Skip to main content

Genomics of Temperature Stress

  • Chapter
  • First Online:
Plant Genomics and Climate Change

Abstract

The environment is constantly affecting all organisms in many different ways during their entire lifespan. In particular, plant environmental stresses are external influences, including abiotic and biotic factors. These can be severe enough to cause detrimental effects on plant survival, growth and reproduction. Environmental stresses can act in complex combinations between one another. However, the study of individual stresses is needed to gain comprehensive understanding of the impacts.

Temperature is a stress which significantly affects all life processes in plants, including plant yield and productivity. In their natural environment, plants can adapt to fluctuating temperatures. Their ability to withstand high temperatures is referred as thermotolerance and has gained high interest to be analyzed. Even though, temperature stresses raise very clear phenotypic responses, the complexity of molecular events and responses involved in stress adaptation are still undefined.

In recent years, advances in genome-wide studies have contributed to the understanding of plants as complex adaptive systems in response to different stresses. In this chapter, the consequences of heat and cold stress in economically important crops, as well as acclimation mechanisms, are described. A discussion of the latest genomic approaches to improve crop tolerance to temperature stress is also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe F, Saito K, Miura K, Toriyama K (2002) A single nucleotide polymorphism in the alternative oxidase gene among rice varieties differing in low temperature tolerance. FEBS Lett 527(1):181–185

    Article  CAS  PubMed  Google Scholar 

  • Ackerly DD, Dudley SA, Sultan SE, Schmitt J, Coleman JS, Linder CR et al (2000) The evolution of plant ecophysiological traits: recent advances and future directions: new research addresses natural selection, genetic constraints, and the adaptive evolution of plant ecophysiological traits. BioScience 50(11):979–995

    Article  Google Scholar 

  • Alexander LV, Zhang X, Peterson TC, Caesar J, Gleason B, Klein Tank AMG et al (2006) Global observed changes in daily climate extremes of temperature and precipitation. J Geophys Res Atmos 111:D5

    Google Scholar 

  • Al-Khatib K, Paulsen GM (1990) Photosynthesis and productivity during high-temperature stress of wheat genotypes from major world regions. Crop Sci 30(5):1127–1132

    Article  Google Scholar 

  • Angadi SV, Cutforth HW, Miller PR, McConkey BG, Entz MH, Brandt SA et al (2000) Response of three Brassica species to high temperature stress during reproductive growth. Can J Plant Sci 80(4):693–701

    Article  Google Scholar 

  • Barriopedro D, Fischer EM, Luterbacher J, Trigo RM, García-Herrera R (2011) The hot summer of 2010: redrawing the temperature record map of Europe. Science 332(6026):220–224

    Article  CAS  PubMed  Google Scholar 

  • Bevan M, Walsh S (2005) The Arabidopsis genome: a foundation for plant research. Genome Res 15(12):1632–1642

    Article  CAS  PubMed  Google Scholar 

  • Blake AK (1935) Viability and germination of seeds and early life history of prairie plants. Ecol monograph 5(4):408–460

    Article  Google Scholar 

  • Blokhina O, Virolainen E, Fagerstedt KV (2003) Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann Bot 91(2):179–194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bowler C, Montagu M, Inze D (1992) Superoxide dismutase and stress tolerance. Annu Rev Plant Biol 43(1):83–116

    Article  CAS  Google Scholar 

  • Cattivelli L, Baldi P, Crosatti C, Di Fonzo N, Faccioli P, Grossi M et al (2002) Chromosome regions and stress-related sequences involved in resistance to abiotic stress in Triticeae. Plant Mol Biol 48(5-6):649–665

    Article  CAS  Google Scholar 

  • Chinnusamy V, Ohta M, Kanrar S, Lee B-h, Hong X, Agarwal M et al (2003) ICE1: a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis. Genes Dev 17(8):1043–1054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ciais P, Reichstein M, Viovy N, Granier A, Ogée J, Allard V et al (2005) Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437(7058):529–533

    Article  CAS  PubMed  Google Scholar 

  • Clarke JD, Zhu T (2006) Microarray analysis of the transcriptome as a stepping stone towards understanding biological systems: practical considerations and perspectives. Plant J 45(4):630–650

    Article  CAS  PubMed  Google Scholar 

  • Coumou D, Rahmstorf S (2012) A decade of weather extremes. Nat Clim Change 2(7):491–496

    Google Scholar 

  • Cushman JC, Bohnert HJ (2000) Genomic approaches to plant stress tolerance. Curr Opin Plant Biol 3(2):117–124

    Article  CAS  PubMed  Google Scholar 

  • Didierjean L, Frendo P, Burkard G (1992) Stress responses in maize: sequence analysis of cDNAs encoding glycine-rich proteins. Plant Mol Biol 18(4):847–849

    Article  CAS  PubMed  Google Scholar 

  • Dunn MA, Brown K, Lightowlers R, Hughes MA (1996) A low-temperature-responsive gene from barley encodes a protein with single-stranded nucleic acid-binding activity which is phosphorylated in vitro. Plant Mol Biol 30(5):947–959

    Article  CAS  PubMed  Google Scholar 

  • Easterling DR, Meehl GA, Parmesan C, Changnon SA, Karl TR, Mearns LO (2000) Climate extremes: observations, modeling, and impacts. Science 289(5487):2068–2074

    Article  CAS  PubMed  Google Scholar 

  • Feder ME, Hofmann GE (1999) Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Annu Rev Physiol 61(1):243–282

    Article  CAS  PubMed  Google Scholar 

  • Francia E, Tacconi G, Crosatti C, Barabaschi D, Bulgarelli D, Dall’Aglio E et al (2005) Marker assisted selection in crop plants. Plant Cell Tiss Org Cult 82(3):317–342

    Article  CAS  Google Scholar 

  • Friend DJC, Helson VA (1976) Thermoperiodic effects on the growth and photosynthesis of wheat and other crop plants. Bot Gaz 137:75–84

    Article  Google Scholar 

  • Frova C, Gorla MS (1993) Quantitative expression of maize HSPs: genetic dissection and association with thermotolerance. Theor Appl Genet 86(2-3):213–220

    CAS  PubMed  Google Scholar 

  • Graham D, Patterson BD (1982) Responses of plants to low, nonfreezing temperatures: proteins, metabolism, and acclimation. Annu Rev Plant Physiol 33(1):347–372

    Article  CAS  Google Scholar 

  • Grover A, Agarwal M, Katiyar-Agarwal S, Sahi C, Agarwal S (2000) Production of high temperature tolerant transgenic plants through manipulation of membrane lipids. Curr Sci 79(5):557–559

    Google Scholar 

  • Guilioni L, Wery J, Tardieu F (1997) Heat stress-induced abortion of buds and flowers in pea: is sensitivity linked to organ age or to relations between reproductive organs? Ann Bot 80(2):159–168

    Article  Google Scholar 

  • Gusta L (2012) Abiotic stresses and agricultural sustainability. J Crop Im 26(3):415–427

    Article  CAS  Google Scholar 

  • Hickey D, Singer G (2004) Genomic and proteomic adaptations to growth at high temperature. Genome Biol 5(10):117

    Article  PubMed  PubMed Central  Google Scholar 

  • Holdaway-Clarke TL, Walker NA, Hepler PK, Overall RL (2000) Physiological elevations in cytoplasmic free calcium by cold or ion injection result in transient closure of higher plant plasmodesmata. Planta 210(2):329–335

    Article  CAS  PubMed  Google Scholar 

  • Hong S-W, Vierling E (2000) Mutants of Arabidopsis thaliana defective in the acquisition of tolerance to high temperature stress. Proc Natl Acad Sci 97(8):4392–4397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hong S-W, Lee U, Vierling E (2003) Arabidopsis hot mutants define multiple functions required for acclimation to high temperatures. Plant Physiol 132(2):757–767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horváth I, Glatz A, Varvasovszki V, Török Z, Páli T, Balogh G et al (1998) Membrane physical state controls the signaling mechanism of the heat shock response in Synechocystis PCC 6803: identification of hsp17 as a “fluidity gene”. Proc Natl Acad Sci 95(7):3513–3518

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang X, Wei X, Sang T, Zhao Q, Feng Q, Zhao Y et al (2010) Genome-wide association studies of 14 agronomic traits in rice landraces. Nat Genet 42(11):961–967

    Article  CAS  PubMed  Google Scholar 

  • IPCC (2007) Climate change 2007: synthesis report. In: Pachauri RK, Reisinger A (eds) Contribution of working groups I, II and III to the fourth assessment report of the Intergovernmental Panel on Climate Change. IPCC, Geneva, p 104

    Google Scholar 

  • Jarvis A, Upadhyaya HD, Gowda CLL, Agrawal PK, Fujisaka S, Anderson B (2010) Climate change and its effect on conservation and use of plant genetic resources for food and agriculture and associated biodiversity for food security. Food and Agriculture Organisation of the United Nations (FAO), FAO Thematic Background Study Rome, Rome

    Google Scholar 

  • Kasuga M, Liu Q, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1999) Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat Biotechnol 17(3):287–291

    Article  CAS  PubMed  Google Scholar 

  • Kharin VV, Zwiers FW, Zhang X, Hegerl GC (2007) Changes in temperature and precipitation extremes in the IPCC ensemble of global coupled model simulations. J Climate 20(8):1419–1444

    Article  Google Scholar 

  • Knight H, Knight MR (2001) Abiotic stress signalling pathways: specificity and cross-talk. Trends Plant Sci 6(6):262–267

    Article  CAS  PubMed  Google Scholar 

  • Larcher W, Bauer H (1981) Ecological significance of resistance to low temperature. Physiological plant ecology I. Springer, New York, NY, pp 403–437

    Google Scholar 

  • Larkindale J, Vierling E (2008) Core genome responses involved in acclimation to high temperature. Plant Physiol 146(2):748–761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leff B, Ramankutty N, Foley JA (2004) Geographic distribution of major crops across the world. Global Biogeochem Cycles 18(1):33 pages

    Article  Google Scholar 

  • Lindquist S (1986) The heat-shock response. Annu Rev Biochem 55(1):1151–1191

    Article  CAS  PubMed  Google Scholar 

  • Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K et al (1998) Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought-and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell 10(8):1391–1406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lorković ZJ (2009) Role of plant RNA-binding proteins in development, stress response and genome organization. Trends Plant Sci 14(4):229–236

    Article  PubMed  Google Scholar 

  • Matsui A, Ishida J, Morosawa T, Mochizuki Y, Kaminuma E, Endo TA et al (2008) Arabidopsis transcriptome analysis under drought, cold, high-salinity and ABA treatment conditions using a tiling array. Plant Cell Physiol 49(8):1135–1149

    Article  CAS  PubMed  Google Scholar 

  • McNeil SD, Nuccio ML, Hanson AD (1999) Betaines and related osmoprotectants. Targets for metabolic engineering of stress resistance. Plant Physiol 120(4):945–949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Minorsky PV (1989) Temperature sensing by plants: a review and hypothesis. Plant Cell Environ 12(2):119–135

    Article  CAS  Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9(10):490–498

    Article  CAS  PubMed  Google Scholar 

  • Murata N, Ishizaki-Nishizawa O, Higashi S, Hayashi H, Tasaka Y, Nishida I (1992) Genetically engineered alteration in the chilling sensitivity of plants. Nature 356(6371):710–713

    Article  CAS  Google Scholar 

  • Nevo E (2001) Evolution of genome–phenome diversity under environmental stress. Proc Natl Acad Sci 98(11):6233–6240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • New M, Liverman D, Schroder H, Anderson K (2011) Four degrees and beyond: the potential for a global temperature increase of four degrees and its implications. Philos Trans A Math Phys Eng Sci 369(1934):6–19

    Article  PubMed  Google Scholar 

  • Parsell DA, Lindquist S (1993) The function of heat-shock proteins in stress tolerance: degradation and reactivation of damaged proteins. Annu Rev Genet 27(1):437–496

    Article  CAS  PubMed  Google Scholar 

  • Pastenes C, Horton P (1996) Effect of high temperature on photosynthesis in beans (I. Oxygen evolution and chlorophyll fluorescence). Plant Physiol 112(3):1245–1251

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rizhsky L, Liang H, Shuman J, Shulaev V, Davletova S, Mittler R (2004) When defense pathways collide. The response of Arabidopsis to a combination of drought and heat stress 1[w]. Plant Physiol 134(4):1683–1696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rorat T (2006) Plant dehydrins—tissue location, structure and function. Cell Mol Biol Lett 11(4):536–556

    Article  CAS  PubMed  Google Scholar 

  • Ruelland E, Zachowski A (2010) How plants sense temperature. Environ Exp Bot 69(3):225–232

    Article  Google Scholar 

  • Ruelland E, Vaultier M-N, Zachowski A, Hurry V, Jean-Claude Kader, Michel D (2009) Chapter 2 Cold signalling and cold acclimation in plants. Adv Bot Res 49:35–150

    Google Scholar 

  • Saito K, Hayano-Saito Y, Maruyama-Funatsuki W, Sato Y, Kato A (2004) Physical mapping and putative candidate gene identification of a quantitative trait locus Ctb1 for cold tolerance at the booting stage of rice. Theor Appl Genet 109(3):515–522

    Article  CAS  PubMed  Google Scholar 

  • Sanghera GS, Wani SH, Hussain W, Singh NB (2011) Engineering cold stress tolerance in crop plants. Curr Genomics 12(1):30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santarius KA (1973) The protective effect of sugars on chloroplast membranes during temperature and water stress and its relationship to frost, desiccation and heat resistance. Planta 113(2):105–114

    Article  CAS  PubMed  Google Scholar 

  • Shah F, Huang J, Cui K, Nie L, Shah T, Chen C et al (2011) Impact of high-temperature stress on rice plant and its traits related to tolerance. J Agric Sci 149:545–556

    Article  CAS  Google Scholar 

  • Sheldon CC, Rouse DT, Finnegan EJ, Peacock WJ, Dennis ES (2000) The molecular basis of vernalization: the central role of FLOWERING LOCUS C (FLC). Proc Natl Acad Sci 97(7):3753–3758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K, Seki M (2003) Regulatory network of gene expression in the drought and cold stress responses. Curr Opin Plant Biol 6(5):410–417

    Article  CAS  PubMed  Google Scholar 

  • Smertenko A, DrÁBer P, Viklický V, Opatrný Z (1997) Heat stress affects the organization of microtubules and cell division in Nicotiana tabacum cells. Plant Cell Environ 20(12):1534–1542

    Article  Google Scholar 

  • Sparks T, Menzel A, Editor-in-Chief: Simon AL (2007) Plant phenology changes and climate change. Encyclopedia of biodiversity. Elsevier, New York, NY, pp. 1–7

    Google Scholar 

  • Sung D-Y, Kaplan F, Lee K-J, Guy CL (2003) Acquired tolerance to temperature extremes. Trends Plant Sci 8(4):179–187

    Article  CAS  PubMed  Google Scholar 

  • Swindell WR (2006) The association among gene expression responses to nine abiotic stress treatments in Arabidopsis thaliana. Genetics 174(4):1811–1824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomashow MF (1999) Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Annu Rev Plant Biol 50(1):571–599

    Article  CAS  Google Scholar 

  • Toth B, Francia E, Rizza F, Stanca A, Galiba G, Pecchioni N (2004) Development of PCR-based markers on chromosome 5H for assisted selection of frost-tolerant genotypes in barley. Mol Breed 14(3):265–273

    Article  CAS  Google Scholar 

  • Urano K, Kurihara Y, Seki M, Shinozaki K (2010) ‘Omics’ analyses of regulatory networks in plant abiotic stress responses. Curr Opin Plant Biol 13(2):132–138

    Article  CAS  PubMed  Google Scholar 

  • Wahid A, Gelani S, Ashraf M, Foolad MR (2007) Heat tolerance in plants: an overview. Environ Exp Bot 61(3):199–223

    Article  Google Scholar 

  • Xiao Y, Pan Y, Luo L, Zhang G, Deng H, Dai L et al (2011) Quantitative trait loci associated with seed set under high temperature stress at the flowering stage in rice (Oryza sativa L.). Euphytica 178(3):331–338

    Article  Google Scholar 

  • Xin Z (2000) Cold comfort farm: the acclimation of plants to freezing temperatures. Plant Cell Environ 23(9):893–902

    Article  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (2006) Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu Rev Plant Biol 57:781–803

    Article  CAS  PubMed  Google Scholar 

  • Yamanouchi U, Yano M, Lin H, Ashikari M, Yamada K (2002) A rice spotted leaf gene, Spl7, encodes a heat stress transcription factor protein. Proc Natl Acad Sci 99(11):7530–7535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeller G, Henz SR, Widmer CK, Sachsenberg T, Rätsch G, Weigel D et al (2009) Stress‐induced changes in the Arabidopsis thaliana transcriptome analyzed using whole‐genome tiling arrays. Plant J 58(6):1068–1082

    Article  CAS  PubMed  Google Scholar 

  • Zhang JZ, Creelman RA, Zhu J-K (2004) From laboratory to field. Using information from Arabidopsis to engineer salt, cold, and drought tolerance in crops. Plant Physiol 135(2):615–621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Źróbek-Sokolnik A, Ahmad P, Prasad MNV (2012) Temperature stress and responses of plants. Environmental adaptations and stress tolerance of plants in the era of climate change. Springer, New York, NY, pp 113–134

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paula Andrea Martinez M.Sc. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Martinez, P.A. (2016). Genomics of Temperature Stress. In: Edwards, D., Batley, J. (eds) Plant Genomics and Climate Change. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3536-9_6

Download citation

Publish with us

Policies and ethics