury’s magnetosphere. Ann. Geophys. 21, 1723–1736 (2003). doi: 10.5194/angeo-21-1723-2003 ADSCrossRefGoogle Scholar
  47. D.C. Delcourt, T.E. Moore, M.-C. Fok, On the effect of IMF turning on ion dynamics at Mercury. Ann. Geophys. 29, 987 (2011) ADSCrossRefGoogle Scholar
  48. D.C. Delcourt, K. Seki, N. Terada, T.E. Moore, Centrifugally stimulated exospheric ion escape at Mercury. Geophys. Res. Lett. 39, L22105 (2012). doi: 10.1029/2012GL054085 ADSCrossRefGoogle Scholar
  49. G.A. DiBraccio, J.A. Slavin, S.A. Boardsen, B.J. Anderson, H. Korth, T.H. Zurbuchen, J.M. Raines, D.N. Baker, R.L. McNutt Jr., S.C. Solomon, MESSENGER observations of magnetopause structure and dynamics at Mercury. J. Geophys. Res. Space Phys. 118, 997–1008 (2013). doi: 10.1002/jgra.50123 ADSCrossRefGoogle Scholar
  50. G.A. DiBraccio, J.A. Slavin, S.M. Imber, D.J. Gershman, J.M. Raines, C.M. Jackman, S.A. Boardsen, B.J. Anderson, H. Korth, T.H. Zurbuchen, R.L. McNutt Jr., S.C. Solomon, MESSENGER observations of flux ropes in Mercury’s magnetotail. Planet. Space Sci. 115, 77–89 (2015a). doi: 10.1016/j.pss.2014.12.016 ADSCrossRefGoogle Scholar
  51. G.A. DiBraccio, J.A. Slavin, J.M. Raines, D.J. Gershman, P.J. Tracy, S.A. Boardsen, T.H. Zurbuchen, B.J. Anderson, H. Korth, R.L. McNutt Jr., S.C. Solomon, First observations of Mercury’s plasma mantle by MESSENGER. Geophys. Res. Lett. (2015b, accepted) Google Scholar
  52. D.L. Domingue, A.L. Sprague, D.M. Hunten, Dependence of Mercurian atmospheric column abundance estimations on surface-reflectance modeling. Icarus 128, 75–82 (1997) ADSCrossRefGoogle Scholar
  53. D.L. Domingue, P.L. Koehn, R.M. Killen, A.L. Sprague, M. Sarantos, A.F. Cheng, E.T. Bradley, W.E. McClintock, Mercury’s atmosphere: A surface-bounded exosphere. Space Sci. Rev. 131, 161–186 (2007) ADSCrossRefGoogle Scholar
  54. A. Doressoundiram, F. Leblanc, C. Foellmi, S. Erard, Metallic species in Mercury’s exosphere: EMMI/New technology telescope observations. Astron. J. 137, 3859–3863 (2009) ADSCrossRefGoogle Scholar
  55. J.W. Dungey, Interplanetary magnetic field and the auroral zones. Phys. Rev. Lett. 6, 47–48 (1961). doi: 10.1103/PhysRevLett.6.47 ADSCrossRefGoogle Scholar
  56. R.C. Elphic, H.O. Funsten, B.L. Barraclough, D.J. McComas, M.T. Paffet, D.T. Vaniman, G. Heiken, Lunar surface composition and solar wind-induced secondary ion mass spectrometry. Geophys. Res. Lett. 18, 2165–2168 (1991). doi: 10.1029/91GL02669 ADSCrossRefGoogle Scholar
  57. J.H. Eraker, J.A. Simpson, Acceleration of charged particles in Mercury’s magnetosphere. J. Geophys. Res. 91, 9973–9993 (1986). doi: 10.1029/JA091iA09p09973 ADSCrossRefGoogle Scholar
  58. D.H. Fairfield, Average and unusual locations for the Earth’s magnetopause and bow shock. J. Geophys. Res. 76, 6700–6716 (1971). doi: 10.1029/JA076i028p06700 ADSCrossRefGoogle Scholar
  59. W.M. Farrell, J.S. Halekas, R.M. Killen, G.T. Delory, N. Gross, L.V. Bleacher, D. Krauss-Varben, P. Travnicek, D. Hurley, T.J. Stubbs, M.I. Zimmerman, T.L. Jackson, Solar-Storm/Lunar Atmosphere Model (SSLAM): An overview of the effort and description of the driving storm environment. J. Geophys. Res. 117, E00K04 (2012). doi: 10.1029/2012JE004070 ADSGoogle Scholar
  60. G. Fjelbo, A. Kliore, D. Sweetnam, P. Esposito, B. Seidel, T. Howard, The occultation of Mariner 10 by Mercury. Icarus 29, 407–415 (1976). doi: 10.1016/0019-1035(76)90063-4 Google Scholar
  61. D.J. Gershman, T.H. Zurbuchen, L.A. Fisk, J.A. Gilbert, J.M. Raines, B.J. Anderson, C.W. Smith, H. Korth, S.C. Solomon, Solar wind alpha particles and heavy ions in the inner heliosphere observed with MESSENGER. J. Geophys. Res. 117, A00M02 (2012). doi: 10.1029/2012JA017829 ADSGoogle Scholar
  62. D.J. Gershman, J.A. Slavin, J.M. Raines, T.H. Zurbuchen, B.J. Anderson, H. Korth, D.N. Baker, S.C. Solomon, Magnetic flux pileup and plasma depletion in Mercury’s subsolar magnetosheath. J. Geophys. Res. 118, 7181–7199 (2013). doi: 10.1002/2013JA019244 CrossRefGoogle Scholar
  63. D.J. Gershman, J.A. Slavin, J.M. Raines, T.H. Zurbuchen, B.J. Anderson, H. Korth, D.N. Baker, S.C. Solomon, Ion kinetic properties in Mercury’s premidnight plasma sheet. Geophys. Res. Lett. 41, 5740–5747 (2014). doi: 10.1002/2014GL060468 ADSCrossRefGoogle Scholar
  64. D.J. Gershman, J.M. Raines, J.A. Slavin, T.H. Zurbuchen, T. Sundberg, S.A. Boardsen, B.J. Anderson, H. Korth, S.C. Solomon, MESSENGER observations of multi-scale Kelvin-Helmholtz vortices at Mercury. J. Geophys. Res. Space Phys. (2015, in revision) Google Scholar
  65. K.-H. Glassmeier, J. Grosser, U. Auster, D. Constantinescu, Y. Narita, S. Stellmach, Electromagnetic induction effects and dynamo action in the Hermean system. Space Sci. Rev. 132, 511–527 (2007). doi: 10.1007/s11214-007-9244-9 ADSCrossRefGoogle Scholar
  66. B. Hapke, Bidirectional reflectance spectroscopy: 1. Theory. J. Geophys. Res. 86, 3039–3054 (1981) ADSCrossRefGoogle Scholar
  67. B. Hapke, Bidirectional reflectance spectroscopy: 3. Correction for macroscopic roughness. Icarus 59, 41–59 (1984) ADSCrossRefGoogle Scholar
  68. B. Hapke, Bidirectional reflectance spectroscopy: 4. The extinction coefficient and the opposition effect. Icarus 67, 264–280 (1986) ADSCrossRefGoogle Scholar
  69. M. Hesse, M.G. Kivelson, The formation and structure of flux ropes in the magnetotail, in New Perspectives on the Earth’s Magnetotail, ed. by A. Nishida, D.N. Baker, S.W.H. Cowley (American Geophysical Union, Washington, 1998). doi: 10.1029/GM105p0139 Google Scholar
  70. M.A. Hidalgo, C. Cid, A.F. Vinas, J. Sequeiros, A non-force-free approach to the topology of magnetic clouds in the solar wind. J. Geophys. Res. 107, 1002 (2002a). doi: 10.1029/2001JA900100 CrossRefGoogle Scholar
  71. M.A. Hidalgo, T. Nieves-Chinchilla, C. Cid, Elliptical cross-section model for the magnetic topology of magnetic clouds. Geophys. Res. Lett. 29, 1637 (2002b). doi: 10.1029/2001GL013875 ADSCrossRefGoogle Scholar
  72. T.W. Hill, A.J. Dessler, R.A. Wolf, Mercury and Mars: The role of ionospheric conductivity in the acceleration of magnetospheric particles. Geophys. Res. Lett. 3, 429–432 (1976). doi: 10.1029/GL003i008p00429 ADSCrossRefGoogle Scholar
  73. G.C. Ho, S.M. Krimigis, R.E. Gold, D.N. Baker, B.J. Anderson, H. Korth, J.A. Slavin, R.L. McNutt Jr., R.M. Winslow, S.C. Solomon, Spatial distribution and spectral characteristics of energetic electrons in Mercury’s magnetosphere. J. Geophys. Res. 117, A00M04 (2012). doi: 10.1029/2012JA017983 ADSGoogle Scholar
  74. E.W. Hones, J. Birn, D.N. Baker, S.J. Bame, W.C. Feldman, D.J. Mccomas, R.D. Zwickl, J.A. Slavin, E.J. Smith, B.T. Tsurutani, Detailed examination of a plasmoid in the distant magnetotail with ISEE-3. Geophys. Res. Lett. 11, 1046–1049 (1984) ADSCrossRefGoogle Scholar
  75. L.L. Hood, G. Schubert, Inhibition of solar wind impingement on Mercury by planetary induction currents. J. Geophys. Res. 84, 2641–2647 (1979) ADSCrossRefGoogle Scholar
  76. J.L. Horwitz, Features of ion trajectories in the polar magnetosphere. Geophys. Res. Lett. 11, 1111 (1984) ADSCrossRefGoogle Scholar
  77. C.-S. Huang, A.D. DeJong, X. Cai, Magnetic flux in the magnetotail and polar cap during sawteeth, isolated substorms, and steady magnetospheric convection events. J. Geophys. Res. 114, A07202 (2009). doi: 10.1029/2009JA014232 ADSGoogle Scholar
  78. W.F. Huebner, J.J. Keady, S.P. Lyon, Solar photo rates for planetary atmospheres and atmospheric pollutants. Astrophys. Space Sci. 195, 1–289 (1992) ADSCrossRefGoogle Scholar
  79. D.M. Hunten, T.H. Morgan, D.E. Shemansky, The Mercury atmosphere, in Mercury, ed. by F. Vilas, C.R. Chapman, M.S. Matthews (University of Arizona Press, Tucson, 1988), pp. 562–612 Google Scholar
  80. A. Ieda, S. Machida, T. Mukai, Y. Saito, T. Yamamoto, A. Nishida, T. Terasawa, S. Kokubun, Statistical analysis of the plasmoid evolution with Geotail observations. J. Geophys. Res. 103, 4453–4465 (1998) ADSCrossRefGoogle Scholar
  81. S.M. Imber, J.A. Slavin, H.U. Auster, V. Angelopoulos, A THEMIS survey of flux ropes and traveling compression regions: Location of the near-Earth reconnection site during solar minimum. J. Geophys. Res. 116, A02201 (2011). doi: 10.1029/2010JA016026 ADSGoogle Scholar
  82. S.M. Imber, J.A. Slavin, S.A. Boardsen, B.J. Anderson, H. Korth, R.L. McNutt Jr., S.C. Solomon, MESSENGER observations of large dayside flux transfer events: Do they drive Mercury’s substorm cycle? J. Geophys. Res. Space Phys. 119, 5613–5623 (2014). doi: 10.1002/2014JA019884 ADSCrossRefGoogle Scholar
  83. W.H. Ip, A. Kopp, MHD simulations of the solar wind interaction with Mercury. J. Geophys. Res. 107, 1348 (2002). doi: 10.1029/2001JA009171 CrossRefGoogle Scholar
  84. X. Jia, J.A. Slavin, T.I. Gombosi, L. Daldorff, G. Toth, B. van de Holst, Global MHD simulations of Mercury’s magnetosphere with coupled planetary interior: Induction effect of the planetary conducting core on the global interaction. J. Geophys. Res. Space Phys. (2015). doi: 10.1002/2015JA021143 Google Scholar
  85. R.E. Johnson, R. Baragiola, Lunar surface: Sputtering and secondary ion mass spectrometry. Geophys. Res. Lett. 18, 2169–2172 (1991) ADSCrossRefGoogle Scholar
  86. K. Kabin, T.I. Gombosi, D.L. DeZeeuw, K.G. Powell, Interaction of Mercury with the solar wind. Icarus 143, 397–406 (2000) ADSCrossRefGoogle Scholar
  87. E. Kallio, P. Janhunen, Modelling the solar wind interaction with Mercury by a quasi-neutral hybrid model. Ann. Geophys. 21, 2133 (2003) ADSCrossRefGoogle Scholar
  88. S. Kameda, I. Yoshikawa, M. Kagitani, S. Okano, Interplanetary dust distribution and temporal variability of Mercury’s atmospheric Na. Geophys. Res. Lett. 36, L15201 (2009). doi: 10.1029/2009GL039036 ADSCrossRefGoogle Scholar
  89. A. Kidder, R.M. Winglee, E.M. Harnett, Erosion of the dayside magnetosphere at Mercury in association with ion outflows and flux rope generation. J. Geophys. Res. 113, A09223 (2008). doi: 10.1029/2008JA013038 ADSGoogle Scholar
  90. R.M. Killen, J.M. Hahn, Impact vaporization as a possible source of Mercury’s calcium exosphere. Icarus 250, 230–237 (2015). doi: 10.1016/j.icarus.2014.11.035 ADSCrossRefGoogle Scholar
  91. R.M. Killen, W.H. Ip, The surface-bounded atmospheres of Mercury and the Moon. Rev. Geophys. 37, 361–406 (1999) ADSCrossRefGoogle Scholar
  92. R.M. Killen, A.E. Potter, P. Reiff, M. Sarantos, B.V. Jackson, P. Hick, B. Giles, Evidence for space weather at Mercury. J. Geophys. Res. 106, 20509–20525 (2001) ADSCrossRefGoogle Scholar
  93. R.M. Killen, M. Sarantos, A.E. Potter, P. Reiff, Source rates and ion recycling rates for Na and K in Mercury’s atmosphere. Icarus 171, 1–19 (2004) ADSCrossRefGoogle Scholar
  94. R. Killen, G. Cremonese, H. Lammer, S. Orsini, A.E. Potter, A.L. Sprague, P. Wurz, M. Khodachenko, H.I.M. Lichtenegger, A. Milillo, A. Mura, Processes that promote and deplete the exosphere of Mercury. Space Sci. Rev. 132, 433–509 (2007) ADSCrossRefGoogle Scholar
  95. R. Killen, D. Shemansky, N. Mouawad, Expected emission from Mercury’s exospheric species, and their ultraviolet-visible signatures. Astrophys. J. Suppl. Ser. 181, 351–359 (2009) ADSCrossRefGoogle Scholar
  96. M.G. Kivelson, A.J. Ridley, Saturation of the polar cap potential: Inference from Alfvén wing arguments. J. Geophys. Res. 113, A05214 (2008). doi: 10.1029/2007JA012302 ADSGoogle Scholar
  97. H. Korth, B.J. Anderson, J.M. Raines, J.A. Slavin, T.H. Zurbuchen, C.L. Johnson, M.E. Purucker, R.M. Winslow, S.C. Solomon, R.L. McNutt Jr., Plasma pressure in Mercury’s equatorial magnetosphere derived from MESSENGER magnetometer observations. Geophys. Res. Lett. 38, L22201 (2011). doi: 10.1029/2011GL049451 ADSCrossRefGoogle Scholar
  98. H. Korth, B.J. Anderson, D.J. Gershman, J.M. Raines, J.A. Slavin, T.H. Zurbuchen, S.C. Solomon, R.L. McNutt Jr., Plasma distribution in Mercury’s magnetosphere derived from MESSENGER magnetometer and fast imaging plasma spectrometer observations. J. Geophys. Res. Space Phys. 119, 2917–2932 (2014). doi: 10.1002/2013JA019567 ADSCrossRefGoogle Scholar
  99. M.M. Kuznetsova, M. Hesse, L. Rastätter, A. Taktakishvili, G. Toth, D.L. DeZeeuw, A. Ridley, T.I. Gombosi, Multiscale modeling of magnetospheric reconnection. J. Geophys. Res. 112, A10210 (2007). doi: 10.1029/2007JA012316 ADSGoogle Scholar
  100. H. Lammer, P. Wurz, M.R. Patel, R.M. Killen, C. Kolb, S. Massetti, S. Orsini, A. Milillo, The variability of Mercury’s exosphere by particle and radiation induced surface release processes. Icarus 166, 238–247 (2003) ADSCrossRefGoogle Scholar
  101. B. Lavraud, H. Rème, M.W. Dunlop, J.-M. Bosqued, I. Dandouras, J.-A. Sauvaud, A. Keiling, T.D. Phan, R. Lundin, P.J. Cargill, C.P. Escoubet, C.W. Carlson, J.P. MacFadden, G.K. Parks, E. Moebius, L.M. Kistler, E. Amata, M.-B. Bavassano-Cattaneo, A. Korth, B. Klecker, A. Balogh, Cluster observes the high-altitude cusp region. Surv. Geophys. 26, 135–175 (2005). doi: 10.1007/s10712-005-1875-3 ADSCrossRefGoogle Scholar
  102. F. Leblanc, J.Y. Chaufray, Mercury and Moon He exospheres: Analysis and modeling. Icarus 216, 551–559 (2011) ADSCrossRefGoogle Scholar
  103. F. Leblanc, R.E. Johnson, Mercury’s sodium exosphere. Icarus 164, 261–281 (2003). doi: 10.1016/S0019-1035(03)00147-7 ADSCrossRefGoogle Scholar
  104. F. Leblanc, R.E. Johnson, Mercury exosphere I. Global circulation model of its sodium component. Icarus 209, 280–300 (2010) ADSCrossRefGoogle Scholar
  105. F. Leblanc, E. Chassefiere, R.E. Johnson, D.M. Hunten, E. Kallio, D.C. Delcourt, R.M. Killen, J.G. Luhmann, A.E. Potter, A. Jambon, G. Crernonese, M. Mendillo, N. Yan, A.L. Sprague, Mercury’s exosphere origins and relations to its magnetosphere and surface. Planet. Space Sci. 55, 1069–1092 (2007) ADSCrossRefGoogle Scholar
  106. F. Leblanc, A. Doressoundiram, N. Schneider, V. Mangano, A.L. Ariste, C. Lemen, B. Gelly, C. Barbieri, G. Cremonese, High latitude peaks in Mercury’s sodium exosphere: Spectral signature using THEMIS solar telescope. Geophys. Res. Lett. 35, L18204 (2008). doi: 10.1029/2008GL035322 ADSCrossRefGoogle Scholar
  107. F. Leblanc, A. Doressoundiram, N. Schneider, S. Massetti, M. Wedlund, A. López Ariste, C. Barbieri, V. Mangano, G. Cremonese, Short-term variations of Mercury’s Na exosphere observed with very high spectral resolution. Geophys. Res. Lett. 36, L07201 (2009) ADSCrossRefGoogle Scholar
  108. R.P. Lepping, J.A. Jones, L.F. Burlaga, Magnetic field structure of interplanetary magnetic clouds at 1 Au. J. Geophys. Res. 95, 11957–11965 (1990) ADSCrossRefGoogle Scholar
  109. R.P. Lepping, D.H. Fairfield, J. Jones, L.A. Frank, W.R. Paterson, S. Kokubun, T. Yamamoto, Cross-tail magnetic flux ropes as observed by the Geotail spacecraft. Geophys. Res. Lett. 22(10), 1193–1196 (1995) ADSCrossRefGoogle Scholar
  110. R.P. Lepping, J.A. Slavin, M. Hesse, J.A. Jones, A. Szabo, Analysis of magnetotail flux ropes with strong core fields: ISEE 3 observations. J. Geomagn. Geoelectr. 48, 589–601 (1996) CrossRefGoogle Scholar
  111. E. Liljeblad, T. Sundberg, T. Karlsson, A. Kullen, Statistical investigation of Kelvin-Helmholtz waves at the magnetopause of Mercury. J. Geophys. Res. Space Phys. 119, 9670–9683 (2014). doi: 10.1002/2014JA020614 ADSCrossRefGoogle Scholar
  112. U. Mall, E. Kirsch, K. Cierpka, B. Wilken, A. Söding, F. Neubauer, G. Gloeckler, A. Galvin, Direct observation of lunar pick-up ions near the Moon. Geophys. Res. Lett. 25, 3799–3802 (1998). doi: 10.1029/1998GL900003 ADSCrossRefGoogle Scholar
  113. V. Mangano, A. Milillo, A. Mura, S. Orsini, E. De Angelis, A.M. Di Lellis, P. Wurz, The contribution of impulsive meteoritic impact vapourization to the Hermean exosphere. Planet. Space Sci. 55, 1541–1556 (2007) ADSCrossRefGoogle Scholar
  114. V. Mangano, S. Massetti, A. Milillo, A. Mura, S. Orsini, F. Leblanc, Dynamical evolution of sodium anisotropies in the exosphere of Mercury. Planet. Space Sci. 82–83, 1–10 (2013) CrossRefGoogle Scholar
  115. S. Massetti, S. Orsini, A. Milillo, A. Mura, E. De Angelis, H. Lammer, P. Wurz, Mapping of the cusp plasma precipitation on the surface of Mercury. Icarus 166, 229–237 (2003) ADSCrossRefGoogle Scholar
  116. A. Masters, J.A. Slavin, G.A. DiBraccio, T. Sundberg, R.M. Winslow, C.L. Johnson, B.J. Anderson, H. Korth, A comparison of magnetic overshoots at the bow shocks of Mercury and Saturn. J. Geophys. Res. 118, 4381–4390 (2013). doi: 10.1002/jgra.50428 CrossRefGoogle Scholar
  117. W.E. McClintock, M.R. Lankton, The Mercury atmospheric and surface composition spectrometer for the MESSENGER mission. Space Sci. Rev. 131, 481–521 (2007). doi: 10.1007/s11214-007-9264-5 ADSCrossRefGoogle Scholar
  118. W.E. McClintock, R.J. Vervack, E.T. Bradley, R.M. Killen, N. Mouawad, A.L. Sprague, M.H. Burger, S.C. Solomon, N.R. Izenberg, MESSENGER observations of Mercury’s exosphere: Detection of magnesium and distribution of constituents. Science 324, 610–613 (2009) ADSGoogle Scholar
  119. M.A. McGrath, R.E. Johnson, L.J. Lanzerotti, Sputtering of sodium on the planet Mercury. Nature 323, 694–696 (1986) ADSCrossRefGoogle Scholar
  120. J.L. McLain, A.L. Sprague, G.A. Grieves, D. Schriver, P. Travnicek, T.M. Orlando, Electron-stimulated desorption of silicates: A potential source for ions in Mercury’s space environment. J. Geophys. Res. 116, E03007 (2011). doi: 10.1029/2010JE003714 ADSGoogle Scholar
  121. R.L. McPherron, C.T. Russell, M.P. Aubry, Satellite studies of magnetospheric substorms on August 15, 1968: 9. Phenomenological model for substorms. J. Geophys. Res. 78, 3131–3149 (1973). doi: 10.1029/JA078i016p03131 ADSCrossRefGoogle Scholar
  122. S.E. Milan, S.W.H. Cowley, M. Lester, D.M. Wright, J.A. Slavin, M. Fillingim, C.W. Carlson, H.J. Singer, Response of the magnetotail to changes in the open flux content of the magnetosphere. J. Geophys. Res. 109, A04220 (2004). doi: 10.1029/2003JA010350 ADSGoogle Scholar
  123. A. Milillo et al., The BepiColombo mission: An outstanding tool for investigating the Hermean environment. Planet. Space Sci. 58, 40–60 (2010) ADSCrossRefGoogle Scholar
  124. D.G. Mitchell, D.J. Williams, C.Y. Huang, L.A. Frank, C.T. Russell, Current carriers in the near-Earth cross-tail current sheet during substorm growth phase. Geophys. Res. Lett. 17, 583 (1990) ADSCrossRefGoogle Scholar
  125. M.B. Moldwin, W.J. Hughes, On the formation and evolution of plasmoids: A survey of isee-3 Geotail data. J. Geophys. Res. 97, 19259–19282 (1992) ADSCrossRefGoogle Scholar
  126. N. Mouawad, M.H. Burger, R.M. Killen, A.E. Potter, W.E. McClintock, R.J. Vervack, E.T. Bradley, M. Benna, S. Naidu, Constraints on Mercury’s Na exosphere: Combined MESSENGER and ground-based data. Icarus 211, 21–36 (2011) ADSCrossRefGoogle Scholar
  127. M. Müller, S.F. Green, N. McBride, D. Koschny, J.C. Zarnecki, M.S. Bentley, Estimation of the dust flux near Mercury. Planet. Space Sci. 50, 1101–1115 (2002) ADSCrossRefGoogle Scholar
  128. J. Müller, S. Simon, Y.-C. Wang, U. Motschmann, D. Heyner, J. Schüle, W.-H. Ip, G. Kleindienst, G.J. Pringle, Origin of Mercury’s double magnetopause: 3D hybrid simulation study with A.I.K.E.F. Icarus 218, 666–687 (2012). doi: 10.1016/j.icarus.2011.12.028 ADSCrossRefGoogle Scholar
  129. A. Mura, A. Milillo, S. Orsini, S. Massetti, Numerical and analytical model of Mercury’s exosphere: Dependence on surface and external conditions. Planet. Space Sci. 55, 1569–1583 (2007) ADSCrossRefGoogle Scholar
  130. A. Mura, P. Wurz, H.I.M. Lichtenegger, H. Schleicher, H. Lammer, D. Delcourt, A. Milillo, S. Massetti, M.L. Khodachenko, S. Orsini, The sodium exosphere of Mercury: Comparison between observations during Mercury’s transit and model results. Icarus 200, 1–11 (2009) ADSCrossRefGoogle Scholar
  131. N.F. Ness, K.W. Behannon, R.P. Lepping, Y.C. Whang, K.H. Schatten, Magnetic field observations near Mercury: Preliminary results from mariner 10. Science 185, 151–160 (1974) ADSCrossRefGoogle Scholar
  132. K.W. Ogilvie, J.D. Scudder, R.E. Hartle, G.L. Siscoe, H.S. Bridge, A.J. Lazarus, J.R. Asbridge, S.J. Bame, C.M. Yeates, Observations at Mercury encounter by plasma science experiment on mariner 10. Science 185, 145–151 (1974) ADSCrossRefGoogle Scholar
  133. K.W. Ogilvie, J.D. Scudder, V.M. Vasyliunas, R.E. Hartle, G.L. Siscoe, Observations at planet Mercury by plasma electron experiment: Mariner 10. J. Geophys. Res. 82, 1807–1824 (1977) ADSCrossRefGoogle Scholar
  134. S. Orsini, S. Livi, K. Torkar, S. Barabash, A. Milillo, P. Wurz, A.M. Di Lellis, E. Kallio, the SERENA team, SERENA: A suite of four instruments (ELENA, STROFIO, PICAM and MIPA) on board BepiColombo-MPO for particle detection in the Hermean environment. Planet. Space Sci. 58, 166–181 (2010). doi: 10.1016/j.pss.2008.09.012 ADSCrossRefGoogle Scholar
  135. S. Orsini, V. Mangano, A. Mura, D. Turrini, S. Massetti, A. Milillo, C. Plainaki, The influence of space environment on the evolution of Mercury. Icarus 239, 281–290 (2014) ADSCrossRefGoogle Scholar
  136. J. Paral, R. Rankin, Dawn-dusk asymmetry in the Kelvin-Helmholtz instability at Mercury. Nat. Commun. 4, 1645 (2013). doi: 10.1038/ncomms2676 ADSCrossRefGoogle Scholar
  137. J. Paral, P.M. Trávníček, K. Kabin, R. Rankin, T.H. Zurbuchen, Spatial distribution and energy spectrum of heavy ions in the Hermean magnetosphere with applications to MESSENGER flybys. Adv. Geosci. 15, 1–16 (2009) Google Scholar
  138. J. Paral, P.M. Trávníček, R. Rankin, D. Schriver, Sodium ion exosphere of Mercury during MESSENGER flybys. Geophys. Res. Lett. 37, L19102 (2010). doi: 10.1029/2010GL044413 ADSCrossRefGoogle Scholar
  139. M. Pfleger, H.I.M. Lichtenegger, P. Wurz, H. Lammer, E. Kallio, M. Alho, A. Mura, J.A. Martín-Fernández, M.L. Khodachenko, S. McKenna-Lawlor, 3D-modeling of Mercury’s solar wind sputtered surface-exosphere environment. Planet. Space Sci. (2015). doi: 10.1016/j.pss.2015.04.016
  140. A.R. Poppe, J.S. Halekas, M. Sarantos, G.T. Delory, The self-sputtered contribution to the lunar exosphere. J. Geophys. Res. 118, 1934–1944 (2013) CrossRefGoogle Scholar
  141. A. Potter, T.H. Morgan, Discovery of sodium in the atmosphere of Mercury. Science 229, 651–653 (1985) ADSCrossRefGoogle Scholar
  142. A. Potter, T.H. Morgan, Potassium in the atmosphere of Mercury. Icarus 67, 336–340 (1986) ADSCrossRefGoogle Scholar
  143. A. Potter, T.H. Morgan, Sodium and potassium atmospheres of Mercury. Planet. Space Sci. 45, 95–100 (1997) ADSCrossRefGoogle Scholar
  144. A. Potter, R.M. Killen, T.H. Morgan, Rapid changes in the sodium exosphere of Mercury. Planet. Space Sci. 47, 1441–1448 (1999) ADSCrossRefGoogle Scholar
  145. A. Potter, R.M. Killen, T.H. Morgan, The sodium tail of Mercury. Meteorit. Planet. Sci. 37, 1165–1172 (2002) ADSCrossRefGoogle Scholar
  146. A.E. Potter, R.M. Killen, M. Sarantos, Spatial distribution of sodium on Mercury. Icarus 181, 1–12 (2006) ADSCrossRefGoogle Scholar
  147. A.E. Potter, R.M. Killen, T.H. Morgan, Solar radiation acceleration effects on Mercury sodium emission. Icarus 186, 571–580 (2007) ADSCrossRefGoogle Scholar
  148. J. Raeder, P. Zhu, Y. Ge, G. Siscoe, Open geospace general circulation model simulation of a substorm: Axial tail instability and ballooning mode preceding substorm onset. J. Geophys. Res. 115, A00I16 (2010). doi: 10.1029/2010JA015876 ADSGoogle Scholar
  149. J.M. Raines, J.A. Slavin, T.H. Zurbuchen, G. Gloeckler, B.J. Anderson, D.N. Baker, H. Korth, S.M. Krimigis, R.L. McNutt Jr., MESSENGER observations of the plasma environment near Mercury. Planet. Space Sci. 59, 2004–2015 (2011). doi: 10.1016/j.pss.2011.02.004 ADSCrossRefGoogle Scholar
  150. J.M. Raines, D.J. Gershman, T.H. Zurbuchen, M. Sarantos, J.A. Slavin, J.A. Gilbert, H. Korth, B.J. Anderson, G. Gloeckler, S.M. Krimigis, D.N. Baker, R.L. McNutt Jr., S.C. Solomon, Distribution and compositional variations of plasma ions in Mercury’s space environment: The first three Mercury years of MESSENGER observations. J. Geophys. Res. Space Phys. 118, 1604–1619 (2013). doi: 10.1029/2012JA018073 ADSCrossRefGoogle Scholar
  151. J.M. Raines, D.J. Gershman, J.A. Slavin, T.H. Zurbuchen, H. Korth, B.J. Anderson, S.C. Solomon, Structure and dynamics of Mercury’s magnetospheric cusp: MESSENGER measurements of protons and planetary ions. J. Geophys. Res. Space Phys. 119, 6587–6602 (2014). doi: 10.1002/2014JA020120 ADSCrossRefGoogle Scholar
  152. E. Richer, R. Modolo, C. Chanteur, S. Hess, F. Leblanc, A global hybrid model for Mercury’s interaction with the solar wind: Case study of the dipole representation. J. Geophys. Res. 117 (2012). doi: 10.1029/2012JA017898
  153. A. Runov, V. Angelopoulos, X.-Z. Zhou, X.-J. Zhang, S. Li, F. Plaschke, J. Bonnell, A THEMIS multicase study of dipolarization fronts in the magnetotail plasma sheet. J. Geophys. Res. 116, A05216 (2011). doi: 10.1029/2010JA016316 ADSGoogle Scholar
  154. C.T. Russell, ULF waves in the Mercury magnetosphere. Geophys. Res. Lett. 16, 1253–1256 (1989). doi: 10.1029/GL016i011p01253 ADSCrossRefGoogle Scholar
  155. C.T. Russell, R.J. Walker, Flux transfer events at Mercury. J. Geophys. Res. 90, 11067 (1985) ADSCrossRefGoogle Scholar
  156. C.T. Russell, D.N. Baker, J.A. Slavin, The magnetosphere of Mercury, in Mercury, ed. by F. Vilas, C.R. Chapman, M.S. Matthews (University of Arizona Press, Tucson, 1988), pp. 514–561 Google Scholar
  157. M. Sarantos, P.H. Reiff, T.W. Hill, R.M. Killen, A.L. Urquhart, A \(B_{X}\)-interconnected magnetosphere model for Mercury. Planet. Space Sci. 49, 1629–1635 (2001) ADSCrossRefGoogle Scholar
  158. M. Sarantos, J.A. Slavin, M. Benna, S.A. Boardsen, R.M. Killen, D. Schriver, P. Trávníček, Sodium-ion pickup observed above the magnetopause during MESSENGER’s first Mercury flyby: Constraints on neutral exospheric models. Geophys. Res. Lett. 36, L04106 (2009). doi: 10.1029/2008GL036207 ADSGoogle Scholar
  159. M. Sarantos, R.M. Killen, W.E. McClintock, E.T. Bradley, R.J. Vervack, M. Benna, J.A. Slavin, Limits to Mercury’s magnesium exosphere from MESSENGER second flyby observations. Planet. Space Sci. 59, 1992–2003 (2011) ADSCrossRefGoogle Scholar
  160. M. Sarantos, R.E. Hartle, R.M. Killen, Y. Saito, J.A. Slavin, A. Glocer, Flux estimates of ions from the lunar exosphere. Geophys. Res. Lett. 39, L13101 (2012). doi: 10.1029/2012GL052001 ADSCrossRefGoogle Scholar
  161. K. Schindler, A theory of the substorm mechanism. J. Geophys. Res. 79, 2803 (1974). doi: 10.1029/JA079i019p02803 ADSCrossRefGoogle Scholar
  162. C.A. Schmidt, Monte Carlo modeling of north-south asymmetries in Mercury’s sodium exosphere. J. Geophys. Res. 118, 4564–4571 (2013). doi: 10.1002/jgra.50396 CrossRefGoogle Scholar
  163. C.A. Schmidt, J. Baumgardner, M. Mendillo, J.K. Wilson, Escape rates and variability constraints for high-energy sodium sources at Mercury. J. Geophys. Res. 117, A03301 (2012). doi: 10.1029/2011JA017217 ADSGoogle Scholar
  164. K. Seki, N. Terada, M. Yagi, D.C. Delcourt, F. Leblanc, T. Ogino, Effects of the surface conductivity and IMF strength on the dynamics of planetary ions in Mercury’s magnetosphere. J. Geophys. Res. 118, 3233–3242 (2013). doi: 10.1002/jgra.50181 CrossRefGoogle Scholar
  165. K. Seki, et al., Space Sci. Rev. (2015, this issue). doi: 10.1007/s11214-015-0170-y
  166. V.A. Sergeev, M. Malkov, K. Mursula, Testing the isotropic boundary algorithm to evaluate the magnetic field configuration of the tail. J. Geophys. Res. 98, 7609 (1993) ADSCrossRefGoogle Scholar
  167. E.G. Shelley, R.G. Johnson, R.D. Sharp, Satellite observations of energetic heavy ions during a geomagnetic storm. J. Geophys. Res. 77, 6104 (1972) ADSCrossRefGoogle Scholar
  168. D.E. Shemansky, A.L. Broadfoot, Interaction of the surfaces of the Moon and Mercury with their exospheric atmospheres. Rev. Geophys. 15, 491–499 (1977). doi: 10.1029/RG015i004p00491 ADSCrossRefGoogle Scholar
  169. K. Shiokawa, K. Yumoto, Y. Tanaka, T. Oguti, Y. Kiyama, Low-latitude auroras observed at Moshiri and Rikubetsu (\(L=1.6\)) during magnetic storms on February 26, 27, 29, and May 10, 1992. J. Geomagn. Geoelectr. 46, 231–252 (1994) CrossRefGoogle Scholar
  170. J.A. Simpson, J.H. Eraker, J.E. Lamport, P.H. Walpole, Electrons and protons accelerated in Mercury’s magnetic field. Science 185, 160–166 (1974) ADSCrossRefGoogle Scholar
  171. G.L. Siscoe, N.F. Ness, C.M. Yeates, Substorms on Mercury? J. Geophys. Res. 80, 4359–4363 (1975). doi: 10.1029/JA080i031p04359 ADSCrossRefGoogle Scholar
  172. J.A. Slavin, R.E. Holzer, The effect of erosion on the solar wind stand-off distance at Mercury. J. Geophys. Res. 84, 2076–2082 (1979) ADSCrossRefGoogle Scholar
  173. J.A. Slavin, M.F. Smith, E.L. Mazur, D.N. Baker, T. Iyemori, H.J. Singer, E.W. Greenstadt, ISEE-3 plasmoid and TCR observations during an extended interval of substorm activity. Geophys. Res. Lett. 19, 825–828 (1992) ADSCrossRefGoogle Scholar
  174. J.A. Slavin, M.F. Smith, E.L. Mazur, D.N. Baker, E.W. Hones, T. Iyemori, E.W. Greenstadt, ISEE-3 observations of traveling compression regions in the Earth’s magnetotail. J. Geophys. Res. 98, 15425–15446 (1993) ADSCrossRefGoogle Scholar
  175. J.A. Slavin, R.P. Lepping, J. Gjerloev, D.H. Fairfield, M. Hesse, C.J. Owen, M.B. Moldwin, T. Nagai, A. Ieda, T. Mukai, Geotail observations of magnetic flux ropes in the plasma sheet. J. Geophys. Res. 108, 1015 (2003). doi: 10.1029/2002JA009557 CrossRefGoogle Scholar
  176. J.A. Slavin, E.I. Tanskanen, M. Hesse, C.J. Owen, M.W. Dunlop, S. Imber, E.A. Lucek, A. Balogh, K.-H. Glassmeier, Cluster observations of traveling compression regions in the near-tail. J. Geophys. Res. 110, A06207 (2005). doi: 10.1029/2004JA010878 ADSGoogle Scholar
  177. J.A. Slavin, R.P. Lepping, J. Gjerloev, D.H. Fairfield, M. Hesse, C.J. Owen, M.B. Moldwin, T. Nagai, A. Ieda, T. Mukai, MESSENGER: Exploring Mercury’s magnetosphere. Space Sci. Rev. 131, 133–160 (2007) ADSCrossRefGoogle Scholar
  178. J.A. Slavin et al., Mercury’s magnetosphere after MESSENGER’s first flyby. Science 321, 85–89 (2008). doi: 10.1126/science.1159040 ADSCrossRefGoogle Scholar
  179. J.A. Slavin et al., MESSENGER observations of magnetic reconnection in Mercury’s magnetosphere. Science 324, 606–610 (2009) ADSCrossRefGoogle Scholar
  180. J.A. Slavin et al., MESSENGER observations of extreme loading and unloading of Mercury’s magnetic tail. Science 329, 665–668 (2010) ADSCrossRefGoogle Scholar
  181. J.A. Slavin et al., MESSENGER and mariner 10 flyby observations of magnetotail structure and dynamics at Mercury. J. Geophys. Res. 117, A01215 (2012a). doi: 10.1029/2011JA016900 ADSGoogle Scholar
  182. J.A. Slavin et al., MESSENGER observations of a flux-transfer-event shower at Mercury. J. Geophys. Res. 117, A00M06 (2012b). doi: 10.1029/JA017926 ADSGoogle Scholar
  183. J.A. Slavin, G.A. DiBraccio, D.J. Gershman, S.M. Imber, G.K. Poh, T.H. Zurbuchen, X. Jia, D.N. Baker, S.A. Boardsen, M. Sarantos, T. Sundberg, A. Masters, C.L. Johnson, R.M. Winslow, B.J. Anderson, H. Korth, R.L. McNutt Jr., S.C. Solomon, MESSENGER observations of Mercury’s magnetosphere under extreme solar wind conditions. J. Geophys. Res. Space Phys. 119, 8087–8116 (2014). doi: 10.1002/2014JA020319 ADSCrossRefGoogle Scholar
  184. M.F. Smith, M. Lockwood, Earth’s magnetospheric cusps. Rev. Geophys. 34, 233–260 (1996). doi: 10.1029/96RG00893 ADSCrossRefGoogle Scholar
  185. D.E. Smith et al., Gravity field and internal structure of Mercury from MESSENGER. Science 336, 214–271 (2012). doi: 10.1126/science.1218809 ADSCrossRefGoogle Scholar
  186. W.H. Smyth, M.L. Marconi, Theoretical overview and modeling of the sodium and potassium atmospheres of Mercury. Astrophys. J. 441, 839–864 (1995) ADSCrossRefGoogle Scholar
  187. C.S. Solomon, R.L. McNutt, R.E. Gold, D.L. Domingue, MESSENGER: Mission overview. Space Sci. Rev. 131, 3–39 (2007) ADSCrossRefGoogle Scholar
  188. T.W. Speiser, Particle trajectory in model current sheets: 1. Analytical solutions. J. Geophys. Res. 70, 4219 (1965) ADSCrossRefGoogle Scholar
  189. A.L. Sprague, R.W.H. Kozlowski, D.M. Hunten, N.M. Schneider, D.L. Domingue, W.K. Wells, W. Schmitt, U. Fink, Distribution and abundance of sodium in Mercury’s atmosphere. Icarus 129, 506–527 (1997) ADSCrossRefGoogle Scholar
  190. S.A. Stern, The lunar atmosphere: History, status, current problems, and context. Rev. Geophys. 37, 453–491 (1999) ADSCrossRefGoogle Scholar
  191. R.J. Strangeway, C.T. Russell, J.G. Luhmann, T.E. Moore, J.C. Foster, S.V. Barabash, H. Nilsson, Does a planetary-scale magnetic field enhance or inhibit ionospheric plasma outflows? in AGU Fall Meeting Abstracts (2010), p. 1893 Google Scholar
  192. S.T. Suess, B.E. Goldstein, Compression of the Hermean magnetosphere by the solar wind. J. Geophys. Res. 84, 3306–3312 (1979) ADSCrossRefGoogle Scholar
  193. T. Sundberg, S.A. Boardsen, J.A. Slavin, L.G. Blomberg, H. Korth, The Kelvin-Helmholtz instability at Mercury: An assessment. Planet. Space Sci. 58, 1434–1441 (2010). doi: 10.1016/j.pss.2010.06.008 ADSCrossRefGoogle Scholar
  194. T. Sundberg, S.A. Boardsen, J.A. Slavin, L.G. Blomberg, J.A. Cumnock, S.C. Solomon, B.J. Anderson, H. Korth, Reconstruction of propagating Kelvin-Helmholtz vortices at Mercury’s magnetopause. Planet. Space Sci. 59, 2051–2057 (2011) ADSCrossRefGoogle Scholar
  195. T. Sundberg, S.A. Boardsen, J.A. Slavin, B.J. Anderson, H. Korth, T.H. Zurbuchen, J.M. Raines, S.C. Solomon, MESSENGER orbital observations of large-amplitude Kelvin-Helmholtz waves at Mercury’s magnetopause. J. Geophys. Res. 117, A04216 (2012). doi: 10.1029/2011JA017268 ADSGoogle Scholar
  196. K.G. Tanaka, M. Fujimoto, I. Shinohara, On the peak level of tearing instability in an ion-scale current sheet: The effects of ion temperature anisotropy. Planet. Space Sci. 59, 510–516 (2011). doi: 10.1016/j.pss.2010.04.014 ADSCrossRefGoogle Scholar
  197. P. Trávníček, P. Hellinger, D. Schriver, Structure of Mercury’s magnetosphere for different pressure of the solar wind: Three dimensional hybrid simulations. Geophys. Res. Lett. 34, 5104 (2007). doi: 10.1029/2006GL028518 ADSGoogle Scholar
  198. P. Trávníček et al., Mercury’s magnetosphere-solar wind interaction for northward and southward interplanetary magnetic field: Hybrid simulation results. Icarus 209, 11–22 (2010). doi: 10.1016/j.icarus.2010.01.008 ADSCrossRefGoogle Scholar
  199. R.J. Vervack, W.E. McClintock, R.M. Killen, A.L. Sprague, B.J. Anderson, M.H. Burger, E.T. Bradley, N. Mouawad, S.C. Solomon, N.R. Izenberg, Mercury’s complex exosphere: Results from MESSENGER’s third flyby. Science 329, 672–675 (2010). doi: 10.1126/science.1188572 ADSCrossRefGoogle Scholar
  200. R.J. Vervack, W.E. McClintock, R.M. Killen, A.L. Sprague, M.H. Burger, A.W. Merkel, M. Sarantos, MESSENGER searches for less abundant or weakly emitting species in Mercury’s exosphere, in AGU Fall Meeting Abstracts A2 (2011) Google Scholar
  201. F. Vilas, C.R. Chapman, M.S. Mathews, Mercury (University of Arizona Press, Tucson, 1988) Google Scholar
  202. Y.-C. Wang, W.-H. Ip, Source dependency of exospheric sodium on Mercury. Icarus 216, 387–402 (2011). doi: 10.1016/j.icarus.2011.09.023 ADSCrossRefGoogle Scholar
  203. Y.X. Wang, F. Ohuchi, P.H. Holloway, Mechanisms of electron stimulated desorption from soda-silica glass surfaces. J. Vac. Sci. Technol. A 2(2), 732–737 (1984). doi: 10.1116/1.572560 ADSCrossRefGoogle Scholar
  204. Y.-C. Wang, J. Mueller, U. Motschmann, W.-H. Ip, A hybrid simulation of Mercury’s magnetosphere for the MESSENGER encounters in year 2008. Icarus 209(pp. 46–52), 2010.05.020 (2010). doi: 10.1016/j.icarus Google Scholar
  205. R.M. Winglee, E. Harnett, A. Kidder, Relative timing of substorm processes as derived from multifluid/multiscale simulations: Internally driven substorms. J. Geophys. Res. 114, A09213 (2009). doi: 10.1029/2008JA013750 ADSGoogle Scholar
  206. R.M. Winslow, C.L. Johnson, B.J. Anderson, H. Korth, J.A. Slavin, M.E. Purucker, S.C. Solomon, Observations of Mercury’s northern cusp region with MESSENGER’s magnetometer. Geophys. Res. Lett. 39, L08112 (2012). doi: 10.1029/2012GL051472 ADSCrossRefGoogle Scholar
  207. R.M. Winslow, B.J. Anderson, C.L. Johnson, J.A. Slavin, H. Korth, M.E. Purucker, D.N. Baker, S.C. Solomon, Mercury’s magnetopause and bow shock from MESSENGER magnetometer observations. J. Geophys. Res. 118, 2213–2227 (2013). doi: 10.1002/jgra.50237 CrossRefGoogle Scholar
  208. R.M. Winslow et al., Mercury’s surface magnetic field determined from proton-reflection magnetometry. Geophys. Res. Lett. 41, 4463–4470 (2014). doi: 10.1002/2014GL060258 ADSGoogle Scholar
  209. P. Wurz, L. Blomberg, Particle populations in Mercury’s magnetosphere. Planet. Space Sci. 49, 1643–1653 (2001) ADSCrossRefGoogle Scholar
  210. P. Wurz, H. Lammer, Monte-Carlo simulation of Mercury’s exosphere. Icarus 164, 1–13 (2003) ADSCrossRefGoogle Scholar
  211. P. Wurz, U. Rohner, J.A. Whitby, C. Kolb, H. Lammer, P. Dobnikar, J.A. Martín-Fernández, The lunar exosphere: The sputtering contribution. Icarus 191, 486–496 (2007). doi: 10.1016/j.icarus.2007.04.034 ADSCrossRefGoogle Scholar
  212. P. Wurz, J.A. Whitby, U. Rohner, J.A. Martín-Fernández, H. Lammer, C. Kolb, Self-consistent modelling of Mercury’s exosphere by sputtering, micro-meteorite impact and photon-stimulated desorption. Planet. Space Sci. 58, 1599–1616 (2010) ADSCrossRefGoogle Scholar
  213. M. Yagi, K. Seki, Y. Matsumoto, D.C. Delcourt, F. Leblanc, Formation of a sodium ring in Mercury’s magnetosphere. J. Geophys. Res. 115, A10 (2010). doi: 10.1029/2009JA015226 Google Scholar
  214. B.V. Yakshinksiy, T.E. Madey, Photon-stimulated desorption as a substantial source of sodium in the lunar atmosphere. Nature 400, 642 (1999) ADSCrossRefGoogle Scholar
  215. B.V. Yakshinskiy, T.E. Madey, Photon-stimulated desorption of Na from a lunar sample: Temperature-dependent effects. Icarus 168, 53–59 (2004) ADSCrossRefGoogle Scholar
  216. B.V. Yakshinskiy, T.E. Madey, Temperature-dependent DIET of alkalis from \(\mathrm{SiO}_{2}\) films: Comparison with a lunar sample. Surf. Sci. 593, 202–209 (2005) ADSCrossRefGoogle Scholar
  217. B.V. Yakshinskiy, T.E. Madey, V.N. Ageev, Thermal desorption of sodium atoms from thin SiO2 films. Surf. Rev. Lett. 7, 75–87 (2000) CrossRefGoogle Scholar
  218. A.W. Yau, A. Howarth, W.K. Peterson, T. Abe, Transport of thermal-energy ionospheric oxygen (\(\mathrm{O}^{+}\)) ions between the ionosphere and the plasma sheet and ring current at quiet times preceding magnetic storms. J. Geophys. Res. 117 (2012). doi: 10.1029/2012JA017803
  219. T.H. Zurbuchen, J.M. Raines, G. Gloeckler, S.M. Krimigis, J.A. Slavin, P.L. Koehn, R.M. Killen, A.L. Sprague, R.L. McNutt Jr., S.C. Solomon, MESSENGER observations of the composition of Mercury’s ionized exosphere and plasma environment. Science 321, 90–92 (2008). doi: 10.1126/science.1159314 ADSCrossRefGoogle Scholar
  220. T.H. Zurbuchen et al., MESSENGER observations of the spatial distribution of planetary ions near Mercury. Science 333, 1862 (2011) ADSCrossRefGoogle Scholar
  221. B.J. Zwan, R.A. Wolf, Depletion of solar wind plasma near a planetary boundary. J. Geophys. Res. 81, 1636–1648 (1976) ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • J. M. Raines
    • 1
  • G. A. DiBraccio
    • 1
    • 2
  • T. A. Cassidy
    • 3
  • D. C. Delcourt
    • 4
  • M. Fujimoto
    • 5
  • X. Jia
    • 1
  • V. Mangano
    • 6
  • A. Milillo
    • 6
  • M. Sarantos
    • 7
  • J. A. Slavin
    • 1
  • P. Wurz
    • 8
  1. 1.Department of Atmospheric, Oceanic and Space SciencesUniversity of MichiganAnn ArborUSA
  2. 2.Solar System Exploration DivisonNASA Goddard Space Flight CenterGreenbeltUSA
  3. 3.Laboratory for Atmospheric and Space PhysicsUniversity of ColoradoBoulderUSA
  4. 4.LPP, Ecole Polytechnique-CNRSUniversité Pierre et Marie CurieParisFrance
  5. 5.Institute of Space and Astronautical ScienceJAXASagamiharaJapan
  6. 6.Institute of Space Astrophysics and PlanetologyINAFRomeItaly
  7. 7.Heliophysics Science DivisionNASA Goddard Space Flight CenterGreenbeltUSA
  8. 8.Physics InstituteUniversity of BernBernSwitzerland

Personalised recommendations