Skip to main content

The Impacts of Extreme Climatic Events on Wild Plant Populations

  • Chapter
  • First Online:
Plant Genomics and Climate Change

Abstract

Despite growing evidence that species and ecosystems are responding to broad climatic trends globally, relatively little is known about the role that extreme climatic or weather events (ECEs) play in driving population and ecosystem change. The objective of this chapter is to provide an overview of the nature of ECEs and their impacts on the demography of wild plant populations in both terrestrial and aquatic ecosystems. We do this by drawing out some of the main lessons that have been learned from the past and contemporary study of ECEs, focusing primarily on case studies involving Australian vegetation, and then use these to identify potential phytosociological and evolutionary roles of extreme events within the context of anthropogenic climate change. We then discuss the contribution that genomics can make to our understanding of the demographic and evolutionary impact of historical ECEs on plant populations, and propose four key questions that are likely to shape future research in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akey JM, Eberle MA, Rieder MJ, Carlson CS, Shriver MD, Nickerson DA, Kruglyak L (2004) Population history and natural selection shape patterns of genetic variation in 132 genes. PLoS Biol 2, e286

    Article  PubMed  PubMed Central  Google Scholar 

  • Albertson FW, Weaver JE (1944) Nature and degree of recovery of grassland from the great drought of 1933 to 1940. Ecol Monograph 14:393–479

    Article  Google Scholar 

  • Albertson FW, Weaver JE (1945) Injury and death or recovery of trees in prairie climate. Ecol Monograph 15:393–433

    Article  Google Scholar 

  • Allen CD, Breshears DD (1998) Drought-induced shift of a forest-woodland ecotone: rapid landscape response to climate variation. Proc Natl Acad Sci U S A 95:14839–14842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Allen CD, Macalady AK, Chencouni H, Bachelet D, McDowell N, Vennetier M, Kitzberger T, Rigling A, Breshears DD, Hogg EH (Ted), Gonzalez P, Fensham R, Zhang Z, Castro J, Demidova N, Lim J-H, Allard G, Running SW, Semerci A, Cobb N (2010) A global review of drought and heat-induced tree mortality reveals emerging climate risks for forests. Forest Ecol Manag 259:660–684

    Google Scholar 

  • Anderlegg WRL, Kane JM, Anderlegg LDL (2013) Consequences of widespread tree mortality triggered by drought and temperature stress. Nat Clim Change 3:30–36

    Article  Google Scholar 

  • Anderson JT, Willis JH, Mitchell-Olds T (2011) Evolutionary genetics of plant adaptation. Trends Genet 27:258–266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benson LV, Berry MS, Jolie EA, Spangler JD, Stahle DW, Hattori EM (2007) Possible impacts of early-11th-, middle-12th-, and late-13th-century droughts on western Native Americans and the Mississippian Cahokians. Q Sci Rev 26:336–350

    Article  Google Scholar 

  • Bridle JR, Vines TH (2007) Limits to evolution at range margins: when and why does adaptation fail? Trends Ecol Evol 22:140–147

    Article  PubMed  Google Scholar 

  • Brouwers NC, Mercer J, Lyons T, Poot P, Veneklaas E, Hardy G (2012) Climate and landscape drivers of tree decline in a Mediterranean ecoregion. Ecol Evol 3:67–79

    Article  PubMed  Google Scholar 

  • Brumfield RT, Beerli P, Nickerson DA, Edwards SV (2003) The utility of single nucleotide polymorphisms in inferences of population history. Trends Ecol Evol 18:249–256

    Article  Google Scholar 

  • Cai W, Cowan T (2008) Evidence of impacts from rising temperature on inflows to the Murray-Darling Basin. Geophys Res Lett 35:1–5

    Article  Google Scholar 

  • Caldeira MC, Fernandéz JT, Pereira JS (2002) Positive effect of drought on longicorn borer larval survival and growth on eucalyptus trunks. Ann For Sci 59:99–106

    Article  Google Scholar 

  • Chen I-C, Hill JK, Ohlemüller R, Roy DB, Thomas CD (2011) Rapid range shifts of species associated with high levels of climate warming. Science 333:1024–1026

    Article  CAS  PubMed  Google Scholar 

  • Chevin L-M, Lande R, Mace GM (2010) Adaptation, plasticity, and extinction in a changing environment: towards a predictive theory. PLoS Biol 8, e1000357

    Article  PubMed  PubMed Central  Google Scholar 

  • Ciais P, Reichstein M, Viovy N, Granier A, Ogée J, Allard V, Aubinet M, Buchmann N, Chr B, Carrara A, Chevakkier F, De Noblet N, Friend AD, Friedlingstein P, Grünwald T, Heinesch B, Keronen P, Knohl A, Kinner G, Loustau D, Manca G, Matteucci G, Miglietta F, Ourvical JM, Papale D, Pilegaard K, Rambal S, Seufert G, Soussana JF, Sanz MJ, Schulze ED, Vesala T, Valentini R (2005) Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 427:529–533

    Article  Google Scholar 

  • Condit R, Hubbell SP, Foster RB (1995) Mortality rates of 205 neotropical tree and shrub species and the impact of a severe drought. Ecol Monograph 65:419–439

    Article  Google Scholar 

  • Cramer W, Bondeau A, Woodward FI, Prentice IC, Betts RA, Brovkin V, Cox PM, Fisher V, Foley JA, Friend AD, Kucharik C, Lomas MR, Ramankutty N, Sitch S, Smith B, White A, Young-Molling C (2001) Global response of terrestrial ecosystem structure and function to CO2 and climate change: results from six dynamic global vegetation models. Glob Chang Biol 7:357–373

    Article  Google Scholar 

  • Cunningham S, Mac Nally R, Read J, Baker P, White M, Thomson J, Griffioen P (2009) A robust technique for mapping vegetation condition across a major river system. Ecosystems 12:207–219

    Article  Google Scholar 

  • Curran TJ, Reid EM, Skorik C (2010) Effects of a severe frost on riparian rainforest restoration in the Australian wet tropics: foliage retention by species and the role of forest shelter. Restoration Ecol 18:408–413

    Article  Google Scholar 

  • Davis MB, Shaw RG, Etterson JR (2005) Evolutionary responses to changing climate. Ecology 86:1704–1714

    Article  Google Scholar 

  • Dieleman WIJ, Vicca S, Dijkstra FA, Hagedorn F, Hovenden MJ, Larsen KS, Morgan JA, Volder A, Beier C, Dukes JS, King J, Leuzinger S, Linder S, Luo Y, Oren R, de Angelis P, Tingey D, Hoosbeek MR, Janssens IA (2012) Simple additive effects are rare: a quantitative review of plant biomass and soil process responses to combined manipulations of CO2 and temperature. Glob Chang Biol 18:2681–2693

    Article  PubMed  Google Scholar 

  • Doblas‐Miranda E, Martínez‐Vilalta J, Lloret F, Álvarez A, Ávila A, Bonet FJ, Brotons L, Castro J, Yuste JC, Díaz M, Ferrandis P, García-Hurtado E, Iriondo JM, Keenan TF, Latron J, Llusià J, Loepfe L, Mayol M, Moré G, Moya D, Peñuelas J, Pons X, Poyatos R, Sardans J, Sus O, Vallejo VR, Vayreda J, Retana J (2014) Reassessing global change research priorities in Mediterranean terrestrial ecosystems: how far have we come and where do we go from here? Glob Ecol Biogeogr 24:25–43

    Article  Google Scholar 

  • Duff GA, Stocker GC (1989) The effects of frosts on rainforest/open forest ecotones in the highlands of north Queensland. Proc R Soc QLD 100:49–54

    Google Scholar 

  • Gerten D (2013) A vital link: water and vegetation in the Anthropocene. Hydrol Earth Syst Sci 17:3841–3852

    Article  Google Scholar 

  • Gienapp P, Teplitsky C, Alho S, Mills A, Merilä J (2008) Climatic change and evolution: disentangling environmental and genetic responses. Mol Ecol 17:167–178

    Article  CAS  PubMed  Google Scholar 

  • Godfree RC (2012) Extreme climatic events as drivers of ecosystem change. In: Mahamane A (ed) Diversity of ecosystems. InTech Publishers, Rijeka, pp 339–366

    Google Scholar 

  • Godfree RC, Lepschi B, Reside A, Bolger T, Robertson B, Marshall D, Carnegie M (2011) Multiscale topoedaphic heterogeneity increases resilience and resistance of a dominant grassland species to extreme drought and climate change. Glob Chang Biol 17:943–958

    Article  Google Scholar 

  • Godfree RC, Robertson BC, Gapare WJ, Ivković M, Marshall DJ, Lepschi BJ, Zwart AB (2013) Nonindigenous plant advantage in native and exotic Australian grasses under experimental drought, warming, and atmospheric CO2 enrichment. Biology 2:481–513

    Article  PubMed  PubMed Central  Google Scholar 

  • Groom PK, Lamont BB, Leighton S, Leighton P, Burrows C (2004) Heat damage in sclerophylls is influences by their leaf properties and plant environment. Ecoscience 11:94–101

    Google Scholar 

  • Hannah L, Midgley GF, Lovejoy T, Bond WJ, Bush M, Lovett JC, Scott D, Woodward FI (2002) Conservation of biodiversity in a changing climate. Conserv Biol 16:264–268

    Article  Google Scholar 

  • Harvell CD, Mitchell CE, Ward JR, Altizer S, Dobson AP, Osfeld RS, Samuel MD (2002) Climate warming and disease risks for terrestrial and marine biota. Science 296:2158–2162

    Article  CAS  PubMed  Google Scholar 

  • Heberger M (2012) Australia’s millennium drought: impacts and responses. In: Gleick PH (ed) The world’s water volume 7: the biennial report on freshwater resources. The World’s Water, pp. 97–125, doi:10.5822/978-1-61091-048-4_5

  • Hodell DA, Brenner M, Curtis JH (2005) Terminal Classic drought in the northern Maya lowlands inferred from multiple sediment cores in Lake Chichancanab (Mexico). Q Sci Rev 24:1413–1427

    Article  Google Scholar 

  • Hoffmann AA, Hercus MJ (2000) Environmental stress as an evolutionary force. Bioscience 50:217–226

    Article  Google Scholar 

  • Hoffmann AA, Merilä J (1999) Heritable variation and evolution under favourable and unfavourable conditions. Trends Ecol Evol 14:96–101

    Article  PubMed  Google Scholar 

  • Hope PK (2006) Projected future changes in synoptic systems influencing southwest Western Australia. Climate Dynam 26:765–780

    Article  Google Scholar 

  • Horner GJ, Baker PJ, Mac Nally R, Cunningham SC, Thomson JR, Hamilton F (2009) Mortality of developing floodplain forests subjected to a drying climate and water extraction. Glob Chang Biol 15:2176–2186

    Article  Google Scholar 

  • Hovenden MJ, Wills KE, Vander Schoor JK, Williams AL, Newton PCD (2008) Flowering phenology in a species-rich temperate grassland is sensitive to warming but not elevated CO2. New Phytol 178:815–822

    Article  CAS  PubMed  Google Scholar 

  • IPCC (2012) Managing the risks of extreme events an disasters to advance climate change adaptation. A special report of working groups I and II of the Intergovernmental Panel on Climate Change [Field CB, Barros V, Stocker TF, Qin D, Dokken DJ, Ebi KL, Mastrandrea MD, Mach MJ, Plattner GK, Allen SK, Tignor M, Midgley PM (eds) Cambridge University Press, Cambridge, p. 582]

    Google Scholar 

  • Katz RW, Brown BG (1992) Extreme events in a changing climate: variability is more important than averages. Clim Change 21:289–302

    Article  Google Scholar 

  • Katz RW, Brush GS, Parlange MB (2005) Statistics of extremes: modeling ecological disturbances. Ecology 86:1124–1134

    Article  Google Scholar 

  • Kuhner M (2009) Coalescent genealogy samplers: windows into population history. Trends Ecol Evol 24:86–93

    Article  PubMed  PubMed Central  Google Scholar 

  • Kuparinen A, Savolainen O, Schurr FM (2010) Increased mortality can promote evolutionary adaptation of forest trees to climate change. For Ecol Manage 259:1003–1008

    Article  Google Scholar 

  • Kurtz WA, Dymond CC, Rampley GJ, Neilson ET, Carroll AL, Ebata T, Safranyik L (2008) Mountain pine beetle and forest carbon feedback to climate change. Nature 452:987–990

    Article  Google Scholar 

  • Lake PS (2011) Drought and aquatic ecosystems: effects and responses. Wiley-Blackwell, West Sussex

    Book  Google Scholar 

  • Larcher W (2000) Temperature stress and survival ability of Mediterranean sclerophyllous plants. Plant Biosyst 134:279–295

    Article  Google Scholar 

  • Leblanc M, Tweed S, Van Dijk A, Timbal B (2012) A review of historic and future hydrological changes in the Murray-Darling Basin. Global Planet Change 80–81:226–246

    Article  Google Scholar 

  • Li H, Durbin R (2011) Inference of human population history from individual whole-genome sequences. Nature 475:493–496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lytle DA, Poff NL (2004) Adaptation to natural flow regimes. Trends Ecol Evol 19:94–100

    Article  PubMed  Google Scholar 

  • Marchand FL, Verlinden M, Kockelbergh F, Graae BJ, Beyens L, Nijs I (2006) Disentangling effects of an experimentally imposed extreme temperature event and naturally associated desiccation on Arctic tundra. Funct Ecol 20:917–928

    Article  Google Scholar 

  • Matusick G, Ruthrof KX, Hardy GSJ (2012) Drought and heat triggers sudden and severe dieback in a dominant mediterranean-type woodland species. Open J Forest 2:183–186

    Article  Google Scholar 

  • Matusick G, Ruthrof KX, Brouwers NC, Dell B, Hardy GSJ (2013) Sudden forest collapse corresponding with extreme drought and heat in a Mediterranean-type eucalypt forest in southwestern Australia. Eur J For Res 132:497–510

    Article  Google Scholar 

  • Mayence CE, Marshall DJ, Godfree R (2010) Hydrological and mechanical control for an invasive wetland plant, Juncus ingens, and implications for rehabilitating and managing Murray River floodplain wetlands, Australia. Wetl Ecol Manag 18:717–730

    Article  Google Scholar 

  • Mckeon G, Hall W, Henry B, Stone G, Watson I (eds) (2004) Pasture degradation and recovery in Australia’s rangelands: learning from history. Queensland Department of Natural Resources, Mines and Energy, Brisbane, QLD

    Google Scholar 

  • McMahon TA, Finlayson BL (2003) Droughts and anti-droughts: the low flow hydrology of Australian rivers. Freshw Biol 48:1147–1160

    Article  Google Scholar 

  • Menzel A, Sparks TH, Estrella N, Koch E, Aasa A, Ahas R, Alm-kübler K, Bissolli P, Braslavská O, Briede A, Chmielewski FM, Crepinsek Z, Curnel Y, Dahl A, Defila C, Donnelly A, Filella Y, Jatczak K, Mage F, Mestre A, Nordli O, Peñuelas J, Pirinen P, Remišová V, Scheifinger H, Striz M, Susnik A, Van Vliet AJH, Wielgolaski FE, Zach S, Zust A (2006) European phenological response to climate change matches the warming pattern. Glob Chang Biol 12:1969–1976

    Article  Google Scholar 

  • Miller W, Schuster SC, Welch AJ, Ratan A, Bedoya-Reina OC, Zhao F, Kim HL, Burhans RC, Drautz DI, Wittekindt NE, Tomsho LP, Ibarra-Laclette E, Herrera-Estrella L, Peacock E, Farley S, Sage GK, Rode K, Obbard M, Montiel R, Bachmann L, Ingólfsson Ó, Aars J, Mailund T, Wiig Ø, Talbot SL, Lindqvist C (2012) Polar and brown bear genomes reveal ancient admixture and demographic footprints of past climate change. Proc Natl Acad Sci 109:2382–2390

    Article  Google Scholar 

  • Murphy BF, Timbal C (2008) A review of recent climate variability and climate change in southeastern Australia. Int J Climatol 28:859–879

    Article  Google Scholar 

  • Musil CF, Schmiedel U, Midgley GF (2005) Lethal effects of experimental warming approximating a future climate scenario on southern African quartz-field succulents: a pilot study. New Phytol 165:539–547

    Article  PubMed  Google Scholar 

  • Naiman RJ, Latterell JJ, Pettit NE, Olden JD (2008) Flow variability and the biophysical vitality of river ecosystems. Geoscience 340:629–643

    Article  Google Scholar 

  • Parmesan C, Root TL, Willig MR (2000) Impacts of extreme weather and climate on terrestrial biota. Bull Am Meteorol Soc 81:443–450

    Article  Google Scholar 

  • Phillips PC (1996) Maintenance of polygenic variation via a migration-selection balance under uniform selection. Evolution 50:1334–1339

    Article  Google Scholar 

  • Pindyck RS (2011) Fat tails, thin tails, and climate change policy. Rev Environ Econ Policy 5:258–274

    Article  Google Scholar 

  • Pook EW, Forrester RI (1984) Factors influencing dieback of drought-affected dry sclerophyll forest tree species. Aust For Res 14:201–217

    Google Scholar 

  • Pook EW, Costin AB, Moore CWE (1966) Water stress in native vegetation during the drought of 1965. Aust J Bot 14:257–267

    Article  Google Scholar 

  • Pook M, Lisson S, Risbey J, Ummenhofer CC, McIntosh P, Rebbeck M (2009) The autumn break for cropping in southeast Australia: trends, synoptic influences and impacts on wheat yield. Int J Climatol 29:2012–2202

    Article  Google Scholar 

  • Prentice IC, Cramer W, Harrison SP, Leemans R, Monserud RA, Solomon AM (1992) A global biome model based on plant physiology and dominance, soil properties and climate. J Biogeogr 19:117–134

    Article  Google Scholar 

  • Reid MA, Ogden RW (2006) Trend, variability or extreme event? The importance of long-term perspectives in river ecology. River Res Appl 22:167–177

    Article  Google Scholar 

  • Reznick DN, Ghalambor CK (2001) The population ecology of contemporary adaptations: what empirical studies reveal about the conditions that promote adaptive evolution. Genetica 112–113:183–198

    Article  PubMed  Google Scholar 

  • Ross-Ilbarra J, Wright SI, Foxe JP, Kawabe A, DeRose-Wilson L, Gos G, Charlesworth D, Gaut BS (2008) Patterns of polymorphism and demographic history in natural populations of Arabidopsis lyrata. PLoS One 3, e2411

    Article  Google Scholar 

  • Schubert SD, Suarez MJ, Pegion PJ, Koster RD, Bacmeister JT (2004) On the cause of the 1930s dust bowl. Science 303:1855–1859

    Article  CAS  PubMed  Google Scholar 

  • Sgrò CM, Lowe AJ, Hoffmann AA (2011) Building evolutionary resilience for conserving biodiversity under climate change. Evol Appl 4:326–337

    Article  PubMed  PubMed Central  Google Scholar 

  • Siol M, Wright SI, Barrett SCH (2010) The population genomics of plant adaptation. New Phytol 188:313–332

    Article  CAS  PubMed  Google Scholar 

  • Smith MD (2011) An ecological perspective on extreme climatic events: a synthetic definition and framework to guide future research. J Ecol 2011:656–663

    Article  Google Scholar 

  • Stephenson B (2008) Definition, diagnosis, and origin of extreme weather and climate events. In: Diaz HF, Murnane RJ (eds) Climate extremes and society. Cambridge University Press, Cambridge, pp 1–22

    Google Scholar 

  • Stoneking M, Krause J (2011) Learning about human population history from ancient and modern genomes. Nat Rev Genet 12:603–614

    Article  CAS  PubMed  Google Scholar 

  • Stott PA, Stone DA, Allen MR (2004) Human contribution to the European heatwave of 2003. Nature 432:610–613

    Article  CAS  PubMed  Google Scholar 

  • Tigerstedt PMA (1994) Adaptation, variation and selection in marginal areas. Euphytica 77:171–174

    Article  Google Scholar 

  • Verdon-Kidd DC, Kiem AS (2009) Nature and causes of protracted droughts in southeast Australia: comparison between the Federation, WWII and Big Dry droughts. Geophys Res Lett 36, L22707

    Article  Google Scholar 

  • Vivian LM, Godfree RC, Colloff MJ, Mayence CE, Marshall DJ (2014a) Wetland plant growth under contrasting water regimes associated with river regulation and drought: implications for environmental water management. Plant Ecol 215:997–1011

    Article  Google Scholar 

  • Vivian LM, Ward KA, Zwart AB, Godfree RC (2014b) Environmental water allocations are insufficient to control an invasive plant: evidence from a highly regulated floodplain wetland. J Appl Ecol 51:1292–1303

    Article  Google Scholar 

  • Walker BH (1993) Rangeland ecology: understanding and managing change. Ambio 22:80–87

    Google Scholar 

  • Walker KF, Sheldon F, Puckridge JT (1995) A perspective on dryland river ecosystems. Regul Rivers: Res Manage 11:85–104

    Article  Google Scholar 

  • Walther G-R, Post E, Convery P, Menzel A, Parmesan C, Beebee TJC, Fromentin J-M, Hoegh-Guldberg O, Bairlein F (2002) Ecological responses to recent climate change. Nature 416:389–395

    Article  CAS  PubMed  Google Scholar 

  • Woodhouse CA, Overpeck JT (1998) 2000 years of drought variability in the central United States. Bull Am Meteorol Soc 79:2693–2714

    Article  Google Scholar 

  • Zhao M, Running SW (2010) Drought-induced reduction in global terrestrial net primary production from 2000 through 2009. Science 329:940–943

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert C. Godfree Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Godfree, R.C., Vivian, L.M., Pierson, J.C. (2016). The Impacts of Extreme Climatic Events on Wild Plant Populations. In: Edwards, D., Batley, J. (eds) Plant Genomics and Climate Change. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3536-9_2

Download citation

Publish with us

Policies and ethics