Skip to main content

Etiologic Causes of Metabolic Acidosis II: Normal Anion Gap Acidoses

  • Chapter
  • First Online:
Metabolic Acidosis

Abstract

This chapter reviews the pathophysiological basis of the non-gap metabolic acidoses from the perspective of derangements in the numerous adaptive mechanisms that maintain acid–base balance in the face of daily acid loads from exogenous sources, such as the typical Western diet, and endogenously, from acid products of metabolism. The several causes of non-gap metabolic acidosis are reviewed within this framework as a means of linking the pathophysiology of each disorder to more detailed review of the differential diagnosis, appropriate laboratory tests and recommended treatment that follows in subsequent chapters. The chapter reveals that the pathogenesis of each disorder is quite unique, thus aiding the student in developing a better foundation so that diagnosis and treatment can be considered comprehensively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Laski ME, Wesson DE. Lactic acidosis. In: DuBose TD, Hamm LL, editors. Acid–base and electrolyte disorders: a companion to Brenner and Rector’s the kidney. Philadelphia: Saunders; 2002. p. 68–83.

    Google Scholar 

  2. DuBose TD, McDonald GA. Renal tubular acidosis. In: DuBose TD, Hamm LL, editors. Acid–base and electrolyte disorders: a companion to Brenner and Rector’s the kidney. Philadelphia: Saunders; 2002. p. 189–206.

    Google Scholar 

  3. Goraya N, Simoni J, Jo CH, Wesson DE. A comparison of treating metabolic acidosis in CKD stage 4 hypertensive kidney disease with fruits and vegetables or sodium bicarbonate. Clin J Am Soc Nephrol. 2013;8:371–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Krapf R, Alpern RJ, Seldin DW. Clinical syndromes of metabolic acidosis. In: Seldin DW, Giebisch G, editors. The kidney. Philadelphia: Lippincott Williams & Wilkins; 2000. p. 2055–72.

    Google Scholar 

  5. John M, Mallal S. Hyperlactatemia syndromes in people with HIV infection. Curr Opin Infect Dis. 2002;15:23–9.

    Article  PubMed  Google Scholar 

  6. Cote HC, Brumme ZL, Craib KJ, et al. Changes in mitochondrial DNA as a marker of nucleoside toxicity in HIV-infected patients. N Engl J Med. 2002;346:811–20.

    Article  CAS  PubMed  Google Scholar 

  7. Lalau JD, Race JM. Lactic acidosis in metformin therapy. Drugs. 1999;58 Suppl 1:55–60.

    Article  CAS  PubMed  Google Scholar 

  8. Calabrese AT, Coley KC, DaPos SV, et al. Evaluation of prescribing practices: risk of lactic acidosis with metformin therapy. Arch Intern Med. 2002;162:434–7.

    Article  PubMed  Google Scholar 

  9. Romanski SA, McMahon MM. Metabolic acidosis and thiamine deficiency. Mayo Clin Proc. 1999;74:259–63.

    Article  CAS  PubMed  Google Scholar 

  10. Luft FC. Lactic acidosis update for critical care clinicians. J Am Soc Nephrol. 2001;12 Suppl 17:S15–9.

    PubMed  Google Scholar 

  11. Gerard Y, Maulin L, Yazdanpanah Y, et al. Symptomatic hyperlactatemia: an emerging complication of antiretroviral therapy. AIDS. 2000;14:2723–30.

    Article  CAS  PubMed  Google Scholar 

  12. Uchida H, Yamamoto H, Kisaki Y, et al. d-Lactic acidosis in short-bowel syndrome managed with antibiotics and probiotics. J Pediatr Surg. 2004;39:634–6.

    Article  PubMed  Google Scholar 

  13. Jorens PG, Demey HE, Schepens PJ, et al. Unusual d-lactic acid acidosis from propylene glycol metabolism in overdose. J Toxicol Clin Toxicol. 2004;42:163–9.

    Article  CAS  PubMed  Google Scholar 

  14. Lalive PH, Hadengue A, Mensi N, Burkhard PR. Recurrent encephalopathy after small bowel resection. Implication of d-lactate. Rev Neurol (Paris). 2001;157:679–81.

    CAS  Google Scholar 

  15. Whitney GM, Szerlip HM. Acid–base disorders in the critical care setting. In: DuBose TD, Hamm LL, editors. Acid–base and electrolyte disorders: a companion to Brenner and Rector’s the kidney. Philadelphia: Saunders; 2002. p. 165–87.

    Google Scholar 

  16. Halperin ML, Kamel KS, Cherney DZ. Ketoacidosis. In: DuBose TD, Hamm LL, editors. Acid–base and electrolyte disorders: a companion to Brenner and Rector’s the kidney. Philadelphia: Saunders; 2002. p. 67–82.

    Google Scholar 

  17. Umpierrez GE, DiGirolamo M, Tuvlin JA, et al. Differences in metabolic and hormonal milieu in diabetic- and alcohol-induced ketoacidosis. J Crit Care. 2000;15:52–9.

    Article  CAS  PubMed  Google Scholar 

  18. DuBose TD, Alpern RJ. Renal tubular acidosis. In: The metabolic and molecular bases of inherited disease. New York: McGraw-Hill; 2001. p. 4983–5021.

    Google Scholar 

  19. Proudfoot AT, Krenzelok EP, Brent J, Vale JA. Does urine alkalinization increase salicylate elimination? If so, why? Toxicol Rev. 2003;22:129–36.

    Article  CAS  PubMed  Google Scholar 

  20. Brent J. Fomepizole for ethylene glycol and methanol poisoning. N Engl J Med. 2009;360:2216–23.

    Article  CAS  PubMed  Google Scholar 

  21. Fraser AD. Clinical toxicologic implications of ethylene glycol and glycolic acid poisoning. Ther Drug Monit. 2002;24:232–8.

    Article  CAS  PubMed  Google Scholar 

  22. Velez LI, Shepherd G, Lee YC, Keyes DC. Ethylene glycol ingestion treated only with fomepizole. J Med Toxicol. 2007;3:125–8.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Mizock BA, Belyaev S, Mecher C. Unexplained metabolic acidosis in critically ill patients: the role of pyroglutamic acid. Intensive Care Med. 2004;30:502–5.

    Article  PubMed  Google Scholar 

  24. Wilson KC, Reardon C, Farber HW. Propylene glycol toxicity in a patient receiving intravenous diazepam. N Engl J Med. 2000;343:815.

    Article  CAS  PubMed  Google Scholar 

  25. Zar T, Yusufzai I, Sullivan A, Graeber C. Acute kidney injury, hyperosmolality and metabolic acidosis associated with lorazepam. Nat Clin Pract Nephrol. 2007;3:515–20.

    Article  PubMed  Google Scholar 

  26. Loniewski I, Wesson DE. Bicarbonate therapy for prevention of chronic kidney disease progression. Kidney Int. 2014;85:529–35.

    Google Scholar 

  27. Goraya N, Simoni J, Jo C-H, Wesson DE. Treatment of metabolic acidosis in individuals with stage 3 CKD with fruits and vegetables or oral NaHCO3 reduces urine angiotensinogen and preserves GFR. Kidney Int. 2014;86:1031–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas D. DuBose Jr. M.D., M.A.C.P., F.A.S.N. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

DuBose, T.D. (2016). Etiologic Causes of Metabolic Acidosis II: Normal Anion Gap Acidoses. In: E. Wesson, D. (eds) Metabolic Acidosis. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-3463-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3463-8_4

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4939-3461-4

  • Online ISBN: 978-1-4939-3463-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics