Skip to main content

Genome Editing by Aptamer-Guided Gene Targeting (AGT)

  • Chapter
  • First Online:
Book cover Genome Editing

Abstract

DNA aptamers are sequences of DNA that because of their unique secondary structure are capable of binding to a specific target. Aptamer technology has only recently been applied to gene correction. The effectiveness of using aptamers for gene targeting comes from their versatility, as aptamers can be used in conjunction with currently existing genome modification systems. Here we describe how DNA aptamers can be exploited to increase donor DNA availability, and thus promote the transfer of genetic information from a donor DNA molecule to a desired chromosomal locus. Although still in its infancy compared to other more well-characterized systems, aptamer-guided gene targeting (AGT) offers a new direction to the field of genetic engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nussbaum A, Shalit M, Cohen A. Restriction-stimulated homologous recombination of plasmids by the RecE pathway of Escherichia coli. Genetics. 1992;130(1):37–49.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Storici F, Durham CL, Gordenin DA, Resnick MA. Chromosomal site-specific double-strand breaks are efficiently targeted for repair by oligonucleotides in yeast. Proc Natl Acad Sci U S A. 2003;100(25):14994–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Puchta H, Dujon B, Hohn B. Homologous recombination in plant cells is enhanced by in vivo induction of double strand breaks into DNA by a site-specific endonuclease. Nucleic Acids Res. 1993;21(22):5034–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Banga SS, Boyd JB. Oligonucleotide-directed site-specific mutagenesis in Drosophila melanogaster. Proc Natl Acad Sci U S A. 1992;89(5):1735–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Rouet P, Smih F, Jasin M. Expression of a site-specific endonuclease stimulates homologous recombination in mammalian cells. Proc Natl Acad Sci U S A. 1994;91(13):6064–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Smih F, Rouet P, Romanienko PJ, Jasin M. Double-strand breaks at the target locus stimulate gene targeting in embryonic stem cells. Nucleic Acids Res. 1995;23(24):5012–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Santoro SW, Schultz PG. Directed evolution of the site specificity of Cre recombinase. Proc Natl Acad Sci U S A. 2002;99(7):4185–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Voziyanov Y, Konieczka JH, Stewart AF, Jayaram M. Stepwise manipulation of DNA specificity in Flp recombinase: progressively adapting Flp to individual and combinatorial mutations in its target site. J Mol Biol. 2003;326(1):65–76.

    Article  CAS  PubMed  Google Scholar 

  9. Palpant NJ, Dudzinski D. Zinc finger nucleases: looking toward translation. Gene Ther. 2013;20(2):121–7.

    Article  CAS  PubMed  Google Scholar 

  10. Kim YG, Cha J, Chandrasegaran S. Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc Natl Acad Sci U S A. 1996;93(3):1156–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Carlson DF, Fahrenkrug SC, Hackett PB. Targeting DNA With Fingers and TALENs. Mol Ther Nucleic Acids. 2012;1, e3.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Moscou MJ, Bogdanove AJ. A simple cipher governs DNA recognition by TAL effectors. Science. 2009;326(5959):1501.

    Article  CAS  PubMed  Google Scholar 

  13. Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, et al. Multiplex genome engineering using CRISPR/Cas systems. Science. 2013;339(6121):819–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ruff P, Koh KD, Keskin H, Pai RB, Storici F. Aptamer-guided gene targeting in yeast and human cells. Nucleic Acids Res. 2014;42(7), e61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ni X, Castanares M, Mukherjee A, Lupold SE. Nucleic acid aptamers: clinical applications and promising new horizons. Curr Med Chem. 2011;18(27):4206–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Niu Y, Tenney K, Li H, Gimble FS. Engineering variants of the I-SceI homing endonuclease with strand-specific and site-specific DNA-nicking activity. J Mol Biol. 2008;382(1):188–202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Berezovski M, Musheev M, Drabovich A, Krylov SN. Non-SELEX selection of aptamers. J Am Chem Soc. 2006;128(5):1410–1.

    Article  CAS  PubMed  Google Scholar 

  18. Storici F, Snipe JR, Chan GK, Gordenin DA, Resnick MA. Conservative repair of a chromosomal double-strand break by single-strand DNA through two steps of annealing. Mol Cell Biol. 2006;26(20):7645–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Potts PR, Porteus MH, Yu H. Human SMC5/6 complex promotes sister chromatid homologous recombination by recruiting the SMC1/3 cohesin complex to double-strand breaks. EMBO J. 2006;25(14):3377–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wilson JH, Leung WY, Bosco G, Dieu D, Haber JE. The frequency of gene targeting in yeast depends on the number of target copies. Proc Natl Acad Sci U S A. 1994;91(1):177–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Coic E, Martin J, Ryu T, Tay SY, Kondev J, Haber JE. Dynamics of homology searching during gene conversion in Saccharomyces cerevisiae revealed by donor competition. Genetics. 2011;189(4):1225–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Renkawitz J, Lademann CA, Kalocsay M, Jentsch S. Monitoring homology search during DNA double-strand break repair in vivo. Mol Cell. 2013;50(2):261–72.

    Article  CAS  PubMed  Google Scholar 

  23. Roukos V, Voss TC, Schmidt CK, Lee S, Wangsa D, Misteli T. Spatial dynamics of chromosome translocations in living cells. Science. 2013;341(6146):660–4.

    Article  CAS  PubMed  Google Scholar 

  24. Rocha PP, Chaumeil J, Skok JA. Molecular biology. Finding the right partner in a 3D genome. Science. 2013;342(6164):1333–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jenison RD, Gill SC, Pardi A, Polisky B. High-resolution molecular discrimination by RNA. Science. 1994;263(5152):1425–9.

    Article  CAS  PubMed  Google Scholar 

  26. Singerman LJ, Masonson H, Patel M, Adamis AP, Buggage R, Cunningham E, et al. Pegaptanib sodium for neovascular age-related macular degeneration: third-year safety results of the VEGF Inhibition Study in Ocular Neovascularisation (VISION) trial. Br J Ophthalmol. 2008;92(12):1606–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hall B, Micheletti JM, Satya P, Ogle K, Pollard J, Ellington AD. Design, synthesis, and amplification of DNA pools for in vitro selection. Curr Protoc Mol Biol. 2009;Chapter 24:Unit 24.2.

    Google Scholar 

  28. Sabeti PC, Unrau PJ, Bartel DP. Accessing rare activities from random RNA sequences: the importance of the length of molecules in the starting pool. Chem Biol. 1997;4(10):767–74.

    Article  CAS  PubMed  Google Scholar 

  29. Ellington AD, Szostak JW. In vitro selection of RNA molecules that bind specific ligands. Nature. 1990;346(6287):818–22.

    Article  CAS  PubMed  Google Scholar 

  30. Tuerk C, Gold L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science. 1990;249(4968):505–10.

    Article  CAS  PubMed  Google Scholar 

  31. Berezovski M, Drabovich A, Krylova SM, Musheev M, Okhonin V, Petrov A, et al. Nonequilibrium capillary electrophoresis of equilibrium mixtures: a universal tool for development of aptamers. J Am Chem Soc. 2005;127(9):3165–71.

    Article  CAS  PubMed  Google Scholar 

  32. Mosing RK, Mendonsa SD, Bowser MT. Capillary electrophoresis-SELEX selection of aptamers with affinity for HIV-1 reverse transcriptase. Anal Chem. 2005;77(19):6107–12.

    Article  CAS  PubMed  Google Scholar 

  33. Belfort M, Roberts RJ. Homing endonucleases: keeping the house in order. Nucleic Acids Res. 1997;25(17):3379–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Stoddard BL. Homing endonucleases: from microbial genetic invaders to reagents for targeted DNA modification. Structure. 2011;19(1):7–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Colleaux L, D’Auriol L, Galibert F, Dujon B. Recognition and cleavage site of the intron-encoded omega transposase. Proc Natl Acad Sci U S A. 1988;85(16):6022–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wang Z, Zhou ZJ, Liu DP, Huang JD. Double-stranded break can be repaired by single-stranded oligonucleotides via the ATM/ATR pathway in mammalian cells. Oligonucleotides. 2008;18(1):21–32.

    Article  PubMed  Google Scholar 

  37. Chen F, Pruett-Miller SM, Huang Y, Gjoka M, Duda K, Taunton J, et al. High-frequency genome editing using ssDNA oligonucleotides with zinc-finger nucleases. Nat Methods. 2011;8(9):753–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Olsen PA, Randol M, Krauss S. Implications of cell cycle progression on functional sequence correction by short single-stranded DNA oligonucleotides. Gene Ther. 2005;12(6):546–51.

    Article  CAS  PubMed  Google Scholar 

  39. Papaioannou I, Simons JP, Owen JS. Oligonucleotide-directed gene-editing technology: mechanisms and future prospects. Expert Opin Biol Ther. 2012;12(3):329–42.

    Article  CAS  PubMed  Google Scholar 

  40. Cowperthwaite MC, Ellington AD. Bioinformatic analysis of the contribution of primer sequences to aptamer structures. J Mol Evol. 2008;67(1):95–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Pan W, Clawson GA. The shorter the better: reducing fixed primer regions of oligonucleotide libraries for aptamer selection. Molecules. 2009;14(4):1353–69.

    Article  CAS  PubMed  Google Scholar 

  42. Legiewicz M, Lozupone C, Knight R, Yarus M. Size, constant sequences, and optimal selection. RNA. 2005;11(11):1701–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Stafford P, Brun M. Three methods for optimization of cross-laboratory and cross-platform microarray expression data. Nucleic Acids Res. 2007;35(10), e72.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Plessis A, Perrin A, Haber JE, Dujon B. Site-specific recombination determined by I-SceI, a mitochondrial group I intron-encoded endonuclease expressed in the yeast nucleus. Genetics. 1992;130(3):451–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Cheng AK, Ge B, Yu HZ. Aptamer-based biosensors for label-free voltammetric detection of lysozyme. Anal Chem. 2007;79(14):5158–64.

    Article  CAS  PubMed  Google Scholar 

  46. Stojanovic MN, Kolpashchikov DM. Modular aptameric sensors. J Am Chem Soc. 2004;126(30):9266–70.

    Article  CAS  PubMed  Google Scholar 

  47. Barbas AS, Mi J, Clary BM, White RR. Aptamer applications for targeted cancer therapy. Future Oncol. 2010;6(7):1117–26.

    Article  CAS  PubMed  Google Scholar 

  48. Chu TC, Twu KY, Ellington AD, Levy M. Aptamer mediated siRNA delivery. Nucleic Acids Res. 2006;34(10), e73.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Zhou J, Neff CP, Swiderski P, Li H, Smith DD, Aboellail T, et al. Functional in vivo delivery of multiplexed anti-HIV-1 siRNAs via a chemically synthesized aptamer with a sticky bridge. Mol Ther. 2013;21(1):192–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

We acknowledge support from the Georgia Cancer Coalition Grant R9028, the NIH Grant R21EB9228, and the Georgia Tech Fund for Innovation in Research and Education GT-FIRE-1021763.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesca Storici Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 American Society of Gene and Cell Therapy

About this chapter

Cite this chapter

Ruff, P., Storici, F. (2016). Genome Editing by Aptamer-Guided Gene Targeting (AGT). In: Cathomen, T., Hirsch, M., Porteus, M. (eds) Genome Editing. Advances in Experimental Medicine and Biology(). Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3509-3_7

Download citation

Publish with us

Policies and ethics