Skip to main content

Phage Integrases for Genome Editing

Part of the Advances in Experimental Medicine and Biology book series (AEMB)

Abstract

Phage integrases are prokaryotic site-specific recombinases that perform precise cut-and-paste recombination between their short attB and attP recognition sequences. These enzymes work in cellular environments ranging from bacteria to mammalian cells and have become useful genome engineering tools. PhiC31 was the first phage integrase to be developed for use in mammalian cells. This integrase has the useful property of being able to recombine its own attB and attP sites. In addition, phiC31 integrase performs recombination at related native sequences called pseudo att sites present in large genomes, which has allowed integration into unmodified genomes. PhiC31 integrase can also be used in conjunction with another phage integrase, Bxb1, which has different recognition sequences and does not recombine at pseudo att sites. The properties of these phage integrases have led to a range of applications, summarized here, from creation of transgenic organisms and in vivo gene therapy, to cellular reprogramming and precise genome editing by cassette exchange. The latest system, dual integrase cassette exchange (DICE), uses target phiC31 and Bxb1 attP sequences precisely placed in genomes by homologous recombination and is especially useful for iterative genome engineering in pluripotent stem cells.

Keywords

  • attB site
  • attP site
  • Bxb1 integrase
  • Cassette exchange
  • Embryonic stem cell
  • Homologous recombination
  • Induced pluripotent stem cell
  • phiC31 integrase
  • Reprogramming
  • TALEN

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4939-3509-3_5
  • Chapter length: 11 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   129.00
Price excludes VAT (USA)
  • ISBN: 978-1-4939-3509-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   169.99
Price excludes VAT (USA)
Hardcover Book
USD   169.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Thorpe HM, Smith MCM. In vitro site-specific integration of bacteriophage DNA catalyzed by a recombinase of the resolvase/invertase family. Proc Natl Acad Sci U S A. 1998;95:5505–10.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  2. Groth AC, Olivares EC, Thyagarajan B, Calos MP. A phage integrase directs efficient site-specific integration in human cells. Proc Natl Acad Sci U S A. 2000;97:5995–6000.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  3. Rutherford K, Van Duyne G. The ins and outs of serine integrase site-specific recombination. Curr Opin Struct Biol. 2014;24:125–31.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  4. Thyagarajan B, Olivares EC, Hollis RP, Ginsburg DS, Calos MP. Site-specific genomic integration in mammalian cells mediated by phage phiC31 integrase. Mol Cell Biol. 2001;21:3926–34.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chalberg TC, et al. Integration specificity of phage phiC31 integrase in the human genome. J Mol Biol. 2006;357:28–48.

    CrossRef  CAS  PubMed  Google Scholar 

  6. Allen BG, Weeks DL. Transgenic Xenopus laevis embryos can be generated using phiC31 integrase. Nat Methods. 2005;2:975–9.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  7. Groth AC, Fish M, Nusse R, Calos MP. Creation of transgenic Drosophila by using the site-specific integrase from phage phiC31. Genetics. 2004;166:1775–82.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  8. Geisinger J, Calos MP. Site-specific recombination using phiC31 integrase. In: Renault S, Duchateau P, editors. Site-directed insertion of transgenes. Dordrecht: Springer Science; 2013. p. 211–39.

    CrossRef  Google Scholar 

  9. Olivares EC, et al. Site-specific genomic integration produces therapeutic factor IX levels in mice. Nat Biotechnol. 2002;20:1124–8.

    CrossRef  CAS  PubMed  Google Scholar 

  10. Chavez C, et al. Kinetics and longevity of phiC31 integrase in mouse liver and cultured cells. Hum Gene Ther. 2010;21:1287–97.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  11. Keravala A, et al. Long-term phenotypic correction in factor IX knockout mice by using phiC31 integrase-mediated gene therapy. Gene Ther. 2011;18:842–8.

    CrossRef  CAS  PubMed  Google Scholar 

  12. Chavez C, et al. Long-term expression of human coagulation factor VIII in a tolerant mouse model using the phiC31 integrase system. Hum Gene Ther. 2012;23:390–8.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chavez C, Calos M. Therapeutic applications of the phiC31 integrase system. Curr Gene Ther. 2011;11:375–81.

    CrossRef  CAS  PubMed  Google Scholar 

  14. Karow M, Calos M. The therapeutic potential of phiC31 integrase as a gene therapy system. Expert Opin Biol Ther. 2011;11:1287–96.

    CrossRef  CAS  PubMed  Google Scholar 

  15. Chalberg TC, Genise HL, Vollrath D, Calos MP. PhiC31 integrase confers genomic integration and long-term transgene expression in rat retina. Invest Ophthalmol Vis Sci. 2005;46:2140–6.

    CrossRef  PubMed  Google Scholar 

  16. Bertoni C, et al. Enhancement of plasmid-mediated gene therapy for muscular dystrophy by directed plasmid integration. Proc Natl Acad Sci U S A. 2006;103:419–24.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  17. Takahashi K, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131:861–72.

    CrossRef  CAS  PubMed  Google Scholar 

  18. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126:663–76.

    CrossRef  CAS  PubMed  Google Scholar 

  19. Karow M, et al. Site-specific recombinase strategy to create induced pluripotent stem cells efficiently with plasmid DNA. Stem Cells. 2011;29:1696–704.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhao C, et al. Recombinase-mediated reprogramming and dystrophin gene addition in mdx mouse induced pluripotent stem cells. PLoS One. 2014;9(4), e96279.

    CrossRef  PubMed  PubMed Central  Google Scholar 

  21. Keravala A, et al. A diversity of serine phage integrases mediate site-specific recombination in mammalian cells. Mol Genet Genomics. 2006;276:135–46.

    CrossRef  CAS  PubMed  Google Scholar 

  22. Zhu F, et al. DICE, an efficient system for iterative genomic editing in human pluripotent stem cells. Nucleic Acids Res. 2014;42(5), e34.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

  23. Thorpe HM, Wilson SE, Smith MCM. Control of directionality in the site-specific recombination system of the Streptomyces phage phiC31. Mol Microbiol. 2000;38:232–41.

    CrossRef  CAS  PubMed  Google Scholar 

  24. Khaleel T, Younger E, McEwan A, Varghese A, Smith M. A phage protein that binds phiC31 integrase to switch its directionality. Mol Microbiol. 2011;80:1450–63.

    CrossRef  CAS  PubMed  Google Scholar 

  25. Farruggio A, Chavez C, Mikell C, Calos M. Efficient reversal of phiC31 integrase recombination in mammalian cells. Biotechnol J. 2012;7(11):1332–6.

    CrossRef  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

M.P.C. thanks Victoria Ellis for creating the figures and the California Institute for Regenerative Medicine for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michele P. Calos Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2016 American Society of Gene and Cell Therapy

About this chapter

Cite this chapter

Calos, M.P. (2016). Phage Integrases for Genome Editing. In: Cathomen, T., Hirsch, M., Porteus, M. (eds) Genome Editing. Advances in Experimental Medicine and Biology(). Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3509-3_5

Download citation